
Citation: Heinisch, P.P.; Bello, C.;

Emmert, M.Y.; Carrel, T.; Dreßen, M.;

Hörer, J.; Winkler, B.; Luedi, M.M.

Endothelial Progenitor Cells as

Biomarkers of Cardiovascular

Pathologies: A Narrative Review.

Cells 2022, 11, 1678. https://doi.org/

10.3390/cells11101678

Academic Editor: Ezequiel Álvarez

Received: 15 April 2022

Accepted: 13 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Endothelial Progenitor Cells as Biomarkers of Cardiovascular
Pathologies: A Narrative Review
Paul Philipp Heinisch 1,2,3,* , Corina Bello 3, Maximilian Y. Emmert 4,5,6, Thierry Carrel 7, Martina Dreßen 8,
Jürgen Hörer 1,2 , Bernhard Winkler 9 and Markus M. Luedi 3

1 Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine,
Technical University of Munich, 80636 Munich, Germany; hoerer@dhm.mhn.de

2 Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich,
Ludwig-Maximilians-Universität, 80636 Munich, Germany

3 Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern,
3010 Bern, Switzerland; corina.bello@bluewin.ch (C.B.); markus.luedi2@insel.ch (M.M.L.)

4 Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany;
max.emmert@gmx.ch

5 Institute of Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
6 Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
7 Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; thierry.carrel@usz.ch
8 Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine

& Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany; dressen@dhm.mhn.de
9 Department of Cardiovascular Surgery, Hospital Hietzing, 1130 Vienna, Austria;

bernhard.winkler@gesundheitsverbund.at
* Correspondence: ppheinisch@googlemail.com

Abstract: Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular
endothelium. The association of an altered total EPC number and function with cardiovascular
diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as
biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key
mechanisms in CVD. The assessment of endothelial dysfunction in vivo remains a major challenge,
especially for a clinical evaluation of the need for therapeutic interventions or for primary prevention
of CVD. One of the main challenges is the heterogeneity of this particular cell population. Endothelial
cells (EC) can become senescent, and the majority of circulating endothelial cells (CEC) show evidence
of apoptosis or necrosis. There are a few viable CECs that have properties similar to those of an
endothelial progenitor cell. To use EPC levels as a biomarker for vascular function and cumulative
cardiovascular risk, a correct definition of their phenotype, as well as an update on the clinical
application and practicability of current isolation methods, are an urgent priority.

Keywords: endothelial cells; progenitors; cardiovascular disease; biomarker

1. Introduction

Cardiovascular diseases (CVD) such as myocardial infarction (MI), cerebral and pe-
ripheral arterial disease (PAD) and arterial hypertension are the leading causes of global-
mortality [1,2].

Coronary artery disease (CAD), leading to narrowing or complete blockage of arterial
blood supply to the myocardium, is the most prevalent heart disease [2]. Pharmacological
agents, interventional and surgical procedures, as well as diet and lifestyle-related concepts
to better control established and newly discovered cardiovascular risk factors, are still not
sufficient to prevent the millions of disease-related deaths worldwide every year [1–4].

Known cardiovascular risk factors (CVF) contribute to the cascade of atherogenesis
especially by inducing injury and dysfunction in endothelial cells. Endothelial integrity
is highly reliable due to repair and renewal by endothelial progenitor cells (EPC) derived
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from different sources, e.g., bone marrow (BM), circulating endothelial progenitor cells
(CEPC) or adventitial residents [5]. The impaired mobilization or depletion of these cells
contributes to endothelial dysfunction and CVD progression [6].

Ross’ classic paradigm already stated that endothelial cells (EC) injury is one of the
most important stimuli for the development of atherosclerotic plaque [7]. In 1997, Asahara
et al. reported the isolation of putative EPC from human peripheral blood, based on the
cell-surface expression of CD34 and other endothelial markers and introduced the novel
concept of CEPCs. These specific cells were reported to further differentiate, at least in vitro,
into endothelial cells [8]. They could be identified at sites of active angiogenesis as well as
in various animal models of ischemia [8]. CEPCs contribute to on-going endothelial repair
through their ability to form layers of neo-endothelium at the site of injury or to serve as a
cellular reservoir to replace dysfunctional endothelium [9].

Triggers for EPC recruitment in neo-angiogenesis or vascular injury include the in-
creased availability of angiogenic growth factors or chemokines, such as the vascular
endothelial growth factor (VEGF), as well as angiopoietin or stromal cell-derived factor
(SDF)-1 bonding with the chemokine receptor (CXCR-4), thereby expanding its expression
on EPCs [10–13]. ECs on the other hand, participate in different physiological processes,
such as vasomotor tone, cellular trafficking, or innate and adaptive immunity [5]. The
perioperative effects of endothelial progenitor cells, in patients with acute ischemia of the
lower limbs undergoing surgical revascularization, with a plausible biological mechanism
was generated for applications as a biomarker. A sound understanding and clear definition
of endothelial-regenerating cells and their role in the differentiation into mature endothe-
lium [14] is required for the establishment of an ideal test to measure EC function and
enhancement of our understanding of the pathophysiology of atherosclerosis [15].

Adiponectin, adipocyte fatty acid-binding protein, heart-type fatty acid-binding pro-
tein, lipocalin-2, fibroblast growth factor 19 and 21, retinol-binding protein 4, plasminogen
activator inhibitor-1, and 25-hydroxyvitamin D are just a few of the already known biomark-
ers linked to cardiovascular and metabolic diseases. These biomarkers may help predict
CVD risk. More research is needed to assess biomarkers’ validity and their potential to
improve clinical decision-making and therapy management. The endothelium has a unique
position as both a sensor and participant in the atherosclerotic process [16]. Biomarkers
that can be considered as indicators of biological states or conditions are progressively
incorporated into cardiovascular risk assessments [17,18]. EPCs are considered the ideal
target for inducing the neovascularization of ischemic tissue and can serve as a biomarkers
for the surveillance of tissue damage and therapeutical outcomes [19].

In this review, we focus on current definitions of EPCs, discuss the individual relevance
of circulating and adventitial resident progenitors in endothelial and vascular integrity,
function, rejuvenation and restoration and address some promising therapeutic approaches
and remaining questions.

2. Characterisation and Various Origins of Ecs/ Epcs in Humans

A consensus on the ideal marker for the identification of EPC cell types is lacking.
This marker may originate from multiple precursors, such as a haemangioblast (HPC), BM
progenitors, tissue-resident mesenchymal stem cells (MSC), and especially, from adipose
tissue [20], impeding fast and simple isolation [5].

The three existing techniques used to isolate and cultivate human EPCs [21,22] lead to
phenotypically differing cell types, and as such, potentially vague findings when analysing
EPC’s role in cardiovascular repair (Figure 1) and cardiac outcome [23].
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Figure 1. Three different types of EPCs, their function and associated markers. In Asahara et al.’s
method, non-adherent cells were cultivated, whereas in the protocols by CFU-Hill and Ingram, only
adherent cells were used. The three cell cultures each have a distinct morphology, specific functions
in vivo and display discriminating markers [8].

The use of density barrier centrifugation is one method that can be utilised in order to
separate mononuclear cells from peripheral blood mononuclear cells (PBMNCs). In most
cases, cells are sown onto plates that have been coated with fibronectin and then grown
using endothelial growth factors. The remaining spindle-shaped cells not only endocytose
acetylated low-density lipoprotein (LDL) but also express EC markers and possess other
characteristics of ECs. This is, in addition to the fact that EC indicators are present in
these cells [24], acquired via antigen transfer from platelets that contaminate isolates of
PBMNCs [25]. Platelets on mononuclear cell cultures degrade into micro-particles (vesicles
that retain specific antigens from the cell of origin) within 7 days, and CD31 expression
(along with platelet-specific markers) was present at that time on EPCs, now called putative
EPC’-aggregates‘, whereas EPCs were CD31-negative on day 1 [25]. Attempts to further
purify the cell cultures led to the establishment of new protocols.

Using markers such as CD133, combined with CD34 and VEGFR2, ensured that only
progenitor cells with vasculogenic properties were identified [26,27]. Cell labelling with
antigen-specific antibodies and fluorescence-activated cell sorting (FACS) to select EPCs
was applied [8], while still culturing the cells on fibronectin [25]. The CD34+ cells were
surrounded by spindle-shaped cells expressing increased EC markers. Through the use
of this marker combination, this cell type was successfully isolated from adult peripheral
blood, umbilical cord blood, and foetal liver [28]. Recent research shows that human
CD34+/CD133+/VEGFR2-positive cells are separate primitive haematopoietic progenitors
lacking vessel formation ability and expressing CD45, a haemangioblast marker [29,30]

Thereafter, in vitro colony-forming cell assays allowed for the isolation of two cell
types: colony-forming unit (CFU)-Hill cells and endothelial colony-forming cells (ECFC).
In the ‘Hill assay’ and the ECFC, or ‘Ingram protocol’, monocytic cells isolated from blood
samples were cultured for two days on fibronectin-coated dishes and then replated for
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further cultivation [6,27]. CFU-Hill cells are phagocytic and express EC-like markers (CD14,
CD45, and CD115) but lack proliferative and vasculogenic activity. While lacking CD14,
CD45, and CD115, ECFCs express EC markers and have the ability to form capillary-like
structures in vitro and vessels in vivo [21]. ECFCs have been shown to reside in the arterial
wall suggesting that this may be the main origin of these cells [26].

In summary, EPCs seem to represent two distinct populations with overlapping
antigen expressions (e.g., CD34/VEGFR2): hematopoietic-derived spindle-shaped cells
from isolation method I/II, also referred to as circulating angiogenic cells or early EPCs
(CFU-Hill colonies), and ECFCs, or late EPCs [31]. Late EPCs have a vasculogenic ability
in vitro and are well-integrated into membranes, whereas early EPCs act via a paracrine
mechanisms [32] and might even protect late EPCs from oxidative stress [33].

3. Influence on Vascular Pathologies and Role as a Biomarker

At present, there is a lack of information or knowledge regarding cell phenotypes in
different diseases as the cells originate from different vascular beds and sources [34]. Half
of the CECs from healthy controls express CD36, a marker for cells of microvascular origin,
whereas in sickle cell anaemia, this percentage increases to 80% [35]. Contrastingly, no
CD36 could be stained in CECs from patients with acute coronary syndrome, consistent
with the macro-vascular origin of these cells [36].

Investigating the role of CECs in endothelial injury with regard to plasma markers of
endothelial injury (vWf, tissue plasminogen activator, soluble E-selectin) led to a correlation
between CECs and vWf in heart failure [37].

Almost all types of CVD were associated with hypertension, diabetes, smoking and
high cholesterol. These CVFs can contribute to endothelial dysfunction [38–48]. High
homocysteine and ADMA values also showed a negative effect on EPC count [49,50]. On
the other hand, high HDL cholesterol and TG levels correlated with CFU but not with
CD34/133+ cell count [51]. (Table 1) Statin [52] and Angiotensin receptor II inhibitors [53],
as well as oestrogen levels (high oestrogen levels in women were associated with an
increased EPC count [54] in animal carotid injury oestrogen-enhanced EPC function [55]),
glitazones [56], erythropoietin [53,57–59], and PDE5 inhibitors [60] all showed beneficial
effects. EPC count was also dependent on SDF-1 [61,62], VEGF [10,11], NO [63], GCS-F and
GM-CSF [64,65] levels.

Table 1. Correlations of EPC count, EPC function and EPC apoptosis with cardiovascular risk and
protective factors, pathophysiologic state, physiologic mediators and common drugs in cardiovascu-
lar disease.

EPC Count EPC Function EPC Apoptosis

Decreased

• CVF: hypertension, diabetes,
smoking, high cholesterol, high
ADMA values, high
homocysteine;

• Vascular damage progression;
• Severity of CAD
• aging;
• Chronic vascular disease.

• Aging (mobilisation,
function, integrity);

• Coronary artery
bypass grafting.

• Physical activity

Enhanced
• Statin, ARBs, oestrogen;
• Physical activity

(via eNOS, VEGF).

• Oestrogen, glitazone,
erythropoietin, PDE5
inhibitors, SDF-1
(mobilisation), VEGF,
GCS-F, GM-CSF
(proliferation).

• Aging

Physical activity at a moderate level was identified to be potentially beneficial for
preventing CVD. The increase in EPC count was found to be mediated by eNOS and
VEGF, and apoptosis was reduced in the cells [66]. Physical activity lead to a higher
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amount of circulating CD34-positive EPCs in CVD patients [67]. Furthermore, this study
identified an association of CD34-positive cell count with lower all-cause and cardiovascular
mortality [67]. Vascular damage progression correlated with EPC count [68] just as a
decreased amount of CD34-positive but increased amount of CD34+CD133+CD309+ and
CD34+CD133+ cells suggested the progression of cerebral small vessel disease [69]. EPC
count could, therefore, serve as a biomarker for CVD course. A correlation with CAD
progression was also found for osteocalcin, a regulator of early EPC. A higher number of
CVRFs was associated with a decreased total osteocalcin count. Osteocalcin positivity in
EPCs was related to LDL, total cholesterol and TGs in both early and, significantly, in late
CAD [70]. EPC count could also be used as a marker in treatment monitoring, such as in
chronic total coronary artery occlusion since an association with Rentrop grade at baseline
and 1 year post operation was discovered [71].

Some data still suggest that those “monitoring effects” are mostly seen in the young
population. Aging by itself is another depriving factor of EPC [6,63]. Age directly limits
EPC mobilisation but also via VEGF depletion and physiologically lowered NO levels,
which contribute to the bad survival and proliferation of EPCs [63,72]. Moreover, several
mechanisms, including the co-existence of CVF, lead to the impaired maintenance of
endothelial integrity [73]. In elderly CAD patients with stable disease, EPC count was
significantly reduced compared to younger patients [74]. The mobilisation of EPCs was
also lower after a coronary bypass grafting in advanced age [75,76]. The severity of stable
CAD shows an inverse correlation with the total/early EPC number [62,77]. Additionally,
chronic vascular disease appears to have opposite effects on early and late EPC numbers
and does not influence their functional capacity [62,77].

Using EPC as a therapeutic target for CVD may therefore underlay an age-related
effect. Early EPC implantation increased neovascularisation in young mice, but not in older
mice with elevated cholesterol or other CVD risk factors [78].

4. The Role of Epc in Congenital Heart Disease Heart Failure

Mechanisms of heart failure in adult heart disease recently received a lot of research
attention, but its pathogenic and prognostic significance in single-ventricle physiology
is still unknown [79–81]. Congenital cardiac malformations with a single ventricle have
a high risk of mortality in the first year of life in such patients and frequently result in
late complications developing during this stage of palliative repair [82]. Even though
single-ventricle reconstruction trials have sought to identify predictors of poor outcomes at
three years in patients with single-ventricle physiology based on the types of initial shunt
(Norwood procedure with ventriculo-pulmonary Sano shunt or with modified subclavio-
pulmonary Blalock shunt) and the timing of stage 2 palliation, a 12-year longitudinal cohort
study in patients with Fontan (stage 3 procedure) circulation found that the risk of death or
cardiac transplantation was closely associated with poorer ventricular function [83,84]. No
definitive therapy was shown to improve heart function with a chronic volume or pressure
overload, which may worsen prognosis for single-ventricle patients [85].

However, early phase 1/2 clinical trials utilizing the intracoronary delivery of derived
progenitor cells demonstrated dependable and safe outcomes in patients with single ven-
tricle physiology. Except for all-cause mortality after staged procedures, derived cardiac
progenitors cells administration improved ventricular function and was linked with fewer
late problems in patients with single ventricles. Patients treated with cardiac progenitors
cells and those who suffered from heart failure with reduced EF but not heart failure with
intact EF may experience a substantial improvement in clinical outcomes [86,87].

5. Targeting of Treatment for CVD

Nonetheless, increasing the EPC count is a promising strategy. Early information [8] on
EPC’s contribution to neo-angiogenesis could be secured in mice models of ischemia, where
CD34- and stem cell antigen–1 (Sca-1)-enriched populations of mononuclear cells promoted
new blood vessels and enhanced the perfusion and initiation of recovery in ischaemic
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tissue [64]. Kong et al. (2004) observed endothelial repair and neointima development
after the cytokine-induced mobilization of circulating progenitors [88]. After EC injury,
spleen-derived mononuclear cells and cultivated early EPCs, but not BM-derived EPCs,
increased re-endothelialisation and decreased neointima formation [89]. In several models
of vascular graft atherosclerosis, recipient-circulating progenitor cells were required to
create an endothelial monolayer. An allograft of mouse Balb/c aorta into the carotid artery
of chimera mice with BM from Tie2-LacZ mice showed activity 4 weeks following surgery.
The quantification of the obtained data indicated that more than 70% of the regenerated
endothelium was derived from non-BM tissues [90–92]. In humans, the implantation of
bone marrow mononuclear cells (BMMCs) was found to be an effective treatment for
PAD in an attempt to alleviate limb ischemia through the use of stem cells. Angiogenesis
occurred as a result of the stimulation of EPC and the release of VEGF and cytokines [93].
The promotion of EPC and the release of VEGF and cytokines alleviated the symptoms and
collateral circulation [93].

Yet, there are dangers associated with the direct implantation of EPCs mainly trig-
gered by the high number of cells with inflammatory potential that could be coinjected [94].
Despite different routes of administration that are considered safe, such as intracardiac,
intrahepatic or intramuscular [95], indirectly targeting EPC count and function might
be a promising treatment option, lowering the associated risks of cell transplantation.
CD-34-coated stents were applied and compared to paclitaxel, with good outcomes and sig-
nificantly less post-discharge thrombotic events after 12 months follow-up [96]. In diabetic
cardiomyopathy, treatment with BMP7, an anti-inflammatory protein, led to an increase in
EPC markers and neovascularisation, ultimately improving cardiac remodelling [97]. Block-
ing hormonal pathways that are important in CVD development, such as gonadotropin, an
enhancer of ECFC angiogenesis, and thrombin might also be beneficial [98]. Using EPC-
derived vesicles [99] or exosomes [100] further helps to mitigate the problematic isolation
and culturing process of EPCs, thereby providing more efficient therapeutic options.

Additionally, the transfer of plasmid DNA for VEGF to young and senescent EPCs via
ultrasonic microbubble transfection could enhance the angiogenic effects of both older and
young cells, thereby leading to better outcomes and solving two problems at once [101]

Other new therapeutic options with EPC as a target include the treatment of ischemic
stroke in patients with pre-existent CVD [102].

6. Ongoing Challenges

There is a high risk of postoperative morbidity for patients following major surgery.
Endothelial dysfunction in the perioperative period may increase the risk of surgical
complications through altered vascular homeostasis and, consequently, decrease tissue
perfusion. Targeting the endothelium and optimising natural physiological function in
the perioperative phase is becoming a more popular as a way to improve postoperative
outcomes. With an estimated surface area of more than 1000 m2, the human vascular
system constantly maintains a balance between coagulation and bleeding, inflammation
and immuno-protection rendering difficult the identification of one single area of activation
or damage contributing to the release of a specific set of ECs [103]. MSCs and EPCs differ in
their immunomodulatory and immunosuppressive effects. MSCs and EPCs reduce T-cell
proliferation, activation and cytokine production and MSCs, in comparison to EPCs, may
induce regulatory T-cells [104]. EPCs with haemangioblast properties (CD34+ and CD45+)
or “early EPCs” do not differentiate into ECs supporting the fact that “true EPCs” reside in
the vasculature [105]. Their role in vascular repair of ischemic tissues might rather be via
paracrine mechanisms, such as the secretion of angiogenic cytokines (e.g., VEGF) [5,32].

Differentiating EPCs from CECs remains difficult [34]. Endothelial markers, such as
CD-146 and UEA-1 are present on EPCs and severely ‘morphology-damaged’ cells obtained
by CD-146-driven immune–magnetic isolation alike. The inability to grow these cells in
culture is still regarded as an implication that these cells are not EPCs [106]. The activation of
ECs occurs by pro-inflammatory cytokines, growth factors, lipoproteins, or even oxidative
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stress. Therefore, detected detached cells might be apoptotic or necrotic, distorting the set
of detected circulating cells [107] and further confounding isolates of EPCs.

While the identification of resident-tissue EPCs is advancing somewhat, the mech-
anism of progenitor cell release and the distinct role of different EPC types are still not
understood. Differentiating between the role of early and late EPCs in CVD is important as,
in CAD patients, a decreased amount of early EPCs was found [108], accompanied with
higher density of late EPCs [109].

Most studies to date describe factors which promote/inhibit either total (CD34+
or CD34/VEGFR2) or early EPC (CD34+/VEGFR2 +/CD133+ or VEGFR2+/CD133+)
mobilisation and homing from the BM under physiological and pathological drug therapy
conditions [110]. Changes in EPC count could be registered in patients displaying an
onset of acute ischemia following MI [111–113], unstable angina, coronary artery bypass
grafting [75,76] or stent implantation [114,115].

Within the identification of all of these influencing factors, a single clear mechanistic
explanation to understand EPC function, mobilisation and endothelial integrity is lacking.
Improvements in risk classification and the ability to regulate thrombotic and inflam-
matory cascades should enhance perioperative outcomes. The underlying subclinical
microvascular endothelial dysfunction seems to have a greater impact on perioperative
morbidity, contributing more to complications, such as impaired wound healing and end
organ dysfunction, than the less common but more devastating macrovascular endothe-
lial dysfunction.

Ongoing studies address sheer stress as another key factor since low or disturbed
shear stress, which occurs in vessel branch points, the outer wall of bifurcations, and the
inner wall of curvatures are considered pro-atherogenic [116]. Cell turnover rates in the
arteries are very low, but in some areas this corresponds to increased permeability to plasma
proteins [117], in atherosclerotic-lesion-prone site [118], and in areas of low shear stress,
a high endothelial death rate and overall high turnover rate is needed to maintain vessel
homeostasis [116]. Therefore, recent theories addressed the role of different flow patterns
on EPC function [119]. A disturbed flow was associated with a higher mitotic and apoptotic
activity of ECs and lessened eNOS expression [119]. Long-time outcomes of stenting were
determined by endothelial cell turnover or number [120]. Histone deacetylases (HDAC)
were identified as key players behind this finding [120]. A disturbed flow induced the
transient stabilization of the HDAC3 protein in ECs by stimulating VEGFR2 [121]. HDAC3
belongs to the class I HDACs that enhances the removal of acetyl groups from histone and
non-histone proteins [120,122]. HDAC3 is critical for EC survival and acts as a flow-pattern-
dependent pro-survival molecule [123]. However, HDAC7 is modulated by VEGF and
turbulent flow and is involved in endothelial homeostasis and differentiation, as well as
vascular SMC proliferation [124]. SMC play the main role in the pathogenesis of vascular-
disease-mediated restenosis [124]. Aside from being a potential drug target, HDACs could
help explain post-interventional outcome differences. Trichostatin, for example, inhibits
HDAC, which may be useful in future CVD treatments [125]. Such important players
in CVD pathophysiology should be studied more extensively within the context of EC
research in order to better understand the mechanisms involved and ultimately find new
targets of treatment and biomarkers to monitor disease and measure therapeutic outcomes.

7. Conclusions

EC architecture and mechanisms of endothelial homeostasis are potential sensors
and target therapeutic interventions in the atherosclerotic process. While current studies
assessing EC subunits, phenotype and function enabled a general understanding of the
pathophysiology of atherosclerosis, an ideal test of endothelial function for use in a clinical
setting has yet to be established. A secure method for counting cells and differentiating
cell kinds and compositions is urgently required, as is a deeper understanding of other
modulators such as flow pattern, growth and transcription factors, and gene expression.
CECs may serve as sensitive indicators of pre-existing damage and disease development,
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whereas EPCs may act as a biomarker of repair and a promising therapeutic target. Re-
generative medicine has the potential to expand the therapeutic window for a variety of
diseases, where surgical and medicamentous alternatives have run out. In CVD, safe cell
replacement with new ones could usher in a new era of therapy.
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Abbreviations
BM bone marrow
BMMCs bone marrow mononuclear cells
CAD carotid artery disease
CD cluster of differentiation
CEC circulating endothelial cell
CFU colony-forming unit
CVD cardiovascular disease
CVRF cardiovascular risk factors
CXCR-4 chemokine receptor
EC endothelial cell
ECFC endothelial colony-forming cells
eNOS endothelial nitric oxide synthase
EPC endothelial progenitor cell
FACS fluorescence-activated cell sorting
HDAC histone deacetylase
HPC haemangioblast
LDL low-density lipoprotein
MSC mesenchymal stem cell
PAD peripheral artery disease
PBMNC peripheral blood mononuclear cells
SCA stem cell antigen
SDF stromal cell-derived factor
VEGF vascular epidermal growth factor
VEGFR vascular epidermal growth factor receptor
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