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Abstract
Purpose: The purpose of this work was to establish a database of tissue sodium concentration (TSC) in the normal 
brain of healthy volunteers. Tissue sodium concentration can be used as a sensitive marker of tissue viability in stroke 
or radiation therapy monitoring. 

Material and methods: Thirty-seven volunteers were scanned with a 23Na protocol in the span of one year; within this 
group, 29 studies were of acceptable quality. The study was approved by the Local Bioethics Committee. Data were 
acquired during a single magnetic resonance (MR) scanner session. The single scanner session consisted of 23Na 3D 
radial gradient echo (GRE) acquisition, MPRage, SPACE-FLAIR, and Resolve-DTI. MPRage images were segmented 
to obtain masks of the grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF), which were registered 
to the sodium image space for image analysis. Images were transformed into TSC maps – a signal calibration curve 
obtained from the reference phantom of known sodium concentration and known relaxation time.

Results: The collected data were analysed in 2 different ways: volunteers were divided by sex and by age. No significant 
differences in TSC were found between sexes. In all comparisons there was a significant difference in TSC between 
younger and older volunteers. In healthy volunteers mean TSC were as follows: GM 33.21 ± 4.76 mmol/l, WM 28.41 
± 4.03 mmol/l and for CSF 41.3 ± 6.69 mmol/l.

Conclusions: This preliminary work is a base for further work with sodium imaging in brain lesions. The entirety of the col-
lected data will be useful in the future as a baseline brain TSC for comparison to values obtained from pathologies.
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Introduction
Magnetic resonance imaging (MRI) employs the nuclear 
magnetic resonance (NMR) principle to obtain diagnos-
tic information about biological tissues. Every nuclei with 
non-zero spin can be used for MRI; however, because of 
its natural abundance and high sensitivity to external 
magnetic fields, hydrogen is the most widely used. All the 
factors listed above amount to a high signal-to-noise ratio 
in hydrogen MRI (1H-MRI). Superior tissue contrast is 
the reason why 1H-MRI is used so extensively for soft-
tissue imaging. Its ability to present anatomy is superb; 

however, some diseases have no anatomic findings visible 
or their presence is very late. Because most of the hydro-
gen signal comes from either fat or water, there is limit ed 
biochemical information that can be obtained with stan-
dard 1H-MRI. There are techniques that extend 1H-MRI 
capabilities in that regard, but these are also limited. 
There are some other nuclei with non-zero spin that can 
provide a window into crucial biochemical processes. 
They require additional hardware and often software. For 
example, phosphorus magnetic resonance spectroscopy  
(31P-MRS) can provide information about tissue energy me-
tabolism, phospholipids metabolism, and pH levels [1-3]. 
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Carbon MRI (13C-MRI) can be used in metabolic imaging [4]. 
Helium (3He) and xenon (129Xe) can provide useful infor-
mation about the lungs, which are normally outside the 
scope of MRI [5]. A drawback of all non-proton-based 
MRI techniques is a lower signal-to-noise ratio (SNR). In 
the case of sodium imaging, there is approximately 20,000 
times less signal than in the case of 1H-MRI. This is due 
to lower in vivo concentration than in the case of protons, 
and a lower gyromagnetic ratio.

Performing sodium (23Na) MRI, tissue sodium con-
centration (TSC) maps can be obtained. These maps carry 
a plethora of useful clinical information on various tis-
sues. A major role of sodium ions in the human body is 
managing membrane transport using an ionic pump and 
as a counter ion for balancing charges of tissue anionic 
macromolecules. As such, it provides information in vari-
ous diseases that impact function of sodium-potassium 
ion pump or disrupt ion homeostasis.

It has been shown that 23Na-MRI has its place in 
stroke management [6], as a marker of viable tissue 
(only after the acute stroke phase) prior to strokectomy 
performed in some cases due to brain swelling. When it 
comes to brain tumours, 1H-MRI offers a number of use-
ful modalities that provide indirect information about 
tumour characteristics. However, during radiation and 
chemotherapy the most important issue is the response 
to treatment. Here the non-quantitative nature of the  
1H-MRI signal is a drawback. Several imaging tech-
niques, like dynamic contrast enhancement (DCE), dy-
namic susceptibility contrast (DSC), diffusion weighted 
imaging (DWI), and magnetic resonance spectroscopy 
(MRS), expand the capabilities of proton MRI, but 
their limitations can impair the radiologist’s ability to 
correctly asses treatment response. Sodium MRI is 
quantitative in principle, and it has been shown that 
brain tumours have higher TSC than normal brain [7].  
The same work points to another parameter derived from 
TSC and bound by some assumptions, namely cell vol-
ume fraction (CVF). Tissue sodium concentration and 
CVF together can evaluate extent of tumour better than 
conventional proton MRI [8]. It was also suggested that 
the prognostic potential of sodium MRI in brain tumours 
can be as good as isocitrate dehydrogenase (IDH) [9]. 

Sodium MRI has possible applications in various regions 
and pathologies. There are some reports of its useful-
ness in Alzheimer disease [10,11], kidney imaging [12], 
muscle pathology imaging [13], as well as body and 
spine imaging [14,15]. In this work, gradient echo (GRE) 
sequence was applied to acquire a signal used to recon-
struct the TSC brain maps of healthy volunteers. 

Material and methods
Magnetic resonance imaging (23Na-MRI and 1H-MRI) 
was performed on 37 volunteers between October 2017 
and October 2018. The examined group consisted of  
22 females and 15 males. The mean age of the combined 
group of men and women was 37 years (range 22-64 
years). Twenty-nine out of the 37 studies were of accept-
able quality and were processed. The remaining 8 of the  
37 studies (22%) were rejected due to incomplete acquisi-
tion or artefacts caused by the patient’s movement during 
the study.

All volunteers had an examination performed on 
a MAGNETOM Prisma 3T scanner (Siemens Healthcare, 
Erlangen Germany) with a double tuned 23Na/1H coil 
(RAPID Biomedical, Rimpar Germany), which allowed 
both proton and sodium imaging without moving the 
patient.

Sodium imaging (23Na)

Gradient echo acquisition with radial readout scheme 
was performed with 4.7 mm isotropic resolution; field of 
view (FOV) – 300 × 300 mm, matrix (MTX) – 64; receiver 
bandwidth – 260 Hz/pixel; repetition time (TR) and echo 
time (TE) were, respectively, 100 and 2.87 ms with flip 
angle (FA) 90 degrees. A total of 16 slices were acquired. 
To achieve an acceptable signal-to-noise ratio (SNR) the 
acquisition was averaged (NA) 23 times, which resulted in 
20 minutes of total acquisition time (Figure 1). 

Proton imaging (1H)

Additionally, to assess the anatomy and for segmenta-
tion purposes, high-resolution T1 MPRage sequence was 
performed with 0.9 mm isotropic voxel. 

Post-processing

Two phantoms with known sodium concentration 
were positioned inside the coil for calibration. These 
phantoms were taped to the birdcage coil column close 
to the patient’s temporal bone to capture them within 
the FoV. Those phantoms (2 standardized 100-ml coni-
cal tubes) contained 20 and 70 mM of sodium. Using the 
signal intensity of these phantoms (which corresponded 
to known sodium concentration) a linear curve was fitted 
to obtain scale factors between signal intensity and so-Figure 1. Example 3T MR brain images (1H and 23Na)
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dium concentration [16]. Using these factors all acquired 
sodium data were recalculated into TSC using ImageJ [17] 
software. Then all additional steps were taken to calcu-
late TSC values specific for tissue. The unit of all obtained  
values is mmol/l.

The post-processing pipeline used to acquire TSC val-
ues started with denoising of raw sodium images by means 
of an optimized blockwise nonlocal means denoising filter 
[18] to remove excess noise present in the obtained data. 
A similar procedure was performed on anatomic imaging. 
For the next step, segmentation of white matter, grey mat-
ter, and cerebrospinal fluid was performed on MPRage 
sequence with Statistical Parametric Mapping (SPM [19]) 
software. SPM uses a segmentation process that performs 

tissue classification, bias correction, and image registra-
tion [20] using tissue probability maps and ICBM space 
template for European brains [21]. Then all the acquired 
images were normalised into the same space (they were 
stretched and translated until the anatomical structures 
on all images overlapped). That process enabled the use 
of white matter, grey matter, and CSF as masks on so-
dium images. Subsequently, values from all voxels inside 
a specific mask were gathered and processed to acquire 
the mean sodium concentration. This process was per-
formed using Multi-Image Analysis GUI (Mango [22]). 
Mean values for white matter (WM), grey matter (GM), 
and cerebrospinal fluid (CSF) were obtained from all so-
dium images (Figure 2).

Figure 2. Data postprocessing pipeline
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Figure 3. Comparison of TSC values for a whole dataset (mean ± SD)
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Figure 4. Plot of mean values and standard errors in whole group data
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Statistical analysis 

Data analysis was performed with Statistica 13 soft-
ware. The statistical significance threshold was set at 
0.05. To assess normal distribution the Shapiro-Wilk 
test was performed. A t-test was performed to compare 
differences between TSC of WM, GM, and CSF for the 
whole group. For subgroups, nonparametric tests were 
performed because the collected data did not follow 
the normal distribution. To determine if there were any 
differences within groups, Friedman ANOVA was per-
formed with post-hoc test. The Kruskal-Wallis test was 
performed to evaluate the difference in parameter val-
ues in the groups divided by sex and age. All the box-
and-whiskers plots were presented with mean values as 
a measure of central tendency. Standard error (SE) and 
1.96*SE were presented as box and whiskers respectively.  
The collected data were analysed in 2 different ways to 
lead to conclusions. Firstly, all volunteers were divided by 
sex and secondly by age (more and less than 35 years). 
The age criterion was set to ensure roughly equal groups.

Results
Using the described method and data analysis allowed 
us to obtain brain TSC maps for WM, GM, and CSF.  
The distribution of all TSC values acquired for the whole 
group was deemed normal; however, when data were frag-
mented in both ways normal distribution criteria were not 
met (Figure 3). With no division into groups, statistically 
significant differences between all the tissues (p < 0.001) 
were observed (Figure 4). TSC in CSF was significantly 
higher compared to GM and WM (p < 0.001). TSC in 
WM had significantly the lowest concentration compared 
to the other groups (p < 0.001) (Table 1). 

Volunteers were divided into groups by gender. Sig-
nificant differences were found between all tissues (GM, 
WM, and CSF) in both groups (p < 0.001) (Figure 5). 
Comparing WM, GM, and CSF TSC between men and 
women yielded TSC WM in man vs. woman p = 0.1439, 
TSC GM p = 0.1212, and TSC CSF p = 1322. No sig-
nificant differences in TSC were found between sexes.  
Although it could be observed that men tend to have low-
er TSC than woman in all tissues, this difference was not 
significant (Table 2).

In the second approach, volunteers were divided into 
2 age groups: above and below 35 years old. As in the first 
comparison, there was a significant difference between 

WM, GM, and CSF in both older and younger groups  
(p < 0.001 in all cases).

Comparing the TSC in the 3 considered tissue 
types between younger and older volunteers, TSC WM 
(p = 0.0085), TSC GM (p = 0.0014), and TSC CSF  
(p = 0.0097). In all these comparisons there was a signifi-
cant difference in TSC between younger and older volun-
teers (Figure 6).

Discussion
Different tissue types have different TSC, which means 
a statistically significant difference between WM, GM, 
and CSF. This statement holds true in all of the subgroups 
despite a small number of volunteers in them. It was pre-
viously proven [6,23] that most sodium in the brain can 
be found in CSF and that GM has a higher concentration 
of sodium than WM; the results in this study are no dif-
ferent in that regard.

There were no differences observed between men 
and women in TSC in brain tissues. Although the col-
lected data showed that men have slightly lower TSC, 
that difference is of no significance. According to 
our knowledge, no previous study analysed the dif-
ferences between men and women in regards to this 
parameter, so no data are available for comparison.  
Dividing participants by age into arbitrarily chosen groups 
(to maintain roughly equal subgroups) yielded interesting 
results. As with all previous data, there were differences 
between TSC in CSF, WM, and GM in all subgroups. In-
terestingly, there were significant differences (p < 0.05) 
between all these parameters between younger and older 
participants. Younger volunteers had lower TSC in all cal-
culated parameters. This is in contradiction to findings in 
another paper [24] in which the mean TSC in the whole 
brain was stable in all ages in healthy volunteers. Also, 
some sources [25] point out that overall sodium levels in 
healthy individuals tend to decrease with age. A possible 
source of the bias might be in the volunteer group itself. 
The oldest participant was 64 years of age, and there were 
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Table 2. Median TSC and quartile in younger and older volunteers

Median (quartile) TSC GM TSC WM TSC CSF

Younger than 35 30.12 (28.59-32.20) 26.33 (25.15-28.12) 38.88 (34.13-39.59)

Older than 35 34.77 (32.54-36.69) 28.93 (27.81-32.01) 41.50 (39.94-45.61)
TSC – tissue sodium concentration, GM – grey matter, WM – white matter, CSF – cerebrospinal fluid.

Figure 5. Mean and standard error values of tissues TSC in men and women

Table 1. Median TSC and quartile in men and women

Median (quartile) TSC GM TSC WM TSC CSF

Women’s brains 33.24 (32.12-35.93) 28.15 (26.93-31.58) 40.11 (39.59-46.35)

Men’s brains 31.09 (29.95-33.47) 27.16 (25.32-28.47) 39.50 (34.56-42.10)
TSC – tissue sodium concentration, GM – grey matter, WM – white matter, CSF – cerebrospinal fluid
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only 3 people older than 50 years, which might be a draw-
back in characterizing the age spread of TSC. 

By using a relatively long TR (100 ms), which spanned 
around 3 times the native sodium relaxation time  
(25-40 ms), correction for T1 was not of major impor-
tance for sodium quantification [26] because negligible 
T1 saturation occurs in this situation. However, the TE 
used (2.8 ms) and no correction led to considerable bias, 
as shown in previous papers [27]. While using a 3D radial 
GRE sequence a shorter echo time was not achievable. 
The problem with long TE can be addressed by using one 
of the more sophisticated sequences developed specifically 
for 23Na imaging [28]. Because the brain is a homogenous 
environment and the birdcage coil has a uniform exci-
tation profile, B1 correction was unnecessary. However, 
even in these conditions, not accounting for B1 inho-
mogeneity might be considered a drawback. Bearing the 
above in mind, the values acquired for TSC should be 
considered as “institutional values” and they can be com-
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Figure 6. Mean and standard error values of tissues TSC in younger and 
older groups
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pared with other values acquired in the same institution, 
but they might not be comparable with absolute values 
acquired considering all the mentioned corrections. That 
being said, values obtained for WM in healthy volunteers 
in this study are similar to those presented by Roman-
zetti et al. [28] using a similar sequence considering all 
the above corrections.

Conclusions
The overall acquisition scheme was established, and the 
entirety of gathered data will be useful in the future as 
a baseline brain TSC for comparison to values obtained 
from pathologies. 
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