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Abstract

Background: Neural decoding could be useful in many ways, from serving as a neuroscience 

research tool to providing a means of augmented communication for patients with neurological 

conditions. However, applications of decoding are currently constrained by the limitations of 

traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, 

magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and 

alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-

density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode 

arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image 

quality. Despite the resulting promise of HD-DOT for facilitating field applications of 

neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated.
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Objective: To assess the feasibility and performance of decoding with HD-DOT in visual cortex.

Methods and Results: To establish the feasibility of decoding at the single-trial level with HD-

DOT, a template matching strategy was used to decode visual stimulus position. A receiver 

operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and 

reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 

across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of 

decoding across 5 participants established both reproducibility in multiple individuals and the 

feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied 

between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-

binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide 

checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant 

error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based 

significance testing.

Conclusions: Visual stimulus information can be decoded accurately, reproducibly, and across a 

range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing 

to block-average test data) using HD-DOT data. These results lay the foundation for future studies 

of more complex decoding with HD-DOT and applications in clinical populations.
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1. Introduction

While much cognitive neuroscience research has focused on mapping brain regions that are 

activated while participants perform tasks, recent work has emphasized the value of the 

reverse analysis known as decoding, i.e., deducing task information from recordings of brain 

activity (Haynes and Rees, 2006; Hebart and Baker, 2018). Potential applications of 

decoding range from building brain-computer interfaces that could restore movement or 

communication in paralyzed patients (Abdalmalak et al., 2017; Collinger et al., 2013) to 

recreating scenes from brain activity measured during visual experiences (Kay et al., 2008; 

Nishimoto et al., 2011; Wen et al., 2018), imagination (Albers et al., 2013; Horikawa and 

Kamitani, 2017), memory tasks (Harrison and Tong, 2009), or dreams (Horikawa et al., 

2013). However, decoding applications are constrained by the limitations of established 

neuroimaging modalities. For instance, many decoding research studies so far have relied on 

electrocorticography (ECoG), which is invasive, or functional magnetic resonance imaging 

(fMRI), which is not conducive to imaging in certain populations and applications due to its 

logistics (Anumanchipalli et al., 2019; Haynes and Rees, 2006; Pinti et al., 2020). Functional 

near-infrared spectroscopy (fNIRS) addresses some of these issues as a noninvasive, 

portable, optical imaging method that supports imaging in an open environment (Pinti et al., 

2020). However, the low channel count of traditional fNIRS limits its spatial resolution, 

coverage, and image quality, thereby constraining the complexity and precision of decoding 

(Abdalmalak et al., 2017; Emberson et al., 2017; White and Culver, 2010a). High-density 

diffuse optical tomography (HD-DOT) is an emerging optical neuroimaging modality that 

uses a dense array of light sources and detectors to capture thousands of overlapping 
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measurements, overcoming several limitations of traditional fNIRS and more closely 

matching fMRI in extensive brain mapping studies (Eggebrecht et al., 2014, 2012; Gregg et 

al., 2010; White and Culver, 2010a, 2010b; Zeff et al., 2007). However, decoding of brain 

activity as measured by HD-DOT has yet to be evaluated. Here, we examine the feasibility 

of decoding visual stimulus information from evoked brain activity measured with HD-DOT, 

assessing accuracy, reproducibility, and the level of detail obtainable.

Prior research using other neuroimaging modalities has made a compelling case for the 

clinical and neuroscientific utility of decoding (Brandman et al., 2018; Haynes and Rees, 

2006; Hebart and Baker, 2018). For one, decoding could provide a means of augmented 

communication for patients who cannot speak or move effectively as a result of various 

neurological disorders including, but not limited to, stroke, neurodegenerative diseases, and 

developmental conditions like cerebral palsy. The complexity of decoding-based 

communication has so far ranged from obtaining yes-no responses using traditional fNIRS 

noninvasively (Abdalmalak et al., 2017) to generating comprehensible speech from ECoG 

arrays in epilepsy patients undergoing neurosurgical treatment (Anumanchipalli et al., 

2019). Neuroimaging signals have also been decoded to drive motor prosthetics for 

amputees and paralyzed patients (Brandman et al., 2018). Success with decoding motor 

signals has ranged from noninvasive but coarse decoding of binary movement direction 

using fNIRS in healthy participants (Sitaram et al., 2007) to detailed control of robotic arms 

using intracortical electrodes in paraplegic patients (Collinger et al., 2013). Furthermore, 

cognitive neuroscience studies have decoded naturalistic images (Kay et al., 2008), movies 

(Nishimoto et al., 2011; Wen et al., 2018), speech (Correia et al., 2014, 2015), music (Hoefle 

et al., 2018), dreams (Horikawa et al., 2013), and semantic content (Huth et al., 2016) from 

fMRI data and provided a powerful window into human brain function (Hebart and Baker, 

2018).

While promising, these applications of decoding are currently constrained by the limitations 

of mainstream neuroimaging modalities. The advanced decoding achieved using ECoG has 

remarkable performance, but implantation of the electrode arrays requires invasive 

neurosurgery and is therefore limited to small clinical populations (Anumanchipalli et al., 

2019). Meanwhile, fMRI is noninvasive, but is still challenging for certain populations, such 

as young children, and contraindicated in others, such as patients with implanted metallic 

devices. In addition, it is not feasible for patients to regularly use cumbersome, technically 

demanding, and prohibitively expensive MRI scanners for applications such as longitudinal 

communication.

In contrast, fNIRS is much more portable and cost-effective, allowing widespread use and 

longitudinal imaging in more natural settings (Pinti et al., 2020). In addition, fNIRS is 

without major contraindications: the instrumentation is compatible with implants, and the 

open imaging environment is well suited to imaging children with a parent nearby for 

comfort. However, the sparse optode arrays and low channel counts used in traditional 

fNIRS compromise spatial resolution, coverage, and image quality, which are likely to limit 

the information available for accurate and detailed decoding (Fishell et al., 2020; White and 

Culver, 2010a).
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HD-DOT utilizes a comparatively dense arrangement of light sources and detectors to 

collect ten-fold to a hundred-fold more measurements than traditional, sparse fNIRS. The 

numerous overlapping channels of HD-DOT enable higher spatial resolution, tomographic 

reconstruction, superficial signal regression, and a reduction in signal localization artifacts 

(Fishell et al., 2020; Gregg et al., 2010; White and Culver, 2010a). As a result, HD-DOT has 

been found to have a similarly high signal-to-noise ratio and high spatial concordance 

compared to fMRI in brain mapping studies using phase-encoded visual stimuli (Eggebrecht 

et al., 2012; White and Culver, 2010b), hierarchical language tasks (Eggebrecht et al., 2014; 

Hassanpour et al., 2015), and resting state functional connectivity analysis (Eggebrecht et 

al., 2014). By combining logistical advantages of optical neuroimaging with improved 

space-bandwidth product (i.e., the field-of-view divided by the point-spread-function, or 

roughly the number of independent voxels) and image quality, HD-DOT holds the potential 

to support detailed, accurate decoding in naturalistic environments and advance the clinical 

and neuroscience applications of decoding.

In the current study, we evaluate the feasibility and performance of visual decoding with 

HD-DOT, focusing on decoding the positions of checkerboard stimuli. The visual system is 

a particularly useful model for proof of principle, due to the elaborate, consistent, and well-

characterized organization of visual features in neuroanatomical space (Hubel and Wiesel, 

1962). Indeed, early fMRI decoding research also focused on visual decoding and gradually 

progressed from decoding fundamental visual features such as stimulus position (Thirion et 

al., 2006) and line orientation (Kamitani and Tong, 2005) to eventually performing intricate 

reconstructions of naturalistic images and movies (Kay et al., 2008; Nishimoto et al., 2011; 

Wen et al., 2018). Furthermore, prior work with HD-DOT has validated retinotopic mapping 

with HD-DOT against the gold standard of fMRI (Eggebrecht et al., 2012; Zeff et al., 2007), 

making retinotopic decoding a promising initial goal.

Herein, we first establish, in healthy adults, the feasibility of binary visual decoding with 

HD-DOT using a template matching strategy, and we evaluate its sensitivity, specificity, and 

accuracy across a range of thresholds using receiver operating characteristic (ROC) analysis. 

We then assess the reproducibility of this binary decoding across multiple imaging sessions 

and multiple participants. Finally, we extend the analysis of decoding performance to non-

binary cases. We use phase-encoded retinotopic stimuli to evaluate the feasibility, accuracy, 

and replicability of 18-way and 36-way classifications of stimulus position across different 

parts of the visual field at individual time points without block-averaging test data. These 

studies reveal that HD-DOT can allow sensitive, specific, and reproducible retinotopic 

decoding, encouraging future studies of more complex decoding paradigms and applications 

in atypical populations.

2. Methods

2.1. HD-DOT imaging

This study aims to investigate the decoding performance of optical neuroimaging using a 

HD-DOT imaging array with an increased space-bandwidth product relative to traditional 

fNIRS. Imaging was performed using a previously characterized continuous-wave HD-DOT 

system that illuminates the back and sides of the head with 750nm and 850nm light through 
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a grid of 96 LED sources interlocked with 92 APD detectors, collectively yielding over 1200 

usable source-detector measurements per wavelength. The weight of the fiber optics is 

supported by an extruded aluminum frame and two suspended wooden rings. Fiber tips 

contact the head via a custom-built cap that spaces the optodes 13 mm apart (hence with 

first-nearest through fourth-nearest source-detector separations of 1.3, 3.0, 3.9 and 4.7 cm) 

across the posterior and lateral surfaces of the head (Eggebrecht et al., 2014). During each 

cap fit, the participant’s hair was first parted and tied if necessary to minimize obstruction of 

light transmission within the field-of-view. The participant was then asked to sit in a chair 

placed below the HD-DOT cap, hold the front straps of the cap, and comb the cap’s optodes 

through their hair and up against the scalp surface. Anatomical markers such as the tragus 

and inion were used to guide cap positioning across sessions and participants. Specifically, 

the vertical position of the cap was adjusted such that the lowest row of optodes contacted 

the head at the level of the inion, and the horizontal distance between reference optodes and 

the tragus was measured on each side and the positioning of the cap adjusted accordingly to 

ensure symmetry. The straps of the cap were then tightened and fastened. Real-time data 

quality metrics such as light and noise levels were used to guide any further optimization of 

the cap fit, e.g. combing any occluded optodes through any obstructing hair to ensure 

uniform optode-to-scalp coupling and light levels across the field of view. Photographs of 

the imaging cap placement were taken from both sides, from both upper and lower viewing 

angles, and used to confirm cap placement during data processing.

2.2 Data processing

Following data acquisition, data were pre-processed, reconstructed, and subjected to 

spectroscopy, as summarized below and detailed in Eggebrecht et al. 2014.

2.2.1 Pre-processing: Raw light measurements were converted to log ratio time series 

using the temporal mean of each measurement as its relative baseline. Noisy channels with 

>7.5% variance across a run were excluded from further analysis, as this excessive variance 

was likely to reflect non-physiological nuisance signals such as head motion as opposed to 

hemodynamic changes associated with brain activity (Eggebrecht et al., 2014). High-pass 

filtering with a 0.02-Hz cutoff was performed to reduce long-term drift. Subsequently, 

superficial signal regression was performed by first averaging all first-nearest-neighbor 

measurements, which sample mostly the scalp, to use as an estimate of global systemic 

signals. This global superficial signal time trace was then subtracted out of every source-

detector measurement time trace using linear regression. This approach has been shown to 

work in conjunction with HD-DOT to improve contrast-to-noise ratio, and the use of a single 

superficial signal regressor avoids both overfitting and removal of brain activation signals 

(Eggebrecht et al., 2014; Gregg et al., 2010; Zeff et al., 2007). Low-pass filtering (with a 

0.5-Hz cutoff) removed residual pulse and other high-frequency noise, and data were then 

downsampled to 1 Hz (Eggebrecht et al., 2014).

2.2.2 Light modeling and reconstruction: Pre-processed data were reconstructed 

using an anatomically based light propagation model generated from the Montreal 

Neurological Institute (MNI) non-linear ICBM152 atlas (Ferradal et al., 2014; Fonov et al., 

2011; Mazziotta et al., 2001), using Freesurfer for segmentation (Dale et al., 1999; Fischl et 
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al., 2001; Ségonne et al., 2004), NIRVIEW for mesh generation, finite element modeling 

with spring relaxation approaches for source and detector positioning, and the NIRFAST 

toolbox for determining a solution to the optical diffusion equation so as to model photon 

diffusion through the head (Dehghani et al., 2008, 2003; Eggebrecht et al., 2014). The 

resulting sensitivity matrix A is the linear transformation for each time point between x, the 

vector of absorption coefficients at 750nm and 850nm within the brain volume, and y, the 

vector of relative changes in measured light levels at each wavelength detected at the head 

surface, as per the linear Rytov approximation:

y = A x (1)

This sensitivity matrix was inverted using Tikhonov regularization (λ1=0.01) and spatially 

variant regularization (λ2 = 0.1), following Eggebrecht et al. (2014). The wavelength-

dependent absorption and scattering coefficients (units mm−1) for the five non-uniform 

tissue compartments were as follows: scalp (μa, 750 = 0.017; μa, 850 = 0.019; μS, 750’ = 

0.74; μS,850’ = 0.64), skull (μa, 750 = 0.012; μa,850 = 0.014; μS,750’ = 0.94; μS,850’ = 

0.84), cerebrospinal fluid (μa,750 = 0.004; μa,850 = 0.004; μS,750’ = 0.3; μS,850’ = 0.3), 

grey matter (μa,750 = 0.018; μa,850 = 0.019; μS,750’ = 0.84; μS,850’ = 0.67), and white 

matter (μa,750 = 0.017; μa,850 = 0.021; μS,750’ = 1.19; μS,850’ = 1.01) (Bevilacqua et al., 

1999; Custo et al., 2006; Eggebrecht et al., 2012; Fishell et al., 2019; Strangman et al., 

2002).

2.2.3 Spectroscopy: Relative changes in oxy- and deoxy- hemoglobin concentrations 

were calculated from the differential absorption image x at each time point through spectral 

decomposition:

ΔC = E−1x (2)

where ΔC is a vector of oxy- and deoxy-hemoglobin concentration changes across the brain 

volume, and E is a matrix of extinction coefficients of oxy- and deoxy- hemoglobin.

2.3. Participants

While functional domains of the brain are generally common across individuals, there are 

readily quantified individual-specific differences in functional localization even after 

anatomical spatial normalization (Gordon et al., 2017). Because of this high inter-individual 

variability, it has been common for fMRI decoding studies to focus on 2-3 highly sampled 

research participants in order to amass sufficient data per participant (Dumoulin and 

Wandell, 2008; Kay et al., 2008; Nishimoto et al., 2011). Here, we adopted a similar 

approach of collecting large amounts of data in a few participants to analyze decoding 

accuracy and reproducibility across multiple imaging sessions. We also collected smaller 

quantities of data across other participants to assess reproducibility across individuals. In 

total, 8 healthy adults participated in this study (age range 24-54 years, 7 female). In the first 

phase of the study (binary decoding), we collected extensive data in participant 1 across 10 

imaging sessions, and evaluated reproducibility across n=5 individuals (participants 1-5). In 

the second phase of the study (non-binary decoding), we used pilot data from participant 1 

to optimize decoding parameters, then analyzed 18-way and 36-way decoding extensively in 
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participant 6, and finally evaluated reproducibility of the more complex 36-way decoding 

across n=3 individuals (participants 6-8). The participants’ demographic information and the 

data that they contributed to each experiment are detailed in Table 1. We intentionally 

selected participants whom we expected to provide high-quality data, based on prior studies, 

as we aimed to evaluate the feasibility and performance of decoding without the confounds 

of poor data quality.

Informed consent was obtained from all participants in accordance with the IRB protocol 

approved by the Human Research Protection Office at Washington University School of 

Medicine.

2.4. Stimulus protocols

Participants were imaged with HD-DOT while they performed multiple runs of three 

different types of checkerboard viewing tasks, adapted from prior retinotopic mapping 

studies (Eggebrecht et al., 2012; White and Culver, 2010b, 2010a; Zeff et al., 2007). The 

Psychophysics Toolbox 3 package for MATLAB was used to display the visual stimuli 

(Brainard, 1997). In all tasks, a checkerboard grid pattern was displayed, consisting of a 

black and white grid that reverses at 8 Hz in time against a 50% gray background, changing 

over time as follows:

Task 1 (binary decoding): Left-and right-sided checkerboard wedge stimuli provided an 

intuitive starting point to begin studying decoding as previous studies show that these two 

stimulus conditions produce distinct, reproducible, well-defined activation maps (Zeff et al., 

2007). Participants were asked to maintain central fixation through multiple rounds of 

viewing a flickering checkerboard wedge for 10 seconds interspersed with rest periods of 

viewing just a fixation cross for 24 seconds. Longer inter-stimulus rest periods of 48s and 

72s were used during a subset of the task runs to check whether this had any effects on 

stimulus response maps and decoding performance, but none were seen indicating that 24 

seconds was sufficient to separate stimulus presentations. The checkerboard wedges 

extended over a polar angle of 70° and a radial angle of 2.5-10°. During each block, the 

checkerboard stimulus was presented on either the lower left quadrant or the lower right 

quadrant of the screen. Over the course of each task run, the stimulus was presented an equal 

number of times on each side in a pseudorandom order. The number of repetitions ranged 

from 5-8 depending on the duration of the inter-stimulus interval; fewer repetitions were 

delivered when the inter-stimulus interval was extended beyond 24s to limit total run time.

Task 2 (18-way decoding): To create a more challenging decoding task with a greater 

number of targets, we presented participants with expanding/contracting checkerboard ring 

stimuli. Participants were asked to maintain central fixation while a flickering checkerboard 

ring expanded or contracted for 8 cycles through 18 positions on the screen at 2 seconds per 

position.

Task 3 (36-way decoding): For another evaluation of decoding with a greater number of 

targets, we also presented participants with rotating checkerboard wedge stimuli. 

Participants maintained central fixation while a flickering checkerboard wedge rotated 
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through 10 revolutions, either clockwise or counterclockwise. The wedge subtended a polar 

angle of 60°, a radial angle of 2.5-10°, and rotated 10° at a time through 36 positions 

spanning 360° on the screen at 1 second per position (i.e., 10° per second, or 36 seconds per 

revolution).

2.5. Decoding by template matching

For an initial assessment of the feasibility of decoding HD-DOT, we wanted to use a simple 

classification algorithm and hence chose a template matching strategy. For every decoding 

attempt, distinct task runs were used for training and testing. The training data were always 

derived from a single task run that included 5 to 10 rounds of stimulus presentation, block-

averaged to construct oxyhemoglobin signal maps for different stimulus conditions. These 

mean activation maps served as “templates” of brain activity corresponding to each stimulus 

response, in voxel space and spatially normalized to the MNI atlas as detailed in section 2.2. 

To create the templates at maximum signal-to-noise ratio, we used a data-driven, paradigm-

specific time window to capture the peak signal. While the hemodynamic response is fixed, 

the signal measured is a convolution of the hemodynamic response function and the stimulus 

timing (Boynton et al., 1996), with the latter varying across tasks. Longer presentations of 

the stimulus in each position delay the peak response (Lindquist et al., 2009). For Task 1, in 

which stimulus presentations were most spread out, left-sided and right-sided template maps 

were constructed by block-averaging the signal across a 5-second time window starting 10 

seconds after stimulus onset, as this coincided with the peak signal based on prior 

hemodynamic studies (Supplemental Figure 1A) (Gregg et al., 2010; Zeff et al., 2007). For 

Task 2, the stimulus only spent 2 seconds in each position at a time, so each template was 

constructed by averaging data across blocks from two time points, 7 and 8 seconds after the 

checkerboard had passed through the position under consideration. This 7-8 second time 

window was empirically optimized using pilot data from participant 1 by evaluating 

decoding performance for a range of time delays and selecting the time delay that minimized 

decoding error (Supplemental Figure 1B). For Task 3, the stimulus rotated at 1 second per 

position, so each template was constructed by block-averaging data from a single time point 

across the 10 revolutions of the stimulus. Here, the optimal time delay was found to be 6 

seconds (Supplemental Figure 1C–1D).

Decoding with 2 templates: Initially, stimulus state was decoded at every time point to 

evaluate the feasibility of decoding at individual time points (Figure 1). This demonstrates 

the temporal quality of the decoding. To perform a statistical analysis of binary decoding 

performance (Figures 2–4), we restricted the data to clearly independent trials, reasoning 

that individual time points were not all independent due to the temporal blurring of the 

hemodynamic response. Each stimulus presentation and each inter-stimulus rest period in 

the test data were treated as separate trials. A trial response was defined as the 

oxyhemoglobin signal map during the single frame 12 seconds after the onset of the 

stimulus presentation or the inter-stimulus interval (to coincide with the middle of the time 

window used to construct the stimulus response templates), in the same MNI atlas voxel 

space as the templates. We then evaluated binary decoding performance on a trial-wise basis. 

Each trial response was compared to both the left-sided and the right-sided templates by 

calculating a spatial Pearson correlation coefficient rn,m between the nth template Tn and the 
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oxyhemoglobin response map for the mth trial Sm as follows, where both Tn and Sm were 

zero-mean-centered (i.e., mean (Tn)=0, mean (Sm)=0):

rn, m = (Tn) ⋅ (Sm)
Tn Sm

(3)

These correlation coefficients were compared to an adjustable threshold to determine the 

decoding output (Dm for each trial m. The threshold value was initially set ad hoc for Figure 

1 and later optimized using ROC analysis as described in section 2.6 and Figure 2. If all 

values of rn,m on the mth trial fell below the threshold, the decoding output was set to Dm = 0 

(i.e., decoded as rest). If rn,m rose above the threshold for only the nth template, the decoding 

output was set to Dm = n. If rn,m rose above the threshold for multiple templates in one trial, 

the decoding output was determined by the template with the maximum correlation value 

rn,m during that trial:

Dm = argmaxn(rn, m) (4)

Decoding with 18 and 36 templates: The template matching approach was similar for 

the non-binary decoding experiments, except that decoding involved a larger number of 

templates (either 18 or 36) and a decoding output was computed for every time point in the 

test run. Specifically, a spatial Pearson correlation rn,t was calculated between the nth 

template Tn and the oxyhemoglobin response map St at the tth time point for each of the 18 

or 36 templates and every single time point in the test data:

rn, t = (Tn) ⋅ (St)
Tn St

(5)

Here, Tn and St were again first zero-mean-centered (i.e., mean(Tn)=0, mean(St)=0). The 

decoding output Dt at each time point was determined by the template number n that had the 

maximum correlation with the oxyhemoglobin signal map at time t:

Dt = argmaxn(rn, t) (6)

2.6. Evaluation of binary decoding performance

After calculating the full vector of decoding outputs (Dm), we evaluated decoding 

performance by comparing Dm to the ground truth of the study design. ROC analysis was 

conducted in order to quantify the sensitivity and specificity of decoding across the full 

range of possible thresholds (Metz, 2006, 1978). At each threshold value, Dm was compared 

to the true stimulus state for each trial to classify every trial as a true or false positive or 

negative. For each threshold, the sensitivity, specificity and Youden J statistic (Youden, 

1950) were then calculated as follows:
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sensitivity = true positives
true positives + false negatives (7)

specificity = true negatives
true negatives + false positives (8)

J = sensitivity + specificity − 1 (9)

Sweeping the correlation threshold across the full range of possible values (from −1 through 

0 to +1 in increments of 0.01) allowed us to plot ROC curves for each possible pairwise 

classification, i.e., one ROC curve for distinguishing left-versus right-sided checkerboard 

stimulus presentations, one for decoding left-sided and rest trials, and one for differentiating 

right-sided and rest trials (Metz, 2006, 1978). Areas under the curves were computed as a 

metric for decoding performance. The maximum value of the Youden J statistic was used to 

determine the optimal threshold value balancing sensitivity and specificity of decoding.

Reproducibility of binary decoding was assessed across 18 task runs in one highly sampled 

participant by changing which task run was used for template construction, pooling all the 

remaining runs as test data, and then repeating the decoding and ROC procedure for every 

possible template.

As an additional measure of reproducibility, ROC analysis was also repeated using only a 

single task run as test data (rather than pooling test data across runs), but for every possible 

pairing of template and test run. This approach was used to evaluate reproducibility both 

across sessions in one highly sampled participant as well as across multiple participants.

2.7. Evaluation of 18-way and 36-way decoding performance

For the 18-way and 36-way decoding experiments, decoding error Et was calculated at every 

time point t in the test task run as the absolute value of the difference between the decoded 

stimulus position (Dt) and the actual stimulus position (St+l), after sliding the entire true 

stimulus position time course by a lag time I to allow for the delayed hemodynamic response 

and match the time window of template construction (i.e., I = 8s for Task 2 and I = 6s for 

Task 3):

Et = Dt − St + l (10)

This error value was then averaged across all time points in the task run to calculate mean 

decoding error.

In order to assess whether the resulting mean decoding error was significantly different from 

chance-level performance, permutation tests were conducted. For example, to evaluate 36-

way decoding performance across sessions within a participant, decoding and mean error 

calculation procedures were repeated for all 30 possible pairings of training and test data set 

across 6 task runs in one participant to generate a distribution of mean decoding error. The 
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template labels in the training data were then randomly shuffled 10 times for each of the 30 

decoding attempts, and the same process of template matching and error calculation was 

repeated each time to generate a null distribution of decoding error values derived using 300 

shuffled template sets. This null distribution was compared to the error distribution for true 

decoding attempts to evaluate the statistical significance of our decoding performance.

To further study decoding performance across different parts of the visual field, mean 

decoding error was also calculated for each possible position of the stimulus rather than 

simply averaging across all positions.

Finally, to evaluate the reproducibility of this detailed decoding both within and across 

individuals, a total of 3 participants performed the rotating checkerboard task 6 times each 

over the course of 2 imaging sessions involving 2 separate cap fits per participant. The 

decoding and error calculation process was repeated for every possible pairing of training 

and test data sets, and the resulting matrix of error values was used to evaluate 

reproducibility of decoding within and between sessions and participants. Permutation 

testing was again conducted to test statistical significance, comparing the observed mean 

decoding error to the error distribution resulting from decoding with 10 random 

permutations of the training data set for every decoding attempt.

2.8. Data and code sharing

To ensure transparency, facilitate reuse of our data, and encourage comparative analyses by 

other groups, our data will be made available upon request and can be obtained by 

contacting the corresponding author. Code for pre-processing and reconstructing HD-DOT 

data is available through Github (https://github.com/WUSTL-ORL/NeuroDOT_Beta), and 

additional code specific to decoding experiments can also be obtained by contacting the 

corresponding author.

3. Results

3.1. Feasibility of decoding visual stimulus position from HD-DOT data

We first assessed the feasibility of decoding HD-DOT data using a simple stimulus position 

classification problem. Participants were imaged with HD-DOT while they performed 

multiple runs of a block-design visual task, in which a flickering checkerboard wedge was 

presented to either the left or the right visual hemi-field interspersed with rest periods of no 

checkerboard stimulus (Zeff et al., 2007). We anticipated that these three stimulus conditions 

(left-sided checkerboard, right-sided checkerboard, and no checkerboard) would produce 

spatially separable HD-DOT activations. A template matching strategy was therefore used to 

decode checkerboard position. Using one <10-minute task run as training data, we mapped 

templates of the oxyhemoglobin response to the left- and right-sided checkerboard stimuli. 

In a second independent task run used as test data, the stimulus condition was decoded as 

either left-sided, right-sided, or rest at each time point, based on the spatial correlation 

between the HD-DOT signal map at that time and each of the templates (as explained in 

section 2.5). Time traces of the Pearson correlation with each template, the decoded 
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stimulus, and the true stimulus condition for a typical decoding attempt in one participant 

illustrate the general agreement between decoded and actual stimulus (Figure 1).

3.2. Quantitative assessment of binary decoding accuracy

In order to objectively quantify decoding performance, we converted our three-way 

decoding problem into three binary classifications (left-sided versus no checkerboard, right-

sided versus no checkerboard, and left-sided versus right-sided stimulus), and performed 

ROC analysis for each case (Metz, 2006, 1978). Furthermore, to ensure that each test data 

point was temporally independent, we calculated decoding accuracy on a trial-wise basis 

rather than across every time point. Each stimulus presentation and inter-stimulus rest period 

in the test data was treated as an independent event or “trial”. To maintain a large sample of 

data points for a robust analysis amid this trial-wise evaluation of sparse block-design task 

data, test data were pooled across multiple task runs and imaging sessions where available. 

For example, one highly sampled participant performed the same checkerboard-viewing task 

18 times over the course of 10 imaging sessions, so data from a single task run was used to 

construct templates, and the other 17 runs were pooled as test data. A plot of correlations for 

all of this participant’s trial responses to the left and right templates reveals a clustering 

based on stimulus condition (Figure 2A).

The thresholds separating different decoding outputs were swept across the full range of 

possible values, and true and false positive rates of decoding were calculated in each case to 

construct three ROC curves (Figure 2B). The large areas under all these curves (AUCs > 

0.98) reflect the high sensitivity and specificity of decoding. The maximum value of the 

Youden J statistic (Youden, 1950) for each ROC curve was used to guide the selection of a 

data-driven optimal threshold value, and sensitivity, specificity, and overall accuracy were 

calculated at this threshold (Table 2).

We also evaluated the feasibility and performance of decoding the deoxyhemoglobin signal 

in place of the oxyhemoglobin signal (Supplemental Table 1).

3.3. Reproducibility of decoding across imaging sessions

One approach that fMRI studies have taken to assess reproducibility is to collect large 

quantities of data on individual participants across multiple task runs and imaging sessions 

and then compare the similarity of results between all possible pairings of the data sets 

(Gordon et al., 2017). Adapting this approach to our HD-DOT decoding study, we used data 

from the participant who performed the same checkerboard-viewing task 18 times over the 

course of 10 different imaging sessions, spanning more than 1 year. We repeated the ROC 

analysis described in section 3.2 17 more times, changing which of the 18 task runs was 

used for template construction each time and again pooling all the remaining data as test 

data, to produce 18 ROC curves for each of the 3 binary classification problems (Figure 3A). 

The consistently high AUC values (mean AUCs = 0.98 for left vs. rest, 0.99 for left vs. right, 

0.99 for right vs. rest) reflect the high sensitivity and specificity of decoding. As an alternate 

approach to evaluating reproducibility within this data, we also repeated our decoding and 

ROC analysis using single task runs for template construction again but then using only 

single task runs as test data (rather than pooling test data across runs), for every possible pair 
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of template and test run (Figure 3B). While the number of test trials is lower here than in 

Figure 3A by design, we still find consistently high AUC values across each matrix of >300 

possible pairings of template and test data (mean AUCs = 0.98 for left vs. rest, 0.99 for left 

vs. right, 0.99 for right vs. rest).

3.4. Reproducibility of binary decoding across participants and inter-subject decoding

We also sought to investigate how replicable our decoding was across multiple different 

participants, and hence took HD-DOT data from four additional healthy adults performing 

the same checkerboard-viewing task twice each. We conducted ROC analysis of decoding 

performance within all five participants as described in section 3.2, here using one task run 

in one participant as training data to decode the other task run in that participant (Figure 

4A).

In addition, we conducted a reproducibility assay similar to that described in section 3.3 

except across participants, evaluating the feasibility of inter-individual decoding. For this 

experiment we used one task run from one participant as training data to decode a second 

task run from each of the participants, constructing ROC curves to assess performance for 

each decoding attempt. This analysis was iterated to evaluate decoding for every possible 

combination of training and test participant (Figure 4B). Mean AUC values were 0.72 for 

left vs. rest, 0.82 for left vs. right, and 0.84 for right vs. rest, with a majority of the values 

ranging from 0.75 to 1.0 both along the matrices’ diagonals and across off-diagonal 

elements. These results indicate that both within-subject decoding and between-subject 

decoding were effective across multiple participants. A one-sample Wilcoxon signed rank 

test was used to confirm that inter-participant decoding performance was significantly better 

than chance (p = 0.011 for left vs. rest; p = 2.9×10−4 for left vs. right; p = 2.5×10−4 for right 

vs. rest). Lower AUC values were observed for some pairings of training and test data sets 

with participants 4 and 5. Raw data quality may be one contributor to this variance 

(Supplemental Figure 2).

3.5. Complex, non-binary decoding:

18- and 36- way classification of moving stimulus position One of the main advantages of 

HD-DOT over sparser fNIRS imaging systems is the improved spatial resolution and image 

quality afforded by the high-density arrays of light sources and detectors with their 

thousands of overlapping measurements (Eggebrecht et al., 2014; White and Culver, 2010a). 

In order to harness the spatial resolution of HD-DOT and assess the feasibility of more 

elaborate decoding than the binary classification established so far, we imaged participants 

while they observed several patterns of moving checkerboard stimuli. As there were 18 

possible sizes for the expanding/contracting ring stimuli and 36 possible positions of the 

rotating checkerboard wedges, we constructed sets of 18 and 36 templates, respectively, for 

these two task paradigms by block-averaging single <7-minute task runs. We then used a 

template matching strategy to decode stimulus position at each time point in independent 

runs of the same task without any block-averaging of the test data. Graphs of Pearson 

correlation values for all the templates and plots of the actual and decoded stimulus positions 

are shown for a typical contracting ring task run (Figure 5A) and a typical rotating wedge 

task run (Figure 6A, Supplemental Movie 1).
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The similarity between the actual and decoded stimulus traces indicates that decoding each 

time point was feasible even in these more complex 18-way and 36-way classification 

problems. After correcting for the hemodynamic time delay, visible in the 6-8 second lag 

between the actual and decoded stimulus traces (Figures 5A and 6A), the discrepancy 

between the actual and decoded stimulus positions was calculated for each time point and 

these values were averaged across the run as a quantitative measure of accuracy. For 

example, across all 30 of the 36-way rotating stimulus decoding attempts in one high-

performing participant, the mean error (± standard deviation) in decoding stimulus position 

was 18.0±17.4° (compared to the mean error for decoding at chance which would have been 

90°). To assess whether decoding performance in this participant was significantly better 

than chance, we conducted a permutation test across all the data collected in this participant 

as described in Section 2.7. The separation between the true decoding error distribution and 

the null distribution illustrates the statistical significance of the results (Figure 5B, p<0.0083, 

and Figure 6B, p<0.0033). Interestingly, breaking down the mean absolute error calculation 

for each stimulus position revealed no significant variation in decoding error with stimulus 

eccentricity (Figure 5C), but greater error when the checkerboard wedge rotated through the 

upper visual hemifield than the lower half of space (Figure 6C).

3.6. Reproducibility of non-binary HD-DOT decoding across participants

For the decoding run depicted in Figure 6A, both the training and test data were collected 

from the same participant and during the same imaging session. To further investigate the 

robustness of this more elaborate decoding, we imaged three different participants as they 

each viewed the rotating checkerboard stimulus sequence six times spread over the course of 

two imaging sessions involving two separate cap fits. We then repeated our decoding and 

error calculation analysis, training with one task run and testing with another independent 

run, for every possible pairing of training and test data set across all the participants and 

imaging sessions (Figure 7A–7B). Although performance varied between participants, we 

observed reproducible decoding across task runs and imaging sessions, with a mean within-

participant decoding error (± standard deviation) of 25.8±24.7° relative to chance 

performance at 90° (p<0.0011). We also observed effective inter-participant decoding (i.e., 

when training and test data were from different individuals), with performance varying 

between sessions and participants, but mean inter-participant decoding error passing 

permutation testing for statistical significance (p<0.0005).

4. Discussion

To establish the feasibility of decoding with HD-DOT, we have used a well-validated visual 

stimulation protocol and have evaluated the accuracy and replicability of decoding stimulus 

position across multiple imaging sessions and research participants for a range of decoding 

complexity. Using a straightforward template matching strategy with training and test data 

from separate 5-10 minute-long task runs, we found that HD-DOT data can be used to 

accurately decode stimulus position at individual time points without needing to block-

average test data. We performed ROC analysis to quantify the accuracy of binary visual 

decoding, obtaining mean AUC values >0.97 across 10 imaging sessions (including 18 task 

runs) in one highly sampled subject, and obtaining mean (intra- and inter-participant 
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decoding) AUC values of 0.7-0.85 across a group of 5 participants. More challenging 18-

way and 36-way decoding experiments also showed strong decoding performance across 

multiple imaging sessions and participants. For these latter studies, the phase of a 60° wide 

checkerboard wedge rotating 10° per second through 360° was decoded with a mean error of 

18.0±17.4° in our best participant across multiple task runs and cap fits. This decoding 

performance varied with data quality but remained significantly above chance based on 

permutation testing across imaging sessions in two additional participants. Inter-participant 

decoding, with training and test data taken from different individuals, was feasible for both 

the binary and the more complex decoding.

4.1. Study design in relation to prior decoding research

Some of the most elaborate decoding research so far has used either ECoG or fMRI to 

sample brain activity and reconstruct things like intelligible speech and detailed visual 

experiences (Anumanchipalli et al., 2019; Nishimoto et al., 2011; Wen et al., 2018). 

However, ECoG is too invasive and fMRI too cumbersome for translation beyond clinical 

populations and laboratory studies into widespread use. While fNIRS and 

electroencephalography (EEG) overcome these challenges as noninvasive and portable 

imaging methods that have been used in previous decoding research, their low spatial 

resolution limits the space-bandwidth product available for decoding. On the one hand, 

decoding could have a meaningful impact even with a low bit rate; for instance, studies in 

patients with locked-in syndrome have shown the potential of fNIRS to enable patients with 

few other means of communication to respond yes or no to questions (Abdalmalak et al., 

2017). However, by increasing the optical channel count and density relative to traditional 

fNIRS, HD-DOT combines logistical advantages of optical neuroimaging with image quality 

that is closer to that of fMRI, providing motivation to study the feasibility and performance 

of more detailed decoding with HD-DOT.

Retinotopic decoding was chosen as the focus of the current study for several reasons. 

Firstly, using an externally controlled stimulus, rather than studying internal thought or other 

higher-order cognitive functions, provided definite knowledge of ground truth and a means 

to manipulate it. This approach enabled a fairly simple experimental design to objectively 

quantify decoding accuracy. In addition, it had already been shown that the flickering 

checkerboard stimuli used here evoke repeatable and distinct brain activity patterns at 

different positions in the visual field that can be mapped by HD-DOT (Eggebrecht et al., 

2012; White and Culver, 2010b; Zeff et al., 2007), making decoding the positions of these 

stimuli a reasonable goal. Finally, using the visual system as a model for initial proof of 

principle follows the wisdom of neuroscience literature in general, exemplified by Hubei and 

Wiesel’s seminal plasticity studies (Hubei and Wiesel, 1965; Wiesel and Hubei, 1965a, 

1965b, 1963), and follows the arc of the successful fMRI decoding literature in particular 

(Haynes and Rees, 2006; Kamitani and Tong, 2006, 2005; Thirion et al., 2006).

4.2. Accuracy of binary visual decoding with HD-DOT

The feasibility of decoding with HD-DOT was evident in how closely our decoding results 

mirrored actual stimulus conditions. We employed ROC analysis to further evaluate 

decoding accuracy, objectively quantifying true and false positive rates across a range of 
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decoding threshold values (Metz, 2006, 1978). The consistently large area under the ROC 

curves highlights the high sensitivity, specificity, and accuracy of the single-trial level 

decoding presented (Figures 2B and 3, Table 2). Decoding the deoxyhemoglobin signal in 

place of oxyhemoglobin also yielded similarly high performance (Supplemental Table 1). 

While head-to-head comparison to previous fNIRS studies is difficult due to differences in 

study design, a study of binary audiovisual decoding in infants attained trial-wise decoding 

accuracy in the 55-70% range (Emberson et al., 2017). While our focus on simple stimuli 

and adult participants may have partly facilitated our higher decoding performance, another 

likely contributor to our gain in accuracy is the high channel count of HD-DOT (supporting 

ten-fold to a hundred-fold more measurements than most fNIRS arrays), which improves the 

space-bandwidth product of our data, increasing the amount of information that can be 

leveraged for decoding. These various contributing factors could be separated in future 

research.

4.3. Reproducibility of binary visual decoding with HD-DOT across sessions and 
participants

Both the research and clinical applications of decoding hinge on its reliability, so we sought 

to assess the replicability of our results across multiple data sets. Recent fMRI studies have 

highlighted the advantages of conducting research with highly sampled individuals (Gordon 

et al., 2017; Laumann et al., 2015), so we chose to first investigate reproducibility in one 

participant across 18 task runs conducted over 10 different cap fits. Across combinations of 

training and test data, we obtained mean ROC AUC values >0.97, demonstrating the 

reproducibility of accurate binary visual decoding that can be achieved within a single 

participant, even when data is collected across multiple imaging sessions and cap fits over an 

extended period of time. This consistency of decoding across sessions illustrates the 

reproducibility of HD-DOT signals as well as the reliability of our cap fit procedure, which 

leverages anatomical landmarks, the structural integrity and flexibility of the imaging cap, 

and the use of feedback from real-time data quality visualizations (Eggebrecht et al., 2014). 

In addition, this observed reproducibility is encouraging for the continued pursuit of 

research and applications wherein a patient would rely on HD-DOT as a means of 

communication; it is technically feasible, for instance, that a HD-DOT decoder could be 

trained over one or more days, and then be used for decoding for months to years afterwards. 

This potential use case also further supports the study of highly sampled individuals.

Interestingly, there were some cases in which a run served as a consistently good test data 

set but not as reliable a training data set (e.g. run 6 for left vs. rest classification), and vice 

versa (e.g. run 16 was a consistent training data set but not always a good test data set for 

left vs. right decoding). These occasional asymmetries likely reflect differences in 

processing for training and test data. Templates were constructed from training data by 

block-averaging across a 5 second time window and across all presentations of a stimulus. 

Meanwhile, for test data, a single time point was used to assess decoding for each trial. 

Furthermore, inconsistencies in decoding performance for some specific pairings of data sets 

and not others may be a result of minor variations in the positioning of the cap between 

sessions. Future studies could investigate these potential sources of variance and attempt to 

further improve the consistency of decoding. Data was taken from four additional 
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participants and subjected to a similar analysis of decoding accuracy and reproducibility 

across individuals (Figure 4). Here, the within-participant ROC curves (Figure 4A) and the 

AUC values along the diagonal of the reproducibility matrices (Figure 4B) reflect high 

within-subject reliability in most of the participants, while off-diagonal matrix values 

illustrate that with HD-DOT data it is feasible to train a decoder on one individual and 

successfully infer the visual stimulus seen by another (Figure 4B). The inter-individual 

variability in decoding outcomes, with some participants yielding higher decoding accuracy 

than others, is likely partly related to variation in data quality between individuals associated 

with a combination of factors such as anatomical variability and participant compliance with 

regard to both maintaining central fixation and minimizing motion. Indeed, as illustrated in 

Supplemental Figure 2, participants with poor decoding performance had poor data quality 

to begin with, as assessed by signal-to-noise ratio and template laterality. This underscores 

the importance of monitoring data quality.

Nevertheless, the reproducibility of HD-DOT decoding across multiple sessions and 

individuals and the feasibility of inter-individual decoding suggest that it should be possible 

to pool training data across multiple imaging sessions and participants in future studies. 

While in this study we were able to train our decoder sufficiently with data from a single 

5-10 minute task run, more complex decoding tasks will likely require significantly more 

data than could be acquired in one continuous session. For instance, prior visual decoding 

studies using fMRI data and more complex algorithms to reconstruct novel naturalistic 

stimuli outside of the training set collected 2-3 hours of training data in each of 3 

participants to train their decoders without over-fitting and also block-averaged hours’ worth 

of test data (Nishimoto et al., 2011; Wen et al., 2018). Furthermore, though subject-specific 

training data may often facilitate the most accurate decoding, the decoding performance we 

observed across sessions and individuals suggests that a decoder could be pre-trained with 

group data to enhance efficiency of training and performance of decoding in some cases. 

While inclusion of low quality training data would likely impair decoding performance, 

including high quality data from other individuals could even improve decoding; e.g. 

decoding left vs. right in participant 4 is even more effective using the high quality training 

data from participants 1 and 2 than the data from participant 4 theirself. The success of a 

pre-trained decoder could further be enhanced by anatomical and functional coregistration of 

group-level templates to a subject-specific space and by updating the decoder with 

additional subject-specific training data. Future studies can systematically assess the 

quantity of HD-DOT data required for an optimized pre-training approach and its effects on 

decoding performance.

4.4. Performance of more spatially and temporally detailed retinotopic decoding with HD-
DOT

Finally, we reasoned that the increased space-bandwidth product afforded by our high-

density imaging array may enable us to distinguish a larger number of targets than prior 

optical decoding studies that have mostly performed binary or 4-way decoding (Abdalmalak 

et al., 2020; Emberson et al., 2017; Hosseini et al., 2011; Luu and Chau, 2009; Sitaram et 

al., 2007). As a result, we increased the complexity of our decoding and performed the 18-

way and 36-way classification experiments with the moving checkerboard ring and wedge 
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stimuli. We found that we were able to localize a 60° wide checkerboard wedge rotating 10° 

at a time through 360° with a mean within-participant error of 18.0±17.4° across all sessions 

in our highest performing participant (Figure 6B) and 25.8±24.7° across all participants. 

While this decoding performance is significantly better than chance (90°, p<0.0033), the 

error indicates that the decoder cannot independently resolve all of the 36 positions 

separated by 10°. A better estimate of the number of independent radial positions that could 

be decoded is the full cycle (360°) divided by the mean error, or approximately 20 positions 

in our highest performing participant and fewer for other participants (~14 positions on 

average).

We observed several intriguing patterns in our evaluation of 36-way decoding across 

multiple participants (Figure 7). Decoding performance within a participant appears to be 

consistent across runs and sessions, and is best in participant 1 and worst in participant 2. 

We interpret this as reflecting that the repeatability of precise retinotopic activations is 

greatest in participant 1 and lowest in participant 2, perhaps as a result of differences in 

participant compliance with central fixation and differences in data quality. Another possible 

contributing factor is anatomical variability between participants in the precise folding of 

visual cortex. For example, in some participants, responses to stimuli in all four quadrants of 

the visual field can be mapped by HD-DOT, but in others only responses to the lower visual 

field hemi-field can be captured with high signal-to-noise (White and Culver, 2010b). The 

fidelity of activations appears to be even more critical for test data than training data based 

on the asymmetries observed in the matrix. For instance, testing with participant 1 after 

training with participant 2 yields better results than both testing with participant 2 after 

training with participant 1 as well as using both training and test data from participant 2. 

These observations are consistent with the fact that template maps are created by averaging 

training data across blocks, which boosts signal-to-noise ratio, while every time point is 

evaluated separately in the test data, which makes consistency particularly important. 

However, additional factors evidently influence inter-participant decoding; for instance, 

decoding of test data from participant 1 is better using templates from participant 2 (who had 

the worst within-participant decoding performance) than using templates from participant 3. 

It is likely that inter-individual differences in anatomy and cap positioning contribute to such 

trends. For example, participants 1 and 2 may have had more similar head shapes, occipital 

cortex anatomy, and cap fits, such that retinotopic activations were more similar between 

them than to those seen in participant 3, potentially explaining why interparticipant decoding 

was more successful with participants 1 and 2.

In addition, the visual stimulation paradigms used allowed us to study how decoding 

performance varied across the visual field. It emerged that there was a discrepancy between 

decoding accuracy in the lower and upper hemifields with generally lower decoding error for 

stimuli in the lower hemifield (Figure 6C). This result is consistent with prior reports of 

variations in HD-DOT signal-to-noise ratio across different parts of visual cortex (White and 

Culver, 2010b). These observations likely stem from the anatomy of visual areas V1, V2, 

and V3, organized retinotopically around the calcarine fissure with the upper hemifield 

represented deeper below the cranial surface and hence less accessible to photonic 

measurements (DeYoe et al., 1996; Wandell et al., 2007). Structural and functional 

neuroanatomical variability between individuals likely explains why this effect of stimulus 

Tripathy et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



position on decoding error was more pronounced in some individuals than others (Amunts et 

al., 2000; Dougherty et al., 2003; Dumoulin and Wandell, 2008; Iaria and Petrides, 2007; 

Kochunov et al., 2003; Thompson et al., 1996).

Nonetheless, the feasibility of this detailed decoding even with training and test data from 

different cap fits and individuals reflects the potential of HD-DOT for supporting 

applications of neural decoding. Furthermore, the success of this spatially detailed decoding 

encourages exploring other forms of more elaborate decoding, such as deciphering 

naturalistic stimulus information. In fact, some of the error recorded in the current decoding 

experiments may have stemmed from lapses in compliance with central fixation (as it is 

challenging to keep gaze fixated on a central crosshair while bright, distracting patterns 

flicker in the periphery), so a more naturalistic visual stimulus may even improve decoding 

performance. Decoding of more complex stimuli could also leverage signals from additional 

areas beyond early visual cortex to potentially distinguish a larger number of targets.

Aside from the increased spatial detail of decoding revealed by the 18- and 36-way 

classification experiments, the success of decoding stimulus location at individual time 

points without having to average across multiple trials is also a step towards developing the 

real-time decoding that would enable efficient brain-computer interfaces for clinical use. 

The current study aimed to evaluate the feasibility of decoding while using established 

methods for processing and reconstructing optical data, including steps that use the full run 

of data such as zero-phase high-pass filtering, superficial signal regression, and mean-

subtraction. Future studies could reassess the performance of single-trial and single-time-

point decoding using a modified processing pipeline that changes these steps to respect 

causal relations, only using prior data for any given time point. Such analysis would provide 

an assessment of pseudo-real-time decoding. Based on the accuracy and timing of this 

proposed pseudo-real-time decoding, subsequent studies could decode HD-DOT data in real 

time while participants are being imaged and deliver feedback to investigate closed-loop 

HD-DOT-based brain-computer interfaces.

4.5. Limitations, potential solutions, and future directions

It is important to note that our study intentionally enriched for participants and data sets with 

high raw data quality, as evaluated by light levels, signal-to-noise, pulse signal, and head 

motion. Our rationale for this decision was multifactorial. Firstly, as we were evaluating a 

new method of analyzing HD-DOT data, it was important to ensure that the quality of the 

data itself was not a confounding factor undermining the study. Secondly, the myriad 

possible sources of noise (instrumentation, cap fit, head motion, participant attention, 

confounding physiology, etc.) render a reasonable analysis of these factors and their effects 

on decoding beyond the scope of the current study. Furthermore, data quality is a moving 

target, with newer systems and strategies mitigating the effects of head motion and 

improving signal-to-noise (Chitnis et al., 2016; Sherafati et al., 2020; Zhao and Cooper, 

2017). Data quality is also expected to vary dramatically as decoding is applied to different 

tasks, domains, and populations. Therefore, additional research will be required to evaluate 

generalizability across a broader population and range of data quality. Future studies with 

larger numbers of participants would also be better powered to more systematically evaluate 
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the relationship between different components or measures of data quality and decoding 

performance. Overall, we anticipate average decoding performance might be poorer among a 

general population. However, on the upside, most of the potential sources of noise discussed 

are addressable. For instance, anatomical variability could be at least partly addressed 

through subject-specific head modeling (Eggebrecht et al., 2012). Participant compliance 

could be improved through training and feedback for both maintaining central fixation 

(Guzman-Martinez et al., 2009) and minimizing head motion (Greene et al., 2018; Yang et 

al., 2005). And given the fluid nature of data quality and the progression of the fNIRS 

research field towards ensuring higher quality data, it may be possible to further improve 

decoding performance through advances in hardware such as wireless systems with high 

signal-to-noise (Chitnis et al., 2016; Zhao and Cooper, 2017) and algorithms for rigorous 

monitoring and optimization of data quality (Sherafati et al., 2020). As a result, the field of 

optical neuroimaging will likely see improvement in the performance and scope of decoding 

in future research.

The current study was restricted to visual decoding, but it also provides a framework to 

begin exploring decoding of other modalities with HD-DOT. For example, other sensory 

systems and the motor system also organize information systematically in neuroanatomical 

space (Besle et al., 2019; Penfield and Boldrey, 1937), and these maps could be leveraged to 

decode motor imagery or auditory signals with HD-DOT to replicate and expand on prior 

work with fMRI and fNIRS (Correia et al., 2015; Hoefle et al., 2018; Sitaram et al., 2007). 

In these applications too, HD-DOT could combine the strengths of fNIRS, such as 

portability and a quiet scanning environment, with higher spatial resolution and image 

quality to potentially perform the more detailed decoding that fMRI has supported.

It is left for future studies to determine if the decoding established here using a simple task 

paradigm and normative adult population can be extended to more challenging tasks and 

populations, as have been explored with other imaging modalities. In particular, decoding 

naturalistic stimuli outside the decoder’s training set, as previous fMRI studies have done, 

will require more sophisticated decoding strategies than the straightforward template 

matching approach used here. Future HD-DOT studies may hence explore decoding using 

stimulus feature encoding regression models or convolutional neural networks for 

classification (Kay et al., 2008; Nishimoto et al., 2011; Wen et al., 2018). Decoding more 

complex tasks will also rely on capturing more subtle signals distributed across broader 

areas of cortex than the robust signal localized to visual cortex that is evoked by 

checkerboard stimuli. However, HD-DOT has been shown to be capable of functional brain 

mapping with high signal-to-noise ratio during tasks such as verb generation, covert reading, 

and viewing multimodal naturalistic stimuli (Eggebrecht et al., 2014; Fishell et al., 2019), 

which is encouraging for decoding covert and complex signals pertaining to language and 

other domains beyond vision. Decoding in other populations, such as infants and patients 

with neurological disorders who have participated in prior fNIRS decoding studies 

(Abdalmalak et al., 2017; Emberson et al., 2017), will present additional data acquisition 

challenges such as increased levels of motion and the need for imaging at the bedside. 

However, previous HD-DOT brain mapping studies have already established the feasibility 

of imaging at the bedside in neonates and stroke patients (Culver et al., 2016; Ferradal et al., 

2016; Liao et al., 2012), while newer lightweight (Bergonzi et al., 2018) or fiber-less (Zhao 
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and Cooper, 2017) designs will further increase portability and reduce motion artifacts 

facilitating decoding studies in such populations.

Finally, potential real-world applications of HD-DOT decoding such as brain-computer 

interfaces in neurological populations would build on the combination of advances in 

imaging hardware, real-time data processing methods, and decoding algorithms. Although 

motor prosthetic control and augmented communication commonly garner more attention, 

one of the earliest demonstrations of a brain-computer interface was based on decoding EEG 

responses to checkerboard visual stimuli (Vidal, 1977). In that study, participants guided a 

cursor through a maze by shifting their center of fixation relative to a checkerboard stimulus, 

which produced visual evoked potentials that were decoded and used to update the location 

of the cursor on the screen. A similar paradigm could be used to apply our retinotopic 

decoding in a visual HD-DOT-based brain-computer interface in healthy participants for 

proof of principle. This framework for real-time processing and feedback could then be 

combined with other parallel progress in HD-DOT decoding, such as motor and semantic 

decoding, and with hardware advances, such as increasingly wearable HD-DOT systems, to 

develop HD-DOT-driven prosthetics and communication for patients with motor disabilities.

There are indeed many steps between our study of explicit visual decoding and long-term 

goals such as brain-computer interfaces for neurological patients. However, the current 

validation of the feasibility, accuracy, and reproducibility of detailed, single-trial visual 

decoding with HD-DOT provides a solid foundation to build upon in future research.
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Highlights

• HD-DOT can support binary visual decoding with high sensitivity and 

specificity

• HD-DOT can support detailed decoding of moving stimuli at individual time 

points

• HD-DOT decoding is replicable, although performance can vary across 

participants

• Inter-participant decoding is also feasible with HD-DOT data
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Figure 1: Feasibility of visual decoding with HD-DOT data using a template matching strategy.
Results are illustrated for a typical decoding attempt in one participant. The participant 

viewed a checkerboard wedge flickering in either the left or the right visual hemifield, 

interspersed with rest periods, while being imaged by HD-DOT. Training data were block-

averaged to define “templates” of expected brain activity for each stimulus condition (top 

panels). Spatial Pearson correlation coefficients were then computed between each template 

and the oxyhemoglobin signal map at each time point in the test data (bottom panel). The 

resulting correlation values were compared between templates and to a designated threshold 

value (here selected to be 0.25 on an ad hoc basis, but later optimized by ROC analysis in 

Figure 2) to determine the decoded stimulus condition at each time point, and this was 

compared to the actual stimulus state (middle panels).
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Figure 2: Sensitivity and specificity of binary retinotopic decoding with HD-DOT data.
(A) Taking data from 18 task runs in one participant, a single task run was used for 

construction of templates, and independent test trials were pooled across the remaining 17 

runs. Plotting all trials by their correlations with each of the two templates reveals a 

clustering by trial type. Clusters can be separated by thresholds, which can be swept across 

the full range of possible values and optimized in a receiver operating characteristic (ROC) 

analysis. (B) ROC curves for the 3 possible binary classifications.
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Figure 3: Reproducibility of binary retinotopic decoding with HD-DOT across sessions in a 
highly sampled participant.
(A) The data from the participant who performed the checkerboard viewing task 18 times 

were used to evaluate the reproducibility of HD-DOT decoding across imaging sessions. The 

single task run used as training data for template construction was changed 17 times, and 

each time all the remaining runs were pooled as test data to conduct an ROC analysis, 

producing 18 ROC curves for each of the three binary classification problems. Different 

shades between red and black were used to plot different ROC curves to make the individual 

curves more discernible. (B) ROC analysis was also conducted to evaluate decoding with 

every possible pairing of a single training task run and a single test task run (i.e., without 

pooling test data across multiple runs). Areas under the curve (AUCs) for all these ROC 

analyses are plotted in matrices for each of the three possible pairwise classifications, 

illustrating the reproducibility of accurate binary retinotopic decoding with HD-DOT.
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Figure 4: Reproducibility of binary HD-DOT decoding across n=5 participants.
(A) Data was taken from 4 additional participants who performed the same checkerboard 

stimulus viewing task twice each. Decoding and ROC analysis were conducted for each 

participant using one task run for template construction and another task run as test data; 

resulting ROC curves are shown for all 5 participants. (B) Decoding and ROC analysis were 

also conducted using templates from one task run in one participant and test data from 

another run in any participant, across every possible pairing of training and test participants. 

AUC values along the diagonals of these matrices illustrate reproducibility and variability of 

within-participant decoding across multiple individuals, while off-diagonal values indicate 

the feasibility of inter-individual decoding.
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Figure 5: 18-way classification of visual stimuli with varying eccentricity within a single 
participant.
A participant was imaged using HD-DOT while watching a flickering checkerboard ring 

over 8 cycles of either periodic expansion or contraction through 18 concentric positions on 

a screen. A template matching strategy was again used to decode stimulus location at each 

time point in a test dataset, here using 18 template maps – 1 for each stimulus phase. (A) 

Each stimulus phase is assigned a color (as per the color wheel) and a position along the 

vertical axis in the plots of actual and decoded stimulus positions. Pearson correlation 

coefficients were calculated between each of the 18 templates and the oxyhemoglobin signal 
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map at every time point in the test data, and are plotted on the two graphs at the bottom of 

this panel. The decoded stimulus corresponds to the template with the maximum correlation 

at each time point. (B) A permutation test was performed to evaluate the significance of this 

decoding using every one of the 12 possible pairings of the 4 task runs collected in this 

participant for training and testing. The mean decoding error obtained using true template 

sets was compared with a null distribution generated using 10 random permutations of the 

training data for every true decoding attempt (p<0.0083). (C) Mean decoding error across 

the 3 test runs for a single training run is plotted here as a function of true stimulus position, 

showing little variation in decoding performance with eccentricity.

Tripathy et al. Page 33

Neuroimage. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 36-way classification of rotating visual stimulus position within a single participant.
A participant was imaged using HD-DOT while watching a flickering checkerboard wedge 

rotating 10 times through 36 positions over 36 seconds per revolution. A template matching 

strategy was used to decode stimulus location, here generating a set of 36 templates (one for 

each phase of the stimulus) from one training task run and decoding stimulus position at 

every time point in an independent test task run. (A) Each stimulus phase is assigned a color 

(as per the color wheel) and a position along the vertical axis in the plots of actual and 

decoded stimulus positions. Pearson correlation coefficients were calculated between each of 
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the 36 templates and the oxyhemoglobin signal map at every time point in the test data, and 

are plotted on the two graphs at the bottom of this panel. The decoded stimulus corresponds 

to the template with the maximum correlation at each time point. (B) A permutation test was 

used to evaluate the statistical significance of the decoding performance. Mean decoding 

error was calculated for every one of the 30 possible pairings of training and test data set 

across the 6 task runs performed by this participant. The resulting error distribution was 

compared with a null distribution generated using 10 random permutations of the training 

data for each true template set (p<0.0033). (C) Mean decoding error across the 5 test runs 

for a single training run is plotted as a function of true stimulus position, showing better 

decoding performance as the wedge rotates through the lower half of visual space.
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Figure 7: Reproducibility of complex, non-binary visual decoding with HD-DOT across n=3 
participants.
Three participants viewed the same rotating checkerboard stimulus paradigm six times 

across two imaging sessions each. Decoding performance was then evaluated using every 

possible pairing of template and test task run across participants. (A) The mean absolute 

error for each decoding attempt illustrates both the reproducibility and variability of within-

subject and inter-individual decoding across the imaging sessions and participants. (B) 
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Permutation testing comparing decoding performance across all sessions and participants to 

a null distribution.

Tripathy et al. Page 37

Neuroimage. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tripathy et al. Page 38

Table 1:

Participant demographics and contributions to study

Participant # Age Sex
Number of task runs contributed to study

Binary decoding 18-way decoding 36-way decoding

1 28 F 18 2 2

2 20 F 2 - -

3 50 F 2 - -

4 38 M 2 - -

5 54 F 2 - -

6 27 F - 4 6

7 24 F - - 6

8 31 F - - 6
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Table 2:

Measures of decoding accuracy in a highly sampled participant from the ROC analyses in Figure 2B

ROC AUC Sensitivity* Specificity* Accuracy*

Left vs. Rest 0.99 0.98 0.91 0.93

Left vs. Right 0.99 0.96 0.99 0.97

Riaht vs. Rest 0.99 0.98 0.91 0.93

*
Sensitivity, specificity, accuracy calculated at optimizec threshold based on Youden J statistic (Youden, 1950)
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