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Abstract: This review presents an overview of the statistical methods on differential abundance
(DA) analysis for mass spectrometry (MS)-based metabolomic data. MS has been widely used for
metabolomic abundance profiling in biological samples. The high-throughput data produced by MS
often contain a large fraction of zero values caused by the absence of certain metabolites and the
technical detection limits of MS. Various statistical methods have been developed to characterize
the zero-inflated metabolomic data and perform DA analysis, ranging from simple tests to more
complex models including parametric, semi-parametric, and non-parametric approaches. In this
article, we discuss and compare DA analysis methods regarding their assumptions and statistical
modeling techniques.

Keywords: differential abundance; mass spectrometry; metabolomics; zero-inflated data

1. Introduction

Metabolomics has become a mature science, with over 20 years since it was first coined
in 1998 [1–3]. It is the study of small molecules, known as metabolites, of chemical reactions
within a biological system, which directly reflects the biochemical activity and provides
insights into the underlying status of the system [4]. As a key component of the omics
cascade, metabolomics best represents the molecular phenotype [5,6].

Even though the diverse nature of metabolites remains a challenge in compound
identification and reliable quantification, metabolomics is routinely applied to multiple
disciplines in life science with the advances in Mass Spectrometry (MS) [7]. Together with
its various techniques, MS has high sensitivity, high mass resolution and accuracy, and the
capability to detect and quantify numerous metabolites simultaneously [7–9]. The common
applications of MS-based metabolomics include but are not limited to metabolite structure
elucidation [10–12], metabolic profiling [10,13–15], and metabolite identification [16–19].

Despite the advances that have been achieved, MS-based approaches still have detec-
tion limits, which can complicate metabolite identification and quantification [7,9,20]. The
diversity of metabolites, including varied chemical structure, unclear scope of metabolic
network, and dynamic range of abundance, can cause those detection limits [7,21]. One
frequently seen characteristic of high-throughput MS-based metabolomics data is zero
inflation, where the zero values are due to either the absent of the metabolites, abundance
levels below the detection limits, or both. The zero values are referred to as point mass
values (PMVs) and non-zero values are referred to as non-PMVs [22]. To distinguish the
zero values caused by the two different reasons, PMVs are further classified as biological
point mass values (BPMVs) and technical point mass values (TPMVs). BPMVs exist if
metabolites are absent in the experimental sample for a biological reason, and TPMVs exist
if metabolites present in the sample but the signal is below the detection limit for a technical
reason [22,23].

The proportion of PMVs can be very large. Do et al. (2018) reported an overall
missing rate of 19.41%, with 80.6% metabolites that had at least one PMV. Among those
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metabolites, about 10% had a rate of PMV over 70%. The average missing rate per obser-
vation is 19.6% [24]. In the study conducted by Faquih et al. (2020), the authors reported
58.6% metabolites had at least one PMV with an average PMV rate per observation at
38% [25]. Taylor et al. (2013) summarized the PMV rate in metabolomic, proteomic, and
glycomic studies. The overall PMV rate for metabolomics data sets ranges from 14.63% to
28.53% [26,27]. In addition to the large proportion of PMVs, studies have also confirmed
that MS-based omics data can be missing not at random (MNAR), which is caused by the
censored values due to detection limits [26,27].

The large proportion of PMVs has a substantial impact on the downstream analysis as
ignoring the PMVs can lead to biased results. In addition, the two types of PMVs are hard
to separate during the experimental process due to detection limits. Appropriate statistical
methods are required to characterize PMVs and distinguish BPMVs and TPMVs to ensure
unbiased and efficient inference.

Another important issue for downstream statistical analysis is how to model the non-
PMVs. Li et al. (2019) found that the non-PMVs of many metabolites in a metabolomic
dataset were not normally distributed even after log-transformation [28]. As many para-
metric models require data normality assumption, this finding raises cautions about the
choice of statistical models for robust analysis.

A major type of downstream statistical analysis for metabolomic data is the DA
analysis, which identifies differentially abundant metabolic features between samples from
different experimental groups. In this review, we focus on statistical methods for DA
analysis and discuss the pros and cons of each method regarding their assumptions and
statistical modeling techniques.

2. Statistical Methods for DA Analysis

Naïve approaches for DA analysis include ignoring the PMVs or imputing the PMVs
with non-zero values. Specifically, one approach is to delete the PMVs and apply standard
methods, such as two-sample t-test [29] or moderated t-test [22,30], to the non-PMVs.
However, ignoring the zero values changes the distribution of abundance level under
consideration so that the results can be biased. The other approach is data imputation,
which is frequently used to handle missing data including the zero-inflation issue. There are
some normalization and imputation methods developed for MS data [25–27,31,32]. Once
the zero values are imputed, the data can be analyzed using standard statistical methods
such as two-sample t-tests. However, as we have mentioned above, due to the complex
mechanisms and MNAR nature of the data, imputation methods need to be applied case
by case. It is difficult to identify a suitable imputation method for a given dataset, and an
inappropriate method could induce unreliable results and inferences [27,33,34].

Statistical models that can account for zero values without the need of imputation
have been developed to handle different types of zero-inflated data, where zero-inflation
presents not only in metabolomic studies but also in many other medical, health care, and
economical studies [35–38]. Two types of zero-inflated data are frequently seen in practice;
one is zero-inflated count data and the other is zero-inflated nonnegative continuous data. A
recent review summarized zero-inflated count models and their applications [39]. Reviews
on zero-inflated nonnegative continuous data are also available [40,41].

In this review, we focus on statistical models that have been used to handle MS-
based metabolomics data. Based on the strategy of modeling PMVs and non-PMVs, these
methods can be classified into three categories: one-part tests, two-part tests, and mixture
models [22]. In the following sub-sections, we summarize the methods in each category.
For convenience, we first introduce the following notations. Let Yij be the log-transformed
abundance level and δij be the PMV indicator (δij = 1 if PMV or δij = 0 if non-PMV) for
the jth metabolite from the ith subject, respectively, λj be the detection limit for the jth
metabolite, and Xi be a vector of covariates for the ith subject.
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2.1. One-Part Tests

A one-part test considers the whole distribution of metabolite data that does not sepa-
rately model PMVs and non-PMVs. It uses a single test statistic that accounts for both PMVs
and non-PMVs to compare a metabolite’s abundance level between experimental groups.

2.1.1. Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test was first introduced by Wilcoxon in 1945 [42] for
two-group comparison problems. It is often applied when the distribution of continu-
ous measures is not normal as an alternative non-parametric option of the two-sample
t-test. Let n1 and n2 be the number of subjects in groups 1 and 2, respectively. The test
statistic for comparing the abundance of metabolite j between groups is

Wj =

∣∣Uj − µU
∣∣− 0.5

σU
(1)

where Uj = n1n2 + n1(n1 + 1)/2− ∑i∈Group 1 r
(
Yij
)
, r
(
Yij
)

is the rank of Yij among all
observations of metabolite j, µU = (n1n2)/2 is the mean of Uj under the null hypothesis of
no difference between groups, and σU =

√
n1n2(n1 + n2 + 1)/12 is the standard deviation.

For MS-based metabolomics data, since there are tied ranks largely due to PMVs, σU needs
to be adjusted as follows:

σ′U =

√√√√n1n2(n1 + n2 + 1)
12

−
n1n2 ∑

Kj
k=1

(
t3
kj − tkj

)
12(n1 + n2)(n1 + n2 − 1)

(2)

where Kj is the total number of unique ranks and tkj is number of ties for the kth rank for
the jth metabolite.

2.1.2. Truncated Wilcoxon-Test

The truncated Wilcoxon-test was proposed by Hallstrom in 2010 to handle zero-inflated
data for two group comparison with equal sample size [43]. The Wilcoxon rank-sum test is
performed after an equal and maximal amount of zeros are removed from each group to
gain power. The method was extended to data with unequal sample size by Wang et al.
(2021) [44]. Assuming the equal and maximal amount of zero observations are removed
from each group, n′1 and n′2 observations are left. The test statistic is calculated using
equations in Section 2.1.1 with n2 and n2 to be replaced by n′1 and n′2.

2.1.3. Tobit-Model

The Tobit-model [22] assumes PMVs are TPMVs caused by left censoring at the
detection limit. It models data by a left-censored normal distribution. The log likelihood
function for metabolite j is:

log L
(
µj, σj

)
= ∑

i: δij=0
log

{
1

2πσj
ϕ

(
Yij − µij

σj

)}
+ ∑

i: δij=1
log

{
Φ

(
λj − µij

σj

)}
(3)

where µij = β0j + I(i ∈ Group 2)β1j, σj is the standard deviation, and ϕ() and Φ() are den-
sity and cumulative distribution functions of the standard normal distribution, respectively.
A likelihood ratio test is applied to test the hypothesis of β1j = 0 for DA analysis.

2.2. Two-Part Tests

A two-part test first uses two independent test statistics, one for assessing the differ-
ence in non-PMVs and the other for assessing the difference in PMVs, and then combines the
two test statistics to determine the overall difference between experimental groups [22,45].
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A two-part test explicitly compares the proportion of PMVs between groups, although it
does not further separate PMVs into BPMVs and TPMVs.

2.2.1. Two-Part t-Test

For PMVs, a Pearson’s Chi-square test statistic is applied to compare the zero propor-
tion between the two groups. For non-PMVs, a t-test is applied on non-zero values to get
the test statistic. The test statistics for PMVs and non-PMVs both follow the chi-square
distribution with 1 degree of freedom (d.f.). Assuming the proportion of PMVs is not 0 and
not 1 in both groups, the pooled test statistic, the Pearson’s Chi-square test statistic plus the
square of the t-test statistic, follows a chi-square distribution with 2 d.f.s [22].

2.2.2. Two-Part Wilcoxon Test

The two-part Wilcoxon test is constructed similarly to the two-part t-test, except that it
uses a Wilcoxon rank-sum test instead of a t-test for non-PMVs [22].

2.2.3. SDA

Li et al. (2019) [28] proposed a semi-parametric approach named semi-parametric
differential abundance analysis (SDA), which applies a logistic regression for the PMVs
(Equation (4)) and a semi-parametric model (Equation (5)) for the non-PMVs:

log

(
πij

1− πij

)
= γ0j + γjXi, (4)

Yij = β jXi + εij, (5)

where γj and β j are the covariates’ effects for jth metabolite for the PMVs and non-PMVs,
respectively. In Equation (5), the distribution of the independent error term εij is unspecified,
which allows the metabolite abundance level to be arbitrarily distributed that can deviate
from the normal distribution. SDA considers the following kernel-smoothed likelihood for
parameter estimation:

L
(

β j, γj, γ0j
)
=

N
∏
i=1

[
exp(γ0j+γjXi)

1+exp(γ0j+γjXi)

]I(δij=1)

×


1

Nh ∑N
i∗=1 K

{
(Yi∗ j−β jXi∗−

(Yi∗ j−β jXi)
h

}
log(Yij){1+exp(γ0j+γjXi)}


I(δij =0)

(6)

where 1/Nh ∑N
i∗=1

{
(Yi∗ j − β jXi∗ −

((
Yij − β jXi

))
/h
}

is the kernel density estimator with
K(.) as a one dimensional kernel function, h as the bandwidth, and N as the sample size.
For DA analysis on the effect of a covariate, SDA assesses whether the corresponding model
coefficients in γj and β j are equal to zero based on a likelihood ratio test.

2.3. Mixture Models

The mixture model considers PMVs as a mixture of BPMVs and TPMVs, where the
TPMVs component is quantified by the left censoring probability from a parametric model
on non-BPMVs (including both TPMVs and non-PMVs). As the mixture model clearly
separates BPMVs and TPMVs, it provides sufficient flexibility for comparing the proportion
of BPMVs, proportion of TPMVs, and mean of non-BPMVs between groups, although a
parametric model assumption is required to characterize the distribution of non-BPMVs.

2.3.1. Left-Inflated Mixture Likelihood Ratio Test (LIM-LRT)

The left-inflated mixture model (LIM) combines a Bernoulli distribution and
a left-censored normal distribution. It has been applied to many studies including
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omics [22,26,46–49]. Specifically, the distribution of abundance of metabolite j for sub-
ject i from group g (g = 1 or 2) has the following density function:

f (Yij|pjg, µjg, σjg) =


pjg +

(
1− pjg

)
Φ
(

λj−µjg

σ2
jg

)
, i f δij = 1 (7)(

1− pjg
)

ϕ

(
Yij−µjg

σ2
jg

)
, i f δij = 0 (8)

where µjg is the mean, σjg is the standard deviation, and pjg and (1− pjg)Φ(λj
∣∣µjg, σjg) are

the proportions of BPMVs and TPMVs, respectively, for metabolite j from group g. Based
on Equation (8), non-PMVs follow a truncated normal distribution:

f
(
Yij
∣∣δij = 0, µjg, σjg

)
=

ϕ
((

Yij − µjg
)
/σ2

jg

)
σjg

(
1−Φ

((
λjg − µjg

)
/σ2

jg

)) (9)

A likelihood ratio test (LIM-LRT) for the hypothesis of µj1 = µj2 and pj1 = pj2 is used
to assess whether metabolite j is differentially abundant between groups.

2.3.2. DASEV

Huang et al. (2020) noticed that the variance estimation from LIM could be unstable
in presence of a large proportion of zero values, which affected the DA analysis results [50].
To address this issue, they adapted the variance shrinkage approach proposed by Smyth
(2004) for microarray data to the mixture model setting, where data from the ensemble of
metabolites were borrowed to achieve a more robust variance estimation of each individual
metabolite [30]. Specifically, the variances of all metabolites, σ2

j ’s, are assumed to have the
following common prior distribution:

σ2
j ∼ Inv−Gamma

(
d0

2
,

d0s2
o

2

)
, (10)

where d0/2 and d0s2
o/2 are the shape and scale parameters for the inverse-gamma distribu-

tion, respectively. The d0 and s0 are specified as follows:

d0 = 2m2/υ + 4, (11)

s0 =
√

m(d0 − 2)/d0, (12)

where m and υ are the sample mean and variance for the initial estimate of σ2
j across all

metabolites. After the shape and scale parameters are determined, iterations are done until
convergence to obtain estimates of p̂jg and µ̂jg by maximizing the likelihood:

L
(

pj1, pj2, µj1, µj2
∣∣σj
)
=

2

∏
g=1

{
∏

i∈Group g
f
(
Yij
∣∣pjg, µjg, σj

)}
, (13)

and σ̂2
j by maximizing the posterior:

p
(

σ2
j

∣∣∣Data
)

∝ L
(

pj1, pj2, µj1, µj2
∣∣σj
)(d0s2

o
2

) d0
2 σ

2(−1− d0
2 )

j

Γ
(

d0
2

) exp

(
−d0s2

o

2σ2
j

)
. (14)

After all model estimates are obtained until convergence, a likelihood ratio test is
applied for DA analysis. Huang et al. (2020) also extended LIM to allow covariate adjust-
ment, where a logistic regression model was used to characterize the association between
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covariates and the proportion of BPMVs and a linear model was used to characterize the
association between covariates and the mean of non-BPMVs [50].

2.4. Model Comparison

Simulation studies that compared the performance of different methods were con-
ducted in the literature. Gleiss et. al. compared models including Wilcoxon rank-sum
test, truncated Wilcoxon test, Tobit-model, two-part t-test, two-part Wilcoxon test, and
LIM-LRT, Huang et al. compared LIM-LRT and DASEV, and Li et al. compared two-part
t-test, two-part Wilcoxon test, and SDA [22,28,50]. In summary, if the proportion of BPMVs
are similar between the two groups, one-part tests generate acceptable results. Two-part
tests have more reliable estimates comparing to one-part tests especially when the TPMVs
proportions are not too high [22]. Two-part Wilcoxon test shows good performance if
TPMVs can be ruled out [22]. SDA is able to handle both normally and non-normally dis-
tributed features simultaneously, and outperforms two-part t-test and two-part Wilcoxon
test for non-normally distributed features [28]. Mixture models, especially DASEV, can
provide less biased estimates on both proportions of TPMVs and BPMVs when the TPMV
proportion is high [22,50]. LIM-LRT, DASEV, and SDA all yield good true positive rates
when the PMV proportion is not very high [22,28,50].

3. Practical Guidelines

Table 1 summarizes the modeling technique and assumption for each DA analysis
method. In practice, the choice of appropriate methods to use depends on the characteristics
of the specific dataset. The following factors need to be considered.

Table 1. Comparison of statistical methods for DA analysis.

Category Method Able to Distinguish
TPMVs and BPMVs

Free of Data
Normality

Assumption

Available R
Function/Package References

One-part test

Wilcoxon
rank-sum test N Y wilcox.test [42]

Truncated
Wilcoxon test N Y https://rdrr.io/github/

chvlyl/ZIR/ [43,44]

Tobit-model N N

VGAM
(https://cran.r-project.

org/web/packages/
VGAM/index.html)

[22]

Two-part test

Two-part t-test N N t.test
binom.test [22]

Two-part
Wilcoxon test N Y wilcox.test

binom.test [22]

SDA N Y

SDAMS
(https://bioconductor.
org/packages/release/

bioc/html/SDAMS.html)

[28]

Mixture Model

LIM-LRT Y N

https://cemsiis.
meduniwien.ac.at/en/
kb/science-research/
software/statistical-

software/limlrt/

[22,26,46,47]

DASEV Y N http://sweb.uky.edu/
~cwa236/DASEV.html [50]

Y: Yes; N: No. All the hyperlinks were accessed on 25 March 2022.

https://rdrr.io/github/chvlyl/ZIR/
https://rdrr.io/github/chvlyl/ZIR/
https://cran.r-project.org/web/packages/VGAM/index.html
https://cran.r-project.org/web/packages/VGAM/index.html
https://cran.r-project.org/web/packages/VGAM/index.html
https://bioconductor.org/packages/release/bioc/html/SDAMS.html
https://bioconductor.org/packages/release/bioc/html/SDAMS.html
https://bioconductor.org/packages/release/bioc/html/SDAMS.html
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/limlrt/
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/limlrt/
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/limlrt/
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/limlrt/
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/limlrt/
http://sweb.uky.edu/~cwa236/DASEV.html
http://sweb.uky.edu/~cwa236/DASEV.html
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The composition of PMVs. As different methods model PMVs in different ways, we
would suggest first investigating the composition of PMVs before performing DA analysis.
One can draw a histogram to investigate the empirical distribution of abundance level. If the
observed PMV proportion is substantially higher than the extrapolation of the distribution
of non-PMVs, it would indicate the presence of BPMVs. Under such situation, the Tobit-
model, which assumes PMVs are all from TPMVs, may not be appropriate. Further, if
one wants to separate the proportions of BPMVs and TPMVs, the mixture model-based
approaches, LIM-LRT and DASEV, would be preferred.

Data normality. We would also suggest checking data normality by using the Q-Q plot,
Kolmogorov-Smirnov test, and Shapiro-Wilk test. If the data substantially deviate from
normal distributions, non-parametric and semi-parametric methods that do not require the
normal assumption would be preferred. Those methods include Wilcoxon rank-sum test,
truncated Wilcoxon test, two-part Wilcoxon test, and SDA.

Sample size. Although non-parametric and semi-parametric methods are robust
to distributional assumptions, they typically require larger sample sizes compared to
parametric methods. For example, the Wilcoxon rank sum test requires a sample size of at
least 16 [51,52]. Therefore, if the experiment only has a few replicates per treatment group,
using a parametric method is more feasible.

Confounder adjustment. Adjusting for confounders, e.g., age and sex, is allowed for
some parametric and semi-parametric methods such as DASEV and SDA. Therefore, for
studies with a complex design and/or presence of confounders, those methods would
be preferred.

Finally, it is always a good practice to consider more than one method and compare
the results to make more robust inference.

4. Discussion

Handling zero inflation is an important task for analyzing MS-based metabolomic
data. The characteristics of zero-inflated data need to be carefully assessed in order to
choose appropriate statistical methods for data analysis, which will impact analysis results
and interpretation. In this paper, we have reviewed a variety of statistical methods to
model zero-inflated data for DA analysis. By comparing these methods in the aspects
of assumptions and statistical modeling techniques, we have provided guidelines for
choosing appropriate methods in practical situations. Our review focuses on cross-sectional
studies. For the more complex longitudinal metabolomics studies on the progression of
diseases [53–55], current approaches consider mixed effect models [56–58]. New method
developments to handle the zero-inflation issue are highly desired to achieve more robust
performance and increase the predictability of such studies.

In addition to DA analysis, the zero inflation issue also broadly affects many other
types of downstream analysis of metabolomic data such as cluster analysis [59], disease
diagnostic modeling [60], pathway analysis [61–63], and multi-omics analysis [64]. For ex-
ample, a common approach for pathway analysis is the overrepresentation analysis [61,63],
which identifies enrichment of a metabolic pathway by assessing the overrepresentation
of metabolites from the pathway in a list of metabolites of interest compared to the back-
ground. The overrepresentation analysis is based on an input of a list of metabolites of
interest, which is usually the list of differentially abundant metabolites from a DA analysis.
Thus, the strategy of handling PMVs in DA analysis will have an impact on the results of
pathway analysis.

Author Contributions: Conceptualization, methodology, writing—review and editing: Z.H. and
C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Cancer Institute (R03CA211835) and the
Biostatistics and Bioinformatics Shared Resource Facility of the University of Kentucky Markey
Cancer Center (P30CA177558).

Conflicts of Interest: The authors declare no conflict of interest.



Metabolites 2022, 12, 305 8 of 10

References
1. Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998, 16,

373–378. [CrossRef]
2. Alseekh, S.; Fernie, A.R. Metabolomics 20 years on: What have we learned and what hurdles remain? Plant J. 2018, 94, 933–942.

[CrossRef] [PubMed]
3. Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world.

New Horiz. Transl. Med. 2017, 3, 294–305. [CrossRef] [PubMed]
4. Liu, X.; Locasale, J.W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42, 274–284. [CrossRef]
5. Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying

metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320. [CrossRef]
6. Sinem, N.; Abdullah, K. Introductory Chapter: Insight into the OMICS Technologies and Molecular Medicine; Sinem, N., Hakima, A.,

Eds.; Molecular Medicine; IntechOpen: London, UK, 2019.
7. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al.

Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021,
18, 747–756. [CrossRef]

8. Dunn, W.B. Mass spectrometry in systems biology an introduction. Methods Enzym. 2011, 500, 15–35.
9. Aretz, I.; Meierhofer, D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int. J.

Mol. Sci. 2016, 17, 632. [CrossRef]
10. Saghatelian, A.; Trauger, S.A.; Want, E.J.; Hawkins, E.G.; Siuzdak, G.; Cravatt, B.F. Assignment of endogenous substrates to

enzymes by global metabolite profiling. Biochemistry 2004, 43, 14332–14339. [CrossRef]
11. Boiteau, R.M.; Hoyt, D.W.; Nicora, C.D.; Kinmonth-Schultz, H.A.; Ward, J.K.; Bingol, K. Structure Elucidation of Unknown

Metabolites in Metabolomics by Combined NMR and MS/MS Prediction. Metabolites 2018, 8, 8. [CrossRef]
12. Levsen, K.; Schiebel, H.M.; Behnke, B.; Dötzer, R.; Dreher, W.; Elend, M.; Thiele, H. Structure elucidation of phase II metabolites

by tandem mass spectrometry: An overview. J. Chromatogr. A 2005, 1067, 55–72. [CrossRef]
13. Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.;

Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid
chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [CrossRef] [PubMed]

14. Shao, Y.; Li, T.; Liu, Z.; Wang, X.; Xu, X.; Li, S.; Xu, G.; Le, W. Comprehensive metabolic profiling of Parkinson’s disease by liquid
chromatography-mass spectrometry. Mol. Neurodegener. 2021, 16, 4. [CrossRef] [PubMed]

15. Clarke, C.J.; Haselden, J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol. Pathol. 2008, 36,
140–147. [CrossRef] [PubMed]

16. Lapainis, T.; Rubakhin, S.S.; Sweedler, J.V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for
single-cell metabolomics. Anal. Chem. 2009, 81, 5858–5864. [CrossRef] [PubMed]

17. Prasad, B.; Garg, A.; Takwani, H.; Singh, S. Metabolite identification by liquid chromatography-mass spectrometry. TrAC Trends
Anal. Chem. 2011, 30, 360–387. [CrossRef]

18. Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Anal.
Chem. TRAC 2012, 32, 1–14. [CrossRef]

19. Dahal, U.P.; Jones, J.P.; Davis, J.A.; Rock, D.A. Small molecule quantification by liquid chromatography-mass spectrometry for
metabolites of drugs and drug candidates. Drug Metab. Dispos. 2011, 39, 2355–2360. [CrossRef]

20. Easterling, L.F.; Yerabolu, R.; Kumar, R.; Alzarieni, K.Z.; Kenttämaa, H.I. Factors Affecting the Limit of Detection for
HPLC/Tandem Mass Spectrometry Experiments Based on Gas-Phase Ion-Molecule Reactions. Anal. Chem. 2020, 92, 7471–7477.
[CrossRef]

21. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to
Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef]

22. Gleiss, A.; Dakna, M.; Mischak, H.; Heinze, G. Two-group comparisons of zero-inflated intensity values: The choice of test statistic
matters. Bioinformatics 2015, 31, 2310–2317. [CrossRef] [PubMed]

23. Dakna, M.; Harris, K.; Kalousis, A.; Carpentier, S.; Kolch, W.; Schanstra, J.P.; Haubitz, M.; Vlahou, A.; Mischak, H.; Girolami,
M. Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinform. 2010, 11, 594. [CrossRef]
[PubMed]

24. Do, K.T.; Wahl, S.; Raffler, J.; Molnos, S.; Laimighofer, M.; Adamski, J.; Suhre, K.; Strauch, K.; Peters, A.; Gieger, C.; et al.
Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.
Metabolomics 2018, 14, 128. [CrossRef] [PubMed]

25. Faquih, T.; van Smeden, M.; Luo, J.; le Cessie, S.; Kastenmüller, G.; Krumsiek, J.; Noordam, R.; Van Heemst, D.; Rosendaal, F.R.;
Vlieg, A.V.H.; et al. A Workflow for Missing Values Imputation of Untargeted Metabolomics Data. Metabolites 2020, 10, 486.
[CrossRef] [PubMed]

26. Taylor, S.L.; Leiserowitz, G.S.; Kim, K. Accounting for undetected compounds in statistical analyses of mass spectrometry ‘omic
studies. Stat. Appl. Genet. Mol. Biol. 2013, 12, 703–722. [CrossRef] [PubMed]

27. Hrydziuszko, O.; Viant, M.R. Missing values in mass spectrometry based metabolomics: An undervalued step in the data
processing pipeline. Metabolomics 2011, 8, 161–174. [CrossRef]

http://doi.org/10.1016/S0167-7799(98)01214-1
http://doi.org/10.1111/tpj.13950
http://www.ncbi.nlm.nih.gov/pubmed/29734513
http://doi.org/10.1016/j.nhtm.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/29094062
http://doi.org/10.1016/j.tibs.2017.01.004
http://doi.org/10.1038/nbt.4101
http://doi.org/10.1038/s41592-021-01197-1
http://doi.org/10.3390/ijms17050632
http://doi.org/10.1021/bi0480335
http://doi.org/10.3390/metabo8010008
http://doi.org/10.1016/j.chroma.2004.08.165
http://doi.org/10.1038/nprot.2011.335
http://www.ncbi.nlm.nih.gov/pubmed/21720319
http://doi.org/10.1186/s13024-021-00425-8
http://www.ncbi.nlm.nih.gov/pubmed/33485385
http://doi.org/10.1177/0192623307310947
http://www.ncbi.nlm.nih.gov/pubmed/18337232
http://doi.org/10.1021/ac900936g
http://www.ncbi.nlm.nih.gov/pubmed/19518091
http://doi.org/10.1016/j.trac.2010.10.014
http://doi.org/10.1016/j.trac.2011.08.009
http://doi.org/10.1124/dmd.111.040865
http://doi.org/10.1021/acs.analchem.9b05369
http://doi.org/10.1146/annurev-biochem-061516-044952
http://doi.org/10.1093/bioinformatics/btv154
http://www.ncbi.nlm.nih.gov/pubmed/25788623
http://doi.org/10.1186/1471-2105-11-594
http://www.ncbi.nlm.nih.gov/pubmed/21208396
http://doi.org/10.1007/s11306-018-1420-2
http://www.ncbi.nlm.nih.gov/pubmed/30830398
http://doi.org/10.3390/metabo10120486
http://www.ncbi.nlm.nih.gov/pubmed/33256233
http://doi.org/10.1515/sagmb-2013-0021
http://www.ncbi.nlm.nih.gov/pubmed/24246290
http://doi.org/10.1007/s11306-011-0366-4


Metabolites 2022, 12, 305 9 of 10

28. Li, Y.; Fan, T.W.M.; Lane, A.N.; Kang, W.Y.; Arnold, S.M.; Stromberg, A.J.; Wang, C.; Chen, L. SDA: A semi-parametric differential
abundance analysis method for metabolomics and proteomics data. BMC Bioinform. 2019, 20, 501. [CrossRef]

29. Zhang, D.; Fan, C.; Zhang, J.; Zhang, C.H. Nonparametric methods for measurements below detection limit. Stat. Med. 2009, 28,
700–715. [CrossRef]

30. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat.
Appl. Genet. Mol. Biol. 2004, 3, 1–25. [CrossRef]

31. Wang, P.; Tang, H.; Zhang, H.; Whiteaker, J.; Paulovich, A.G.; McIntosh, M. Normalization regarding non-random missing values
in high-throughput mass spectrometry data. Biocomputing 2006, 11, 315–326.

32. Hughes, G.; Cruickshank-Quinn, C.; Reisdorph, R.; Lutz, S.; Petrache, I.; Reisdorph, N.; Bowler, R.; Kechris, K. MSPrep-
summarization, normalization and diagnostics for processing of mass spectrometry-based metabolomic data. Bioinformatics 2014,
30, 133–134. [CrossRef] [PubMed]

33. Webb-Robertson, B.J.; Wiberg, H.K.; Matzke, M.M.; Brown, J.N.; Wang, J.; McDermott, J.E.; Smith, R.D.; Rodland, K.D.; Metz, T.O.;
Pounds, J.G.; et al. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based
label-free global proteomics. J. Proteome Res. 2015, 14, 1993–2001. [CrossRef]

34. Lazar, C.; Gatto, L.; Ferro, M.; Bruley, C.; Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free
Quantitative Proteomics Data Sets to Compare Impu-tation Strategies. J. Proteome Res. 2016, 15, 1116–1125. [CrossRef] [PubMed]

35. Liaqat, M.; Kamal, S.; Fischer, F.; Zia, N. Zero-inflated and hurdle models with an application to the number of involved axillary
lymph nodes in primary breast cancer. J. King Saud Univ.-Sci. 2022, 34, 101932. [CrossRef]

36. Zhang, P.; Pitt, D.; Wu, X. A New Multivariate Zero-Inflated Hurdle Model with Applications in Automobile Insurance. ASTIN
Bull. 2022, 1–24. [CrossRef]

37. Lam, K.F.; Xue, H.; Bun Cheung, Y. Semiparametric Analysis of Zero-Inflated Count Data. Biometrics 2006, 62, 996–1003. [CrossRef]
38. Neelon, B.; O’Malley, A.J.; Smith, V.A. Modeling zero-modified count and semicontinuous data in health services research part 2:

Case studies. Stat. Med. 2016, 35, 5094–5112. [CrossRef]
39. Young, D.S.; Roemmele, E.; Yeh, P. Zero inflated modeling part I: Traditional zero inflated count regression models, their

applications, and computational tools. WIREs Comput. Stat. 2020, 14, e1541. [CrossRef]
40. Liu, L.; Shih, Y.-C.T.; Strawderman, R.L.; Zhang, D.; Johnson, B.A.; Chai, H. Statistical Analysis of Zero-Inflated Nonnegative

Continuous Data: A Review. Stat. Sci. 2019, 34, 253–279. [CrossRef]
41. Min, Y.; Agresti, A. Modeling Nonnegative Data with Clumping at Zero: A Survey. J. Iran. Stat. Soc. 2002, 1, 7–33.
42. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
43. Hallstrom, A.P. A modified Wilcoxon test for non-negative distributions with a clump of zeros. Stat. Med. 2010, 29, 391–400.

[CrossRef] [PubMed]
44. Wang, W.; Chen, E.Z.; Li, H. Truncated Rank-Based Tests for Two-Part Models with Excessive Zeros and Applications to

Microbiome Data. arXiv 2021, arXiv:2110.05368.
45. Taylor, S.; Pollard, K. Hypothesis tests for point-mass mixture data with application to ‘omics data with many zero values. Stat.

Appl. Genet. Mol. Biol. 2009, 8, 8. [CrossRef] [PubMed]
46. Yang, Y.; Simpson, D.G. Conditional decomposition diagnostics for regression analysis of zero-inflated and left-censored data.

Stat. Methods Med. Res. 2012, 21, 393–408. [CrossRef] [PubMed]
47. Moulton, L.H.; Halsey, N.A. A mixture model with detection limits for regression analyses of antibody response to vaccine.

Biometrics 1995, 51, 1570–1578. [CrossRef]
48. Karpievitch, Y.; Stanley, J.; Taverner, T.; Huang, J.; Adkins, J.N.; Ansong, C.; Heffron, F.; Metz, T.O.; Qian, W.-J.; Yoon, H.; et al. A

statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformatics 2009, 25, 2028–2034. [CrossRef]
49. Wu, S.H.; Black, M.A.; North, R.A.; Atkinson, K.R.; Rodrigo, A.G. A statistical model to identify differentially expressed proteins

in 2D PAGE gels. PLoS Comput. Biol. 2009, 5, e1000509. [CrossRef]
50. Huang, Z.; Lane, A.N.; Fan, T.W.M.; Higashi, R.M.; Weiss, H.L.; Yin, X.; Wang, C. Differential Abundance Analysis with Bayes

Shrinkage Estimation of Variance (DASEV) for Zero-Inflated Proteomic and Metabolomic Data. Sci. Rep. 2020, 10, 876. [CrossRef]
51. Dwivedi, A.K.; Mallawaarachchi, I.; Alvarado, L.A. Analysis of small sample size studies using nonparametric bootstrap test

with pooled resampling method. Stat. Med. 2017, 36, 2187–2205. [CrossRef]
52. Mundry, R.; Fischer, J. Use of statistical programs for nonparametric tests of small samples often leads to incorrect P values:

Examples fromAnimal Behaviour. Anim. Behav. 1998, 56, 256–259. [CrossRef] [PubMed]
53. Tsonaka, R.; Signorelli, M.; Sabir, E.; Seyer, A.; Hettne, K.; Aartsma-Rus, A.; Spitali, P. Longitudinal metabolomic analysis of

plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models. Hum. Mol. Genet. 2020, 29,
745–755. [CrossRef] [PubMed]

54. Overmyer, K.A.; Shishkova, E.; Miller, I.J.; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, J.G.; Quan, Q.; Muehlbauer, L.K.;
Trujillo, E.A.; et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2021, 12, 23–40.e7. [CrossRef]

55. Sindelar, M.; Stancliffe, E.; Schwaiger-Haber, M.; Anbukumar, D.S.; Adkins-Travis, K.; Goss, C.W.; O’Halloran, J.A.; Mudd, P.A.;
Liu, W.-C.; Albrecht, R.A.; et al. Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease
severity. Cell Rep. Med. 2021, 2, 100369. [CrossRef]

56. Jendoubi, T.; Ebbels, T.M.D. Integrative analysis of time course metabolic data and biomarker discovery. BMC Bioinform. 2020,
21, 11. [CrossRef] [PubMed]

http://doi.org/10.1186/s12859-019-3067-z
http://doi.org/10.1002/sim.3488
http://doi.org/10.2202/1544-6115.1027
http://doi.org/10.1093/bioinformatics/btt589
http://www.ncbi.nlm.nih.gov/pubmed/24174567
http://doi.org/10.1021/pr501138h
http://doi.org/10.1021/acs.jproteome.5b00981
http://www.ncbi.nlm.nih.gov/pubmed/26906401
http://doi.org/10.1016/j.jksus.2022.101932
http://doi.org/10.1017/asb.2021.39
http://doi.org/10.1111/j.1541-0420.2006.00575.x
http://doi.org/10.1002/sim.7063
http://doi.org/10.1002/wics.1541
http://doi.org/10.1214/18-STS681
http://doi.org/10.2307/3001968
http://doi.org/10.1002/sim.3785
http://www.ncbi.nlm.nih.gov/pubmed/19941301
http://doi.org/10.2202/1544-6115.1425
http://www.ncbi.nlm.nih.gov/pubmed/19222391
http://doi.org/10.1177/0962280210387525
http://www.ncbi.nlm.nih.gov/pubmed/21068054
http://doi.org/10.2307/2533289
http://doi.org/10.1093/bioinformatics/btp362
http://doi.org/10.1371/journal.pcbi.1000509
http://doi.org/10.1038/s41598-020-57470-4
http://doi.org/10.1002/sim.7263
http://doi.org/10.1006/anbe.1998.0756
http://www.ncbi.nlm.nih.gov/pubmed/9710485
http://doi.org/10.1093/hmg/ddz309
http://www.ncbi.nlm.nih.gov/pubmed/32025735
http://doi.org/10.1016/j.cels.2020.10.003
http://doi.org/10.1016/j.xcrm.2021.100369
http://doi.org/10.1186/s12859-019-3333-0
http://www.ncbi.nlm.nih.gov/pubmed/31918658


Metabolites 2022, 12, 305 10 of 10

57. Berk, M.; Ebbels, T.; Montana, G. A statistical framework for biomarker discovery in metabolomic time course data. Bioinformatics
2011, 27, 1979–1985. [CrossRef]

58. Mei, Y.; Kim, S.B.; Tsui, K.-L. Linear-mixed effects models for feature selection in high-dimensional NMR spectra. Expert Syst.
Appl. 2009, 36, 4703–4708. [CrossRef]

59. Rusilowicz, M.J.; Dickinson, M.; Charlton, A.J.; O’Keefe, S.; Wilson, J. MetaboClust: Using interactive time-series cluster analysis
to relate metabolomic data with perturbed pathways. PLoS ONE 2018, 13, e0205968. [CrossRef]

60. Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics.
Expert Rev. Mol. Diagn. 2008, 8, 617–633. [CrossRef]

61. Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.; Bundy, J.G.; Jourdan, F.; Ebbels, T. Pathway
analysis in metabolomics: Recommendations for the use of over-representation analysis. PLoS Comput. Biol. 2021, 17, e1009105.
[CrossRef]

62. Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26,
2342–2344. [CrossRef] [PubMed]

63. Marco-Ramell, A.; Palau-Rodriguez, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sanchez-Pla, A.; Andres-Lacueva, C. Evaluation
and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform. 2018, 19, 1. [CrossRef]
[PubMed]

64. Jiang, D.; Armour, C.R.; Hu, C.; Mei, M.; Tian, C.; Sharpton, T.J.; Jiang, Y. Microbiome Multi-Omics Network Analysis: Statistical
Considerations, Limitations, and Opportunities. Front. Genet. 2019, 10, 995. [CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/btr289
http://doi.org/10.1016/j.eswa.2008.06.032
http://doi.org/10.1371/journal.pone.0205968
http://doi.org/10.1586/14737159.8.5.617
http://doi.org/10.1371/journal.pcbi.1009105
http://doi.org/10.1093/bioinformatics/btq418
http://www.ncbi.nlm.nih.gov/pubmed/20628077
http://doi.org/10.1186/s12859-017-2006-0
http://www.ncbi.nlm.nih.gov/pubmed/29291722
http://doi.org/10.3389/fgene.2019.00995
http://www.ncbi.nlm.nih.gov/pubmed/31781153

	Introduction 
	Statistical Methods for DA Analysis 
	One-Part Tests 
	Wilcoxon Rank-Sum Test 
	Truncated Wilcoxon-Test 
	Tobit-Model 

	Two-Part Tests 
	Two-Part t-Test 
	Two-Part Wilcoxon Test 
	SDA 

	Mixture Models 
	Left-Inflated Mixture Likelihood Ratio Test (LIM-LRT) 
	DASEV 

	Model Comparison 

	Practical Guidelines 
	Discussion 
	References

