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The presence of Superfund sites as a determinant
of life expectancy in the United States
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Superfund sites could affect life expectancy (LE) via increasing the likelihood of exposure to
toxic chemicals. Here, we assess to what extent such presence could alter the LE indepen-
dently and in the context of sociodemographic determinants. A nationwide geocoded sta-
tistical modeling at the census tract level was undertaken to estimate the magnitude of
impact. Results showed a significant difference in LE among census tracts with at least one
Superfund site and their neighboring tracts with no sites. The presence of a Superfund site
could cause a decrease of —0.186 £ 0.027 years in LE. This adverse effect could be as high as
—1.22 years in tracts with Superfund sites and high sociodemographic disadvantage. Specific
characteristics of Superfund sites such as being prone to flooding and the absence of a
cleanup strategy could amplify the adverse effect. Furthermore, the presence of Superfund
sites amplifies the negative influence of sociodemographic factors at lower LEs.
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ife expectancy (LE) is one of the most basic yet important

indicators of public health!:2. Studies showed a 1% increase

in LE could lead to a 1.7-2% increase in population3. The
observed discrepancy in LE around the globe is a direct result of
inequalities in mortality risks*. The latter has been associated, by
many researchers, with sociodemographic variables (e.g. race/
ethnicity, sex, income, age, sanitation, and education), as well as,
the spread of different communicable and non-communicable
diseases (NCDs) such as diarrhea, HIV, and cancer>’. In
developed countries, such as in the U.S., where the majority of the
population has access to basic health services8, the cause of spe-
cific NCDs could be attributed to exposure to chemical and
biological hazards from various sources” 12,

While many studies have broken down the mortality rates
associated with different diseases, only a few have paid attention
to hazardous waste and Superfund sites and their potential
impact on mortality rates. The presence of these sites could be
considered a contributing factor affecting LEs through releases of
hazardous/toxic contaminants!3-1> and potential acute and
chronic exposure to the pollutants contained within them1®. For
most Superfund sites, cleanup actions did not start till the 1980s,
even though their presence dates as far back as the 1930s and
1940s. Considering the fact that the average LE in the U.S. is 78.7
years!7 and millions of children have been raised within less than
a 1.61 km (1-mile) radius from a federally designated Superfund
site!8, it is necessary to understand to what extent the presence of
Superfund sites could affect LE.

Furthermore, and when taken in the context of natural dis-
asters and climate change, it becomes even more critical to
understand the association between hazardous waste and Super-
fund sites, human health, and LE. The literature provides ample
evidence that contaminant releases from anthropogenic sources
(e.g., petrochemicals or hazardous waste sites) could increase the
mortality rate in fence-line communities!®!19-22, However,
inconsistent results were also reported; one study showed no
overall maternal-fetal death associated with residential proximity
to hazardous waste sites?> while another study showed an
increased risk of congenital anomalies due to proximity to
Superfund sites that had not been remediated®. Moreover, at
least one study in the 28 member states of the European Union
revealed a significant positive correlation between exposure to
benzene emissions and mortality rates among people who live in
the vicinity of emission sources!'®. Other recent studies in the US
also showed a significant correlation between the residential
proximity to Superfund sites and the occurrence of non-Hodg-
kin’s lymphoma, especially among males!%-2>,

While some studies questioned the essence and value of
cleanup actions at Superfund sites based on their effect on
housing market outcomes?®, it has been shown that Superfund
sites (at least the ones with completed human exposure pathways)
without any remediation strategy could cause billions of dollars in
the form of medical costs and lost productivity alone?’. Studies
have also argued that constant exposure of fence-line commu-
nities to hazardous contaminants before, during, and even after
cleanup activities could cause a long-lasting effect on public
health and ecosystems?’-2, It is important to note that almost
none of the aforementioned studies provide a comprehensive
analysis at the national level on the impact of Superfund
sites on LE.

This study provides an overall estimation of the impact of
living near a Superfund site on general health (using LE as a
surrogate) at the national level by considering Superfund sites as a
single source of exposure regardless of their contaminants of
concern. Moreover, given the recent report by the Government
Accountability Office (GAO) that revealed that approximately
60% of Superfund sites managed by EPA could potentially be

affected by natural hazards (e.g., flooding and wildfire)3, this
study explores the associations between the flooding potential at
Superfund sites and its role in LE. Flooding, in addition to
inundation of affected land areas, could facilitate the transport of
contaminants from Superfund sites and potentially affect neigh-
borhoods farther than the nearby fence-line communities;!431,32
such effects can potentially be exacerbated by a changing future
climate3%-33, Thus, it is essential to understand to what extent
being located in a Federal Emergency Management Agency
(FEMA) defined floodplain could influence the effect of Super-
fund sites on LE.

The study presents a nationwide geocoded statistical modeling
analysis of the presence of Superfund sites, their flood potential,
and the impact on LE independently and in the context of other
sociodemographic determinants. There is no comprehensive
study at the national level with a geographic scale smaller than the
county-level on the effect of Superfund sites on LE. The present
study analyzes the aforementioned potential correlations at the
census tract level. Furthermore, and unlike prior studies that have
focused mainly on sites on the National Priorities List (NPL,
~1300 sites)34, this study includes sites proposed to be on the list,
removed from the list, waiting to become part of the list and sites
that are not overseen by the EPA (an additional ~11,700 sites)>°.

The study more specifically undertakes statistical modeling to
answer the following questions: (1) Does the presence of a
Superfund site within a census tract independently cause a sig-
nificant change in LE when compared to its immediate neigh-
boring tracts that do not have a Superfund site (the qualification
question)? (2) What is the magnitude and extent of change in LE
that this presence could cause (the quantification question) when
sociodemographic determinants are also considered? (3) How
does the effect of Superfund sites on LE vary in tracts with dif-
ferent sociodemographic characteristics?; and (4) How does the
vulnerability to flooding of Superfund sites and their cleanup
status amplify or reduce the magnitude of the effect on LE?

Results and discussion

A summary of statistics for LE and all sociodemographic variables
in all 65,226-census tracts is provided in Supplementary Table 1
in the Supplementary Information (SI). The median LE values for
all census tracts, tracts with at least one Superfund site, and tracts
with no sites were found to be 78.50, 77.50, and 78.7 years,
respectively, indicating a difference of —1 and —1.2 years in LE
between census tracts with sites when compared to overall and no
sites. Such difference, however, could be a combined effect of the
sociodemographic variables and Superfund sites together as will
be discussed in more detail in the following sections. The results
of Spearman’s rank correlation analysis are shown in Supple-
mentary Table 2 in the SI. All of the selected sociodemographic
variables showed a significant (P-value <0.01) correlation with
LE. However, some of the sociodemographic variables showed
significant and very strong pairwise correlations with each other;
for instance, median income, income per capita, and percent of
the population below the poverty line (P-value << 0.01, R > 0.85).
For such cases, only one variable was selected for further analyses
and statistical regression modeling; these were LE, the presence of
Superfund sites, percent of the population above 60 years old
(variable name: above 60), median income in U.S. dollars (vari-
able name: income), percent white (variable name: white), percent
of the population with at least one disability (variable name:
disability), percent married people (variable name: married),
percent of the population with at least one health insurance plan
(variable name: insurance), percent of the population with edu-
cation beyond high school diploma (variable name: education),
and percent of U.S. citizens in each tract (variable name:
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Table 1 P-values for the Mann-Whitney U test (two-sided)
conducted in matching analyses.
Variable Mann-Whitney U test
Tracts with Superfund sites All tracts vs.
vs. neighbor tracts neighbor tracts
LE 1.37E-13 7.48E-01
Above60  1.06E—04 9.58E—01
White 1.78E-04 7.22E-01
Income 0.00E-+00 5.92E-07
Insurance  6.96E—07 2.97E-03
Married 0.00E+00 3.68E—07
Education  7.76E—10 3.92E-01
Citizenship  7.02E—01 5.30E-01
Disability =~ 8.74E—03 1.29E-04
Bold values indicate significant differences at the 0.05 confidence level.

citizenship). Supplementary Figs. 1-8 in the SI, show the dis-
tribution of these variables in all of the census tracts, with
available data, in the US.

The presence of Superfund sites and their impact on LE.
Table 1 shows the P-values for the Mann-Whitney U test con-
ducted for matching analyses. The results showed a significant
difference (P-value <0.05) in LE among tracts with at least one
Superfund site and tracts with no sites. As shown in Table 1, the
difference was not significant in general when all tracts, regardless
of their Superfund site status, were compared to their neighbors.
The t-test for LE also showed a significant difference among tracts
with Superfund sites and their neighbors (P-value = 8.96E—15)
and non-significant in general (P-value = 0.06). This result sug-
gests the LE could be different in two neighboring tracts because
of the presence of Superfund sites (due, for example, to a higher
chance of exposure to a specific toxic chemical as discussed in the
literature20-39).

The Mann-Whitney U test also showed significant differences
for all sociodemographic variables except citizenship among
tracts with Superfund sites and the median of their surrounding
neighbors (confounding effect). There were no racial and
educational differences in general, while significant differences
were observed when only tracts with Superfund sites were
compared with their neighbors. For income, marital status, and
insurance coverage, both group tests showed significant differ-
ences, and for citizenship, both experiments showed no
significant differences. The fact that sociodemographic variables
also showed a significant difference could make the conclusion
mentioned above less related to the presence of the sites
exclusively. However, it would justify the inclusion of the
sociodemographic variables within the ordinary least squares
(OLS) model to offset the confounding effect. Furthermore, and
from these observations, one could conclude that less-educated
minorities (the direction of difference was determined by looking
at the medians) are living in tracts with at least one Superfund
site. In other words, the population living in the vicinity of
Superfund sites has already been made more vulnerable to
exposure to different contaminants emanating from the sites due
to the higher level of social and health-related disadvantages.

Regression analyses and Random Forests modeling (quantifi-
cation). Supplementary Table 4 in the SI shows the coefficients
and model metrics (performance) for all of the nine developed
OLS regression models (manual stepwise). As shown in the table,
the Superfund site coefficient in the OLS model, developed solely
based on the Superfund site, was significant with a relatively large

coefficient (—1.146). However, considering the confounding
effect of the sociodemographic variables (especially income and
race), adding them to the model made the Superfund coefficient
smaller (—0.186 in the final model), yet significant, and the model
performance better (R?> from 0.013 to 0.546). The difference
between the unadjusted analysis and adjusted for 8 potential
confounders analysis may suggest that the residual confounding
could account for the remaining association detected in multi-
variable models. In other words, there might be other variables
(not considered in this study) that could adjust the effect of
Superfund Sites on LE, and considering them may lower the lost
years of LE associated with living in a census track with a
hazardous site. Future works could include identifying such
confounders and investigate their effects on the effect of Super-
fund sites on LE. The final developed OLS regression model,
including all sociodemographic variables, was:

LE = 74.409 + 0.053 (Above 60) + 0.026 (White)
+ 0.236 (Income) + 0.031 (Insurance)
+ 0.063 (Married) + 0.068 (Education) — 0.11 (Citizenship)
—0.013 (Disability) — 0.186 (Superfund site)

M

The coefficient of determination (R%?) was 0.546 for the
developed OLS model and P-value was smaller than 0.0001 for
all of the coefficients. Table 2 shows the statistics for the
developed model and its coefficients. The distribution of LE in all
census tracts with provided information from the NCHS is shown
in Fig. 1a. The difference between the estimated LE using the OLS
regression model and the NCHS database is shown in Fig. 1b.

Figure 1c shows the ML algorithm (RF) error in calculating LE
compared to the NCHS database for all census tracts, with
available data, in the U.S. By comparing Fig. 1b, c, it can be seen
that the performance of the RF model was slightly better
compared to the OLS regression model. This better performance
was also observed in the RMSE and coefficient of determination;
for the validation dataset (chosen randomly, N =15,656), the
RMSE was 2.578 and 2.908 years for the RFs and OLS model,
respectively. The ML model, which is a complex non-linear
model, could explain 0.33 years more of the variability in the LE
validation data compared to the OLS model. However, the final
OLS regression model had an RMSE of 2.694 years using all data.
The RF model also showed slightly superior performance with
regards to the slope of the trend line when the observed LEs were
plotted against the modeled ones (see Supplementary Fig. 9).
From the evaluation metrics, it could be concluded that the ML
model showed relatively better performance; however, the similar
values among all evaluation metrics justify the use of the
OLS model.

Even by using a complex non-linear model, there are
still 2.578 years that could not be explained. Adding more
sociodemographic variables such as percent Hispanic, percent
African-American, and population below the poverty line had an
impact of less than 1% on the RMSE. The relatively high RMSE
could be a result of other variables not considered in the
models (residual confounding) such as stress level, for instance.
Although the unexplained RMSE is relatively high (and may be
perceived as limiting this work), in the context of the effect of the
selected variables; the high adjusted R? (0.546), the significance
(P-Value <« 0.01) of all coefficients, and the fact that there exists a
causal effect relationship among the selected variables and LE
both point to the reliability of results from the developed
regression model. Furthermore, the effect of the Superfund site
becomes more influential (up to —1.223 years) among certain
stratifications of sociodemographic variables, compared to its
average effect (—0.186 years) as discussed below. There are likely
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Table 2 General statistics of the ordinary least squares (OLS) regression model and reported coefficients for all included

variables.

Model statistics

R R2 Adjusted R? RMSE df F

0.739 0.546 0.546 2.694 9 8709.03

Coefficient statistics

Variable unstandardized Std. error Standardized t Sig.
coefficients coefficients

(Constant) 74.409 0.128 583.1 0.0E4+-00

Above60 0.053 0.002 0.110 333 1.5E-241

White 0.026 0.001 0.164 46.3 0.0E+00

Income 0.236 0.007 0.172 36.0 1.4E-281

Insurance 0.031 0.002 0.067 18.3 5.5E-75

Married 0.063 0.001 0.193 47.5 0.0E+00

Education 0.068 0.001 0.295 70.8 0.0E4-00

Citizenship —-0.110 0.001 —-0.376 —125.2 0.0E4-00

Disability —0.013 0.003 —0.01 —-4.0 7.3E-05

Superfund site —0.186 0.027 —0.018 —6.9 4.4E-12

R: correlation between the NCHS and predicted LEs, R2: coefficient of determination, Adjusted R?: adjusted R? based on the number of predictors, RMSE root mean square error, df degrees of freedom,

F mean square regression divided by the mean square residual, Sig. P-value.

other variables that could affect LE, and considering them may
lower the RMSE, however, such investigation is beyond the scope
of this work and can be addressed in future work. It should
be noted that none of the studies with a similar approach have
reported the RMSE value for their models and only reported the
adjusted R2. The achieved R? from the OLS regression model
developed in this study is higher than most of the other studies
that had values that ranged from 0.1 to 0.65'°.

Among the input variables to the OLS model, Above60, white,
income, insurance, married, and education have positive
coefficients, while the rest have negative coefficients indicating
negative effects on LE. Income and Superfund site had the highest
and lowest impacts, respectively. As noted before, sociodemo-
graphic variables (except income) were input to the model as a
percent between 0% and 100%, income in multiples of $10,000,
and Superfund site as a binary (0 and 1) variable. Thus, from the
results of the regression analysis, it could be concluded that a 1%
increase in the percent of white persons could lead to an increase
of 0.026 £ 0.001 years to the LE while an increase of $10,000 in
median income increases the LE by 0.236 + 0.007 years. For the
presence of a Superfund site, this number is —0.186 +0.027,
indicating a decrease in the LE. In order to place these findings in
context (i.e, the effect of Superfund site on LE), they are
compared to values from other studies. Bennett et al. (2019)!2
reported an increase of 0.61 + 0.20 years per decrease of 10 pg/m?
in fine particulate matter concentration in air. Smoking could
reduce the LE by 1-10 years, depending on the location, sex, and
amount of use3’-3%. Reducing excessive sitting to less than three
hours a day and watching TV to less than two hours a day could
increase LE by 2.04 + 0.65 and 1.495 + 1.015 years, respectively(.
Finally, Baars et al. © showed that the consumption of fruit and
vegetables could reduce the inequalities in disability-free LE
between 0.1 and 1.8 years.

Most vulnerable population and Superfund characteristics. The
effect modification analysis revealed that out of 12,717 census
tracts with at least one Superfund site, the adverse effect of this
presence was more severe on the ones with higher socio-
demographic disadvantage. Figure 2 shows the effect of Superfund
presence on LE (Bsuperfund site) in tracts with sociodemographic

variables below and above the national median values. This figure
is a result of running a series of models explained in “Methods”
section within the tracts with at least one Superfund site. For
instance, when considering income, Fig. 2 shows the effect of
Superfund Sites on LE within tracts with at least one site for
population with an income below and above the national median.
The presence of a Superfund site in a census tract with smaller
than median income ($52,580) could reduce the LE by as much as
0.58 years (7058 as the ﬁSuperfund Site when ﬁ binary dummy for income
is zero). This reduction could go as high as 1.223 years for tracts in
the lower 10% percentile income. Interestingly, high income could
completely offset the harmful effect of Superfund sites as shown in
Fig. 2. For tracts with income higher than the national median, the
effect of Superfund Site on LE was calculated by summing the
BSuperfund Site and B binary dummy for income (_058 + 090 = 0.32
years, where 0.90 years represent the combined effect of Superfund
site and higher than median income). This improving impact
could be explained by the fact that wealthier people living in a
tract with a Superfund site have access to better homes (e.g.,
farther away from exposure paths?!) and health care systems
resulting in less exposure and better health conditions. Similar
patterns were observed for education, race, being married,
and health insurance coverage. Such an increase in the severity
of the harmful effects in tracts with more sociodemographic
disadvantage is consistent with the findings from other
studies>2?242-46 Disability did not show a noteworthy difference
(0.04 years) between below and above the median values (even for
the low 10% percentile). For Above60, tracts with higher rates of
seniors showed lower harmful effects of Superfund sites compared
to tracts with the younger population. This outcome could be
because higher rates of Above60 directly affect the LE (make it
longer) and the fact that in regions with the harmful effect of
Superfund sites, the premature death rate could increase. An
increase in citizenship showed a higher adverse effect of Superfund
sites on LE compared to tracks with lower citizenship rates. In
general, lower citizenship means higher immigrants, which
potentially could mean lower residential time within a neighbor-
hood and eventually shorter exposure time.

Figure 3 shows the results of quantile regression and the effect
of sociodemographic variables and the presence of Superfund
sites on different LE stratifications. The horizontal axis in Fig. 3

4 | (2021)12:1947 | https://doi.org/10.1038/s41467-021-22249-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22249-2

ARTICLE

Service Layer Credits: Esri, HERE, Garmin, ©
OpenStreetMap contributors, and the GIS

user community
Legend
MWW No Data 70.1 - 72.0 76.1 - 78.0 M 82.1 - 84.0
Life Expectancy (year) 72.1 - 74.0 78.1 - 80.0 M 84.1-97.5
56.3 - 70.0 74.1 - 76.0 [ 80.1 - 82.0

e

o
e

Service Layer Credits: Esri, HERE, Garmin, ©
OpenStreetMap contributors, and the GIS
user community

Legend
Y, No Data Difference in LE (OLS Regression- NCHS data)
- I

Service Layer Credits: Esri, HERE, Garmin, ©
OpenStreetMap contributors, and the GIS
user community

Legend

Y No Data Difference in LE (Random Forest - NCHS data)
. . .

> '\9 /Q.Q }.“ :,.“ '59159

>9 99 QY AY &Y

I8
s

D
Y

S

0 150300 600 900 1,200
O — — K

Fig. 1 Differences between modeled and estimated Life expectancies (LEs) across the US. a LE in the US estimated by the National Center for Health
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Fig. 2 Effect modification. The effect of Superfund presence on life expectancy (LE) in tracts with at least one Superfund site with sociodemographic
variables below and above the national median values. The effect modification was done by conducting separate ordinary least squares (OLS) regression
analysis with a dummy variable. The effect modification analysis revealed that out of 12,717 census tracts with at least one Superfund site.

Fig. 3 Life expectancy (LE) and sociodemographic variables. The effect of

different percentile of LE. Only tracts with at least one Superfund site (N =

represents LE quantiles, while the vertical axis shows the effect of
increasing one unit in the sociodemographic variables and the
presence of at least one Superfund site on LE. The band around
the dashed line shows the confidence intervals. The model
performance, and coefficients for each of the developed model, at
each quantile, is presented in Supplementary Table 5 in the SL
Supplementary Table 4 in the SI also shows that the OLS
regression model has the superior performance for LE in 20% to
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select sociodemographic variables and the presence of Superfund sites on the
12,717) were chosen for the quantile regression analysis.

80% quantiles with the best performance at the median. The
weakest performance was observed for the top 1% when the
LE was very high, which could explain the high errors seen in
Fig. 1b, c for the tracts located in the western part of the U.S.
(excluding the west coast) with high LEs (Fig. 1a).

Percent white showed almost a constant effect on the different
quantile of LE up to 90% percentile and a sudden jump in the
higher 10% of LE. This jump could be interpreted as, among
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tracts with the highest LE, the impact of racial variability is more
prominent compared to tracts with lower LE. However, it should
be emphasized that the performance of the OLS regression model
in >95% quantiles was not as good as the rest of the quantiles
(Supplementary Table 4 in the SI). The percent of the population
above 60 years old, and the median income in U.S. dollars showed
similar patterns but over the entire LE domain; higher impacts on
the upper quantiles of LE. The opposite trend was observed for
education and insurance. For lower LE quantiles, the effect of
these two sociodemographic factors is higher as shown in Fig. 3,
and it decreases for higher LE values. This behavior means, in a
tract with low LE, a 10% increase in the insurance coverage or
number of people with education beyond high school diploma
could lead to a rise of almost a year in LE. These effects become
less influential in tracts with already high LE. The positive impact
of education on LE, especially in areas with more disadvantages in
sociodemographic factors, has been shown in other studies as
well#4>_ For the percent married people (married), the highest
impact is in the lowest LE quantiles, while the direction of impact
switched around the LE median. For the lower LE quantiles, there
is a decreasing trend on the effect of married, and around the LE
median, the pattern switches direction to an increasing trend.
This is consistent with the effect modification findings where
Superfund sites in tracts with a married ratio above the national
median showed no impact, on average, on LE. For citizenship,
despite multiple changes in direction, the general trend is
increasing the negative effect as the LE increases. In other words,
tracts with lower LEs, are less sensitive to the presence of
immigrants that increase the LE. Generally, immigrants in the
US. have longer LE compared to U.S. citizens*?, which is
compatible with the findings in both effect modification and
quantile analysis. Finally, the impact of disability is minimal,
similar to effect modification, among the tracts with shorter LE
and becomes more influential (unfavorable) as the LE increases.

For Superfund sites, although the confidence intervals are wide,
the general increasing trend could be interpreted as the lower the
LE is for various reasons, the effect of Superfund sites is more
severe and could magnify the negative effect of other variables.
This effect becomes almost minimal in tracts with high LE as the
quality of life, and the health standard is higher for people who
live in these tracts*2. In other words, among census tracts with the
most disadvantage, with regards to sociodemographic variables,
the negative effect of Superfund sites is more intense. As
discussed earlier, for the majority of the sociodemographic
variables, the effect of Superfund sites was more significant on
more disadvantaged tracts, which usually have shorter LE.
Importantly, in this study it was assumed that the LE data from
2010-2015 are reflective of populations residing in a given census
track long enough for site exposures to have had an impact on LE.
Such an assumption could mean there is likely measurement
error in exposure classification. Non-differential measurement
error in exposure will bias findings to the null*’. However, it is
unclear if the measurement error would be non-differential. The
uncertain impacts of this residence time assumption could
substantially alter findings so conducting a temporal analysis
that considers the effect of Superfund site history and population
mobility around these sites could potentially improve the results.

Superfund site characteristics. The Mann-Whitney U test shows
a significant difference in LE between tracts that contain Super-
fund site listed on NPL (N = 1800) and the ones not listed on the
NPL (N = 10,917, P-value = 1.03E—12) with a median LE of 78.2
and 77.4 years, respectively. The OLS regression model with the
NPL dummy variable showed the effect of Superfund sites could
be near zero (—0.001 years) for tracts with the NPL sites as

Table 3 Number of Superfund sites based on their status
with regards to the National Priorities List (NPL) and
flooding.

Superfund type Located in Not located Unknown  Total
floodplain in floodplain

NPL2 800 656 224 1680

Not NPL 4650 3694 1965 10,309

Total 5450 4350 2189 11,989

a Currently on the NPL or site is a part of an NPL site. The final number is different from the
1303 sites in the NPL because there are 377 locations that are part of an NPL but have a
separate building/land.

opposed to —0.217 years for tracts with sites not on NPL. Such an
offsetting effect caused by being on the NPL list could be a result
of the efforts conducted by EPA in redeveloping the economies of
neighborhoods with a Superfund site listed on NPL, after
cleanup®. Such activities that convert Superfund sites into a
community-service area could enhance the sociodemographic
conditions as well as reduce exposure. The fact that tracts with
Superfund sites and with constant monitoring showed higher LE
emphasizes the need for including the ~11,700 sites that are
recognized as hazardous sites but are not in the current NPL in
future health-related studies. In addition, the rising concerns
associated with the toxicity of new emerging contaminants such
as polyfluoroalkyl substances (PFAS) could add more sites to the
NPL#.

The results of the Mann-Whitney U test showed a significant
difference (P-value < 0.01) between tracts with active cleanup and
the ones with no cleanup Superfund sites. The median LE for
tracts containing active cleanup (N = 8619) and no cleanup (N =
3656) was 77.5, and 77.35 years, respectively. As noted earlier,
tracts with “Unkown” status (N = 442) were eliminated from this
analysis. The effect modification showed a minimal effect of
cleanup; only 0.065 years improvement was estimated for sites
with cleanup compared to the active cleanup sites. This minor
change could be related to chronic and long-term exposure of
people living near a Superfund site and the gap between the
existence and start time of cleanup for a site. As noted before for
the majority of these sites, their presence dates as far back as the
1930s and 1940 while cleanup activities did not start till the 80s3°.

Table 3 shows the breakdown of the number of Superfund sites
with different NPL and flooding statuses using the binary
approach (a Superfund is considered flooded if it has an
intersection with the flooding layers). The results shown in
Table 3 are similar to those presented in the GAO report3.
However, the binary definition of the flood used in GAO and
other studies might be problematic. Supplementary Fig. 10 shows
the number of Superfund sites at each flooding level defined as
the ratio of Superfund area located in the floodplains defined by
FEMA to the total area. As shown in Supplementary Fig. 10, 1043
Superfund sites (19.14% of all flooded sites and 8.69% of all
studied sites, using a binary method at a radius of 322 m) showed
less than 5% of their footprint are located in the floodplain. These
sites could have been considered as prone to flood in the binary
definition while they are excluded from the flood analysis in this
study. The flooding percentage could also change by changing the
radius size. A sensitivity analysis showed changing the radius
from 100 m to 5000 m could change the flooding percentage by
+20%. Future work could include enhancing this analysis by
using the real spatial boundaries of the Superfund sites. Using the
25% threshold, approximately 24% and 21% of Superfund sites
not listed and listed on the NPL are located in a flood-prone
region, respectively. A recent study showed the chance of
inundation for areas situated in floodplains could range from 2
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Fig. 4 Effect of Superfund sites characteristics on life expectancy (LE). Zoomed-in box plot of LE among tracts with different Superfund site
characteristics. Number of tracts were 52,509, 539, 1071, 2289, 3501, 1301, 1759 for the groups shown in the figure from left to right, respectively. Box
plots indicate median (middle line), 25th, 75th percentile (box) as well as the minimum and maximum excluding outliers (whiskers). Only tracts with at
least one Superfund site (N =12,717) were chosen to explore the effect of Superfund characteristics.

to 10 times per year across the contiguous US?’, indicating the
high probability of flooding on these sites. Superfund sites, like
many chemical and industrial facilities that are vulnerable to
hurricanes and flooding, could harmfully affect the life of millions
of people®!l. Furthermore, greater flood-related damages have
been reported in areas with property values less than $150,000°2
(associated with lower income). Such high flood likelihood
combined with the impact of being on NPL additionally supports
the importance of including the ~11,700, non-NPL hazardous
sites, in future studies.

For flooding classifications, the pairwise comparison showed a
significant difference between sites prone to flood and the ones
with minimal flood risk. The median LE for the tracts with
Superfund sites prone to flood and minimal flood risk was 77.20
and 77.60 years, respectively. The OLS regression developed with
the flooding dummy variable showed that tracts with a site with
minimal flood risk could alter the LE by —0.034 years while the
ones with flooding could amplify this effect by —0.33 years,
making the final effect to —0.36 years. This difference in the effect
of LE could be due to how flooding affects the fate and transport
of chemicals from the contaminated sites. Flooding could
introduce new exposure pathways to not only the fence-line
communities but also areas located farther. Unlike fate and
transport from a contaminated site under typical daily conditions,
multiple routes of exposure are present during and after
flooding31:°3-55, Such a magnifying effect could be even more
severe with the population growth in coastal areas combined with
climate change and sea-level rise that could alter the frequency,
extent, and magnitude of flooding events33°¢, There was no
significant difference in LE between tracts with sites prone to
flood and minimal flood risk (P-value=0.19) if a binary
definition was used instead of the 25% inundation threshold.

Figure 4 shows the box plot of LE among tracts with different
Superfund site characteristics. While tracts with no Superfund site
showed the highest LE, the effect of being part of NPL was more
critical than the other two factors (i.e., flooding and cleanup). The
census tracts with sites not listed on NPL did not show that much
sensitivity to flooding, unlike the ones with NPL sites. Thus, it

could be concluded that the effect of being on the NPL is very
influential.

In this study, statistical methods were used to provide evidence
of shorter LE in association with residential proximity to a
Superfund site even after accounting for measures of socio-
demographic confounding. Furthermore, the research establishes
that the susceptibility to Superfund site increases for census track
populations that have greater sociodemographic disadvantages
and that live near a Superfund site with certain characteristics
(not being cleaned up, not on NPL site, and prone to flooding).
Finally, using a quantile regression analysis revealed the higher
effect of sociodemographic variables and Superfund site presence
at census tracks with lower LE. However, the cross-sectional
approach undertaken in this study lacks a temporal analysis that
could potentially include tract mobility data and Superfund site
history, an area for potential future research. Furthermore, in this
study, a uniform exposure to Superfund sites, regardless of their
contaminant of concern, physical condition, and exposure
pathways, on human health was assumed. Each Superfund
site requires individual investigation to more accurately estimate
the harmful effect of its presence, if any, on people living in
the vicinity of the site. Future studies are required to address the
potential residual confounding effects not addressed in this study.
Such investigation is especially relevant given the measurement
error inherent in confounding measures and in the use of
contextual measures.

Methods

Data acquisition and preparation. The National Historical Geographic Infor-
mation System (NHGIS) database®” was used to compile 2018 census data at the
census tract level. Census data on demographics, race, ethnicity, and origins,
households, families, and group quarters, income, education, disability, and health
insurance were downloaded for each census tract. LE data (2010-2015) were
downloaded from the National Center for Health Statistics (NCHS) database>8. For
two states, Maine and Wisconsin, the LE data were not available in the database
due to lack of geocoded death records; estimates were used in the current study,
and the methodology applied to estimate the LE values could be found elsewhere>®.
Out of the 72,268 census tracts within the contiguous U.S., LE data was available
for 65,226 tracts.
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Fig. 5 Superfund sites in the US. Location of identified Superfund sites (11,989 uniquely identified sites in the contiguous U.S.) and their status with regard
to the National Priorities List (NPL). The map also shows the areas prone to flooding identified by Federal Emergency Management Agency (FEMA).

All available information on active and archived Superfund sites (as of 2019)
was downloaded from the EPA Superfund Enterprise Management System
database3”. As of 2019, 1,303 sites are listed on the NPL, and 48 are proposed to be
added to the NPL°. Supplementary Table 5 in the Supplementary Information (SI)
shows the breakdown based on the site status for each state; California has the
highest total number of sites with 933 sites, followed by New Jersey and New York
with 754, and 646 sites, respectively. The official recognition and cleanup of
Superfund sites had begun since December 11, 1980, when congress enacted the
Comprehensive Environmental Response, Compensation, and Liability Act
(CERCLA), commonly known as Superfund. The priority, budget, and cleanup
timelines were set by the Environmental Protection Agency (EPA) via placing the
most hazardous sites on the National Priorities List (NPL). According to EPA, NPL
“is the list of sites of national priority among the known releases or threatened
releases of hazardous substances, pollutants, or contaminants throughout the
United States and its territories. The NPL is intended primarily to guide the EPA in
determining which sites warrant further investigation.” While not on the NPL, for
the remaining Superfund sites, EPA evaluates other cleanup options such as the
Superfund Alternative Approach, State Tribal Cleanup, Other Federal Agency
(FFOCA), and EPA Emergency Response and Removals.

Although, as of the end of 2018, EPA has spent over 70 billion dollars of federal
funding, in addition to the unknown amount of private funds2%0 for cleanup
activities, more than 1300 sites remain on the NPL3* as of this writing. The main
difference between an NPL site and other Superfund sites is in the amount of
funding made available and the priority of cleanup activities and level of
monitoring. Considering the latency between carcinogenic exposure and disease
onset, the adverse effect of living near a Superfund site may only be directly
observable among persons who are still living in proximity of a given site after a
relatively long period of time. However, given the cross-sectional approach applied
in this study, it was assumed that all people living near the sites could have been
impacted since the risk of exposure in EPA’s risk assessment is based on lifetime
exposure. Among the 13,093 available sites, only 1864 had latitude and longitude
qualifiers. For the rest of the sites, a batch geocoding was performed based on the
available addresses using the Geocodio website®!, leading to 11,989 uniquely
identified sites (points) in the contiguous U.S. as shown in Fig. 5.

Flood hazard map data were downloaded from the National Flood Hazard
Layer (NFHL) database (2000-2020) maintained by the Federal Emergency
Management Agency (FEMA)®2. The flooding layers define whether an area is
prone to flooding, or it has a minimal risk of flooding based on historical data and
modeling efforts (predictions). The maps were individually compiled for 2485
counties and then merged in ArcMap to generate a national flood hazard map for
the contiguous U.S. (see Fig. 5). FEMA flood layers, among all other data used in
this study, are publicly available. To conduct the spatial analyses, a 322-m (0.2
miles) buffer was defined around each of the sites; this value representing a risk-
analysis distance measure used in prior studies’’. A sensitivity analysis was also
conducted using smaller and larger radii. Using the floodplain areas provided by

FEMA, the Superfund sites were categorized into prone to flood (fully or partially
located within floodways, 100, or 500-year floodplains), minimal flood risk (area of
minimal flood hazard, or area with reduced flood risk due to levee), or unknown
(area not included, or no available by FEMA). The percent of each site located in
floodplains, defined by using the “intersect” tool in ArcMap, was used as a criterion
for the determination; a site with 25% or more of its area located in floodplains was
categorized as a site that is prone to flood.

Another classification was considered based on the presence of Superfund sites
on the NPL3>. A site that is currently on the final NPL, or is part of an NPL site was
considered “NPL” while the rest were classified as “Not NPL.” In other words, in
this study, all sites that are currently on the NPL were considered as one class and
the rest, including proposed or waiting to be on the list, removed from the list, had
other EPA cleanup options, and sites that are not overseen by EPA, were placed in
another class (“Not NPL”). The idea behind this classification was to investigate if
there is any significant difference in the effect of sites belonging to the two
categories on the LE. Further analysis beyond NPL-not NPL classification is
beyond the scope of this study. Finally, the cleanup status was considered as “active
cleanup” for NPL sites and any non-NPL sites with a cleanup status indicating
cleanup activity; “no cleanup” for non-NPL sites under assessment or review; and
“unknown” for sites with no specified status. The Spatial Join tool in ArcMap was
applied to layer the Superfund site information into the Census tracts. In cases
where two or more Superfund sites were found within a tract, the priority
classification was given to “prone to flood,” “NPL,” and “no cleanup” for flooding,
site type, and cleanup status, respectively. In all statistical analyses, the “unknown”
groups were eliminated.

Statistical modeling of the Superfund and LE relationship. A list of the socio-
demographic variables used in the current study (population above 60 years old,
median income and income per capita in U.S. dollars, population below the
poverty line, race, population with at least one disability, marriage status, popu-
lation with at least one health insurance plan, population with education beyond
high school diploma, U.S. citizenship) is provided in Supplementary Table 1 in the
SI. A bivariate Spearman’s rank correlation analysis was conducted to investigate
the significance of the correlation among sociodemographic variables, the presence
of Superfund sites, and LE. The results of the correlations were used to choose the
input variables for use in the developed statistical models. Kolmogorov-Smirnov
normality test showed that none of the census datasets are normal. However, the
LE distribution was very close to the bell-shaped normal distribution. Thus, non-
parametric (NP) statistical tests were applied for all variables in the study except
the LE for which both parametric and NP tests were used.

In addition to the conventional statistical tests for comparison, two different
approaches were developed to answer the first two research questions raised in the
Introduction. The first approach intended to investigate the possibility; a matching
technique was used to demonstrate that the presence of a Superfund site (NPL or
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non-NPL) in a census tract could actually make a difference in terms of LE
independently. The second approach intended to determine the magnitude of the
effect by developing regression models that were used to quantify the potential
effect of the presence of a Superfund site (NPL or non-NPL) on the LE in the
context of other sociodemographic determinants. The performance of the
developed regression model in this study was tested against a non-linear machine-
learning (ML) algorithm (Random Forests) to examine the validity of the
regression model. The following sections describe the two approaches in more
detail.

Matching technique. Matching methods have been used in statistical modeling to
estimate causal effects using observational data in the context of “treated” and
“untreated” populations®3. For the purposes of the current study, the matching
technique was implemented by considering tracts with Superfund sites as the
“treated group”, and comparing the LE in treated and untreated groups (with no
Superfund site). To clarify the analogy, these two groups will be called “exposed”
and “unexposed” for the rest of the paper. Due to the continuous nature and high
geospatial variability of the sociodemographic matching variables (income, race,
and so on as listed above), a non-exact matching was performed based on spatial
proximity. In this approach, the exposed observation (a census tract with a
Superfund site) was compared with its nearest neighbor. Thus, census tracts that
contain at least one Superfund site within their boundaries were marked as exposed
using the spatial join tool in ArcMap. The LE in an exposed tract was compared to
the median of LEs in vicinity tracts without any Superfund sites (unexposed). For
this purpose, tracts with a common border with the exposed tracts were extracted
using ArcMap and exported to Microsoft Excel. A pivot table with customized
formulation was then used to calculate the median LE and other census variables
for the neighboring tracts. In other words, for each exposed tract, the LE and other
sociodemographic variables were compared to the corresponding values of esti-
mated conditions of its immediate neighbors.

Independent-Samples Mann-Whitney U test was performed to find differences,
if any, among exposed and median of unexposed tracts for LE and other
sociodemographic variables. For LE, an independent two-tailed t-test was also
performed. In order to ensure that the potential observed difference in LE is not
due to the innate differences in LE among neighboring census tracts, the matching
analyses were repeated for all tracts without consideration of the presence or
absence of Superfund sites within them.

Modeling of the magnitude of impact of Superfund sites on LE. A linear
regression model using OLS was developed to quantify the potential impact of the
presence of a Superfund site in a census tract on the LE in the tract. The impact of
Superfund sites was introduced to the model via a binary variable with 0 and 1
representing the absence and presence of at least one Superfund site, respectively.
An initial OLS regression model was developed with just the Superfund site as the
independent variable and LE as the dependent variable. Populations living near
hazardous waste sites generally have a greater sociodemographic disadvantage??
(confirmed by a Mann-Whitney U test) and, as a result, have poorer health. Thus,
other sociodemographic variables (selected based on the pairwise correlations)
were then added in a stepwise manner in the order of their correlation magnitude
with the LE (a total of nine OLS regression models). Including all of the socio-
demographic variables, especially income, in the final OLS regression model was
undertaken to avoid their confounding effect. Furthermore, using such an
approach makes it possible to quantify the impact of the presence of Superfund
sites on LE while considering other influential sociodemographic variables. All
sociodemographic variables except income were input to the model as a percent
(0-100%), and income was entered into the model as a multiple of $10,000 (i.e., 3.7
instead of $37,000).

Random Forests (RF) machine learning algorithm. To confirm the validity of an
OLS regression algorithm in the study, a more sophisticated model was developed
to compare its general performance in predicting LE with the OLS regression
model. Given that the relationship between LE and the selected sociodemographic
variables is most likely non-linear, it is important to use a non-linear model to
explore the extent of variability in the LE that can be explained by the variables.
The difference in the residual standard error between the linear and non-linear
model could reveal how much improvement in LE prediction could be achieved by
using the non-linear model. A predictive Random Forests (RF) algorithm, ‘tree-
bagger”, a built-in MATLAB function, was used with the number of trees = 100
and the minimum number of observations per tree leaf= 20 to predict LE. The RF
algorithm was chosen from many other existing algorithms because of its extensive
capability in dealing with big data and a large number of variables, simplicity, high
accuracy, and relatively short computation time®9>. Out of the 65,226-census
tracts with data, 50,000 were chosen randomly for the purpose of training, and the
rest were used for validation.

It is noted that the outcome of the non-linear model cannot be easily
interpreted with regards to the effect of each input variable, thus, if the
performance of RF in predicting the LE is similar to the one from the OLS
regression, it would justify the use of the OLS model. It is preferable to use the
linear regression in analyzing data due to more interpretability of the results.

Identifying the most vulnerable populations. In this section, an effect modifica-
tion approach was developed to investigate the relationship between the presence of a
Superfund site and the sociodemographic variables and how this relationship could
affect the LE (research question 3). Furthermore, a quantile analysis was undertaken
to breakdown the effect of sociodemographic variables and Superfund presence
among different LE stratifications. Similarly, and for research question 4, effect
modification was performed to assess how Superfund sites with different properties,
flooding, NPL, and cleanup activities, may affect the LE differently.

Effect modification and quantile analysis. Effect modification analyses were
undertaken to investigate whether the presence of Superfund sites has a different
effect on LE among different subgroups (stratifications) of sociodemographic
variables. For each variable, a binary dummy variable was defined as the product of
Superfund presence (0 or 1) and being above (1) or below (0) the median value of
the corresponding sociodemographic variable; a separate OLS regression was
performed for each variable:

LE=f, + L BX, +AD, @

where B, is the OLS regression constant, 3; is the regression coefficient for the
Superfund sites and sociodemographic variables, n is the total number of variables
in the regression, X; is the sociodemographic variable, D; is the binary dummy
variable explained earlier (with a value of 0 or 1), which is the product of Super-
fund presence and being above or below the median, and f; is the regression
coefficient for the binary dummy variable. A total of eight OLS regression models
(j = 1-8) were built for effect modification. The effect modification analysis was
conducted by comparing f; and $; + ; for each of the eight developed OLS
regression models.

While effect modification investigates the varying effects of Superfund site
presence among different subgroups (based on sociodemographic variables),
assessing the impact of Superfund site on different stratifications of the dependent
variable (i.e., LE) could also be informative. Furthermore, the quantile regression
analyses were performed to investigate additional aspects of the relationship
between LE and the selected independent sociodemographic variables. Quantile
regression addresses the non-linear nature of the problem as well as the skewness
inherent in some of the sociodemographic variables that cannot be addressed using
the OLS regression®®.

The effect of Superfund site characteristics on LE. Only tracts with at least one
Superfund site (N =12,717) were chosen to explore the effect of Superfund
characteristics. Independent-Samples Kruskal-Wallis Test and Mann-Whitney U
test were applied to find a significant difference in LE, if any, among tracts with
Superfund sites with different properties in flooding, NPL status, and cleanup
conditions. A similar approach to the effect modification was undertaken (using all
tracts with available data) to assess the effect of Superfund characteristics on LE.
For each characteristic, a dummy variable was defined as the product of Superfund
presence and the corresponding binary membership defined based on the site
characteristics (e.g., being in a flood-prone area, remediated, or part of NPL were
presented as 1 in the multiplication). A total of three separate OLS regressions were
developed to capture the aforementioned effects.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available through the provided citations in the
text. The following sources of data were used in this work:

1. Sociodemographic data was downloaded from the National Historical Geographic
Information System (NHGI) database (https://doi.org/10.18128/D050.V14.0)

2. Life expectancy data were downloaded from the National Center for Health
Statistics (NCHS) database (https://www.cdc.gov/nchs/nvss/usaleep/usaleep.html). For
two states, Maine and Wisconsin, the LE data were not available in the database due to
lack of geocoded death records

3. All available information on active and archived Superfund sites was downloaded
from the EPA’s Superfund Enterprise Management System database (https://cumulis.epa.
gov/supercpad/cursites/srchsites.cfm)

4. Flood hazard map data were downloaded from the National Flood Hazard Layer
(NFHL) database maintained by the Federal Emergency Management Agency (FEMA)
(https://www.floodmaps.fema.gov/NFHL/status.shtml.)

Figure 1 has raw data from sources 1 and 3 (census tract shapefile, and Superfund NPL
status), Fig. 2a has raw data from source 2, and Supplementary Figs. 1-8 in the
Supplementary Information (SI) has raw data from source 1. All generated results
(including the raw data) in both tabulated and shapefile formats have been deposited in
the Open Science Framework (OSF) under the name
“KiaghadiEtAl_Nature_Communications_DATA” and are accessible through®”.

Code availability

The codes developed to perform the Random Forest algorithm could be found in ref. 8.
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