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Abstract

Purpose

The objective of this study was to assess the classification capability of Breast Imaging

Reporting and Data System (BI-RADS) ultrasound feature descriptors targeting established

commercial transcriptomic gene signatures that guide management of breast cancer.

Materials and methods

This retrospective, single-institution analysis of 219 patients involved two cohorts using one

of two FDA approved transcriptome-based tests that were performed as part of the clinical

care of breast cancer patients at Harbor-UCLA Medical Center between April 2008 and Jan-

uary 2013. BI-RADS descriptive terminology was collected from the corresponding ultra-

sound reports for each patient in conjunction with transcriptomic test results. Recursive

partitioning and regression trees were used to test and validate classification of the two

cohorts.

Results

The area under the curve (AUC) of the receiver operator curves (ROC) for the regression

classifier between the two FDA approved tests and ultrasound features were 0.77 and 0.65,

respectively; they employed the ‘margins’, ‘retrotumoral’, and ‘internal echoes’ feature

descriptors. Notably, the ‘retrotumoral’ and mass ‘margins’ features were used in both clas-

sification trees. The identification of sonographic correlates of gene tests provides added

value to the ultrasound exam without incurring additional procedures or testing.
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Conclusions

The predictive capability using structured language from diagnostic ultrasound reports (BI-

RADS) was moderate for the two tests, and provides added value from ultrasound imaging

without incurring any additional costs. Incorporation of additional measures, such as ultra-

sound contrast enhancement, with validation in larger, prospective studies may further sub-

stantiate these results and potentially demonstrate even greater predictive utility.

Introduction

Breast cancer continues to be a significant problem around the world, accounting for 29% of

newly diagnosed cancers in women, with women in the United States having a 12.3% chance

of developing breast cancer over their lifetimes [1]. Despite increased prevalence, breast cancer

death rates have decreased by 36% from 1989 to 2012 due to screening and improved treat-

ment regimens [2]. The use of ultrasound in screening, particularly in women younger than 45

years of age with fibroglandular, dense tissue, has improved cancer detection sensitivity in

comparison to mammography alone [3]. The ability of ultrasound to detect small (< 1 cm),

mammographically occult lesions [4] as well as potentially downgrading breast masses [5] pro-

vide examples of how ultrasound can further guide clinical decision making in cancer screen-

ing and detection.

The clinical utility of diagnostic modalities that provide more than just an assessment of

malignant versus benign, but rather prognostic information has driven the development of

transcriptome-based tests. The OncotypeDX1 (Genomic Health Inc, Redwood City, CA) test

calculates a recurrence score on a scale from 0–100 (higher scores reflect higher risks of recur-

rence) for early-stage hormone receptor-positive breast cancer, in order to assess the potential

benefit from chemotherapy after breast cancer surgery (7). This test is currently included in

the National Comprehensive Cancer Network (NCCN) and American Society of Clinical

Oncology (ASCO) guidelines. The MammaPrint1 (Agendia Inc, Irvine, CA) test calculates a

binary (high versus low) recurrence risk score based upon a 70-gene expression profile, and

also guides chemotherapy treatment decisions [6, 7]. In patients with an OncotypeDX1 score

less than 11 or a MammaPrint1 low-risk score, chemotherapy can be omitted, and anti-estro-

gen therapy can be administered alone.

The development of the Breast Imaging-Reporting and Data System (BI-RADS) [8] by the

American College of Radiology (ACR) to include standardized language and descriptors in the

reporting of breast imaging has proven very successful in standardizing communication

among radiologists, oncologists, and surgical oncologists in the decision-making and manage-

ment of breast lesions [9]. Other fields have successfully developed similar approaches in pros-

tate, lung, and liver lesions (PI-RADS, Lung-RADS, LI-RADS) [10–13]). Although BI-RADS

has an established role in breast imaging and interdisciplinary communication (e.g. medical

oncologists, surgical oncologists, and internists), with the ongoing development of new treat-

ments and and genomic-based tests, we need to be able to derive as much information as pos-

sible from clinical imaging measurements [14, 15]. The BI-RADS categorization of

sonographic findings has sufficient positive predictive value to be used as a predictor of malig-

nancy [16]. Along a parallel track, correlations between cross-sectional imaging and molecular

profiling have identified potential surrogate roles as imaging biomarkers in a variety of dis-

eases, including breast cancer [17–20].
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The clinically established use of ultrasound BI-RADS reporting affords an opportunity to

assess how much information can be derived from imaging alone, and whether various

descriptors may supplement prognostic gene panels. We sought to assess the potential of breast

ultrasound feature descriptors to identify cohorts that would or would not benefit from che-

motherapy using structured natural language processing (NLP) of BI-RADS terminology tar-

geting established transcriptomic assays (OncotypeDX1 and MammaPrint1).

Materials and methods

This retrospective study received approval with waiver of written patient consent, from the

Institutional Review Board at the Los Angeles Biomedical Research Institute at Harbor-UCLA,

and is Health Insurance Portability and Accountability Act (HIPAA)-compliant. All data were

fully anonymized for subsequent study analyses.

Patient demographics, histological classification of biopsied samples, receptor status (when

available), and transcriptomic-test were extracted from the electronic medical record system.

Breast cancer patients were included in this study if they had undergone testing with either of

the two genomic assays (OncotypeDX1 and MammaPrint1) between April 2008 and Janu-

ary 2013, and were divided into two cohorts depending on which assay was performed. Ultra-

sound reports for each patient at the time of initial cancer diagnosis were stored in a collection

of Microsoft Word1 documents (.docx).

The diagnostic ultrasound studies, interpreted and reported by fellowship trained, board-

certified breast radiologists (each with at least 4 years experience), with strict adherence to

BI-RADS standards [8], were parsed with custom scripts focusing on BI-RADS descriptive ter-

minology. Four classes of ultrasound BI-RADS field descriptors were consistently reported

across all reports, accounting for the features that were most consistently described: margins,

echogenicity, internal echo pattern, and retrotumoral phenomenon [8]. The cumulative collec-

tion of these descriptive terms from all reports defined the dictionary of terms.

The BI-RADS ultrasound report files were parsed as regular expressions focusing on the

FINDINGS and IMPRESSION sections of the diagnostic reports using Python version 2.7.10

(https://www.python.org/). The FINDINGS were parsed according to size (‘Longitudinal’,

‘Transverse’, ‘Anteroposterior’), ‘margins’, ‘echogenicity’, ‘internal echo pattern’, ‘internal
shadowing’, and ‘retrotumoral phenomenon’. The reported BI-RADS score was extracted

from the IMPRESSION section of the reports. ‘margins’ values were, ‘ill-defined’, ‘irregular’,

‘smooth’, ‘lobulated’, or ‘N/A’. ‘echogenicity’ values included, ‘hypoechoic’, ‘isoechoic’,

‘anechoic’. ‘internal echo pattern’ values included, ‘homogeneous’ and ‘heterogeneous’. ‘inter-
nal shadowing’ values included, ‘small ca++’, ‘large ca++’, and ‘none’. ‘retrotumoral phenome-
non’ values included, ‘irregular posterior shadowing’ and ‘posterior shadowing’. Since the sizes

of the masses were not consistently measured in all three dimensions for the majority of the

cases, tumor size measurement was discarded from subsequent analyses (S1 and S2 Tables).

The ability of the BI-RADS ultrasound features to predict risk score classification by the

OncotypeDX1 and MammaPrint1 transcriptome-based tests was assessed using recursive

partitioning and regression trees (CART) using analysis of variance (ANOVA). Training to

testing validation sets were split in 3:1 ratios, randomly split with the Mersenne-Twister ran-

dom number generator (seed = 202). Twenty-fold cross-validation was performed with a mini-

mum of 10 observations per splitting-node and a minimum of 6 observations per terminal

node. We defined an area under the curve (AUC) of the receiver operator characteristic

(ROC) curve to be at least 0.9 in order to be considered as a candidate classifier to potentially

compete with molecular tissue markers and an AUC of 0.6 to be a reportable but not
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competitive as an radiogenomic surrogate. Statistical significance for all portions of the study

were defined as p< 0.05. The analyses were performed using R (https://cran.r-project.org/).

Results

Cohort characteristics

In the two cohorts of patients, 149 had undergone testing with the OncotypeDX1 assay and

70 had the MammaPrint1 assay. Both of the genetic test cohorts showed a significant associa-

tion with tumor grade (Tables 1 and 2) as determined by ANOVA (p<0.05), as expected.

There was no significant association with age, race or tumor histology with OncotypeDX1 or

MammaPrint1 classifications (Tables 1 and 2). There were significant negative correlations

between ER and PR for OncotypeDX1 and MammaPrint1 with weaker correlation coeffi-

cients for the latter (S3 and S4 Tables), grossly consistent with other published reports [21, 22].

Ultrasound imaging features

Collectively the 219 sonographically detectable masses characterized according to five seman-

tic features (see Materials and Methods) and were assessed for a possible 144 different classifi-

cations of the masses. All BI-RADS scores were 3 or greater, as would be expected, based upon

interpretation and biopsy recommendations of BI-RADS [8, 23]. Since the ‘echogenicity’ of

the masses was described as ‘hypoechoic’ in 217 out of 219 masses (with one described as

‘anechoic’ and the other as ‘isoechoic’), the descriptor was removed from subsequent analyses.

Following removal of the echogenicity feature there remained 48 possible unique sonographic

classifications of the masses from 4 different features (‘margins’, ‘internal echo pattern’, ‘inter-

nal shadowing’, and ‘retrotumoral phenomenon’).

Ultrasound BI-RADS classifiers

The CART classification trees alongside their corresponding ROC curves are presented in Figs

1 and 2, with AUCs of 0.77 (OncotypeDX1, Fig 1) and 0.65 (MammaPrint1, Fig 2). Incorpo-

ration of tumor grade information into the regression analysis did not improve the predictive

value of the classification trees. Mass margins and retrotumoral phenomena appear at the top

of the classification tree for both tests. Additionally, for these cohorts, although there were four

different possible values for the tumor margin feature, the classification separation boundaries

occurred along binary lines (smooth versus non-smooth and smooth/lobulated versus irregu-

lar), which is concordant with “benign versus malignant” suspicion in the BI-RADS based

assessment [8].

Discussion

In this study we analyzed the potential for BI-RADS ultrasound descriptors to track the Oncoty-

peDX1 or MammaPrint1 classifications using NLP in conjunction with classification and

regression trees, resulting the identification of three sonographic features (‘margins’, ‘retrotu-

moral’ and ‘internal echoes’) that may provide non-invasive correlates of the transcriptome pro-

files. Through the use of specific terminology and a well-defined vocabulary with systematic

report recommendations, ultrasound BI-RADS has been an effective mechanism to provide

consistent, transparent, and unambiguous recommendations to referring physicians and their

patients to interpret the results of breast imaging studies (14). The use of a structured language

and well-defined vocabulary is particularly useful since one challenge with respect to quantita-

tive imaging of breast ultrasound is the non-tomographic, operator dependent nature of image

acquisition, resulting in variation in acquisition with respect to anatomic planes as well as

Breast ultrasound radiogenomics of OncotypeDX and MammaPrint
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ultrasound parameters (e.g. different transducer probes, use of harmonics, differences in gain

and time gain compensation, focal zones, etc). These sources of variation limit the application

of automated or semi-automated quantitative imaging approaches to ultrasound. However, the

BI-RADS descriptions of sonographically detectable masses provide an opportunity to use NLP

based methods in order to identify features with prognostic and therapeutic implications and

correlates with other diagnostic tests, such as the transcriptomic tests evaluated in this study.

The assessments of ultrasound imaging correlates using standardized language and descrip-

tors compared to their relationship to the FDA approved tissue-based transcriptomic tests

(OncotypeDX1 and MammaPrint1) provide a biological context to interpret the transcrip-

tomic measurements. For example, hypoechoic masses are concerning for malignancy, and it

is such a common observation, that there is no further prognostic information to be derived

from it, thus although it is an important BI-RADS feature, it is not an important prognostic

predictor (since the ROC curves in Figs 1 and 2 implicitly assume a priori that the masses are

hypoechoic). Conversely the CARTs enable evaluation of multiple features that portend higher

or lower risk in which one feature may be more suspicious for malignancy but another feature

is not (e.g. irregular margins but no retrotumoral phenomena, Figs 1 and 2).

Added value without added costs

The search for imaging correlates of transcriptomic tests can be classified to serve as non-inva-

sive 1) alternatives, 2) complementary, or 3) supplementary roles to more invasive, biopsy-

dependent tests. Many radiogenomic applications focus on the first point, which is beneficial

when an imaging test is less expensive or cheaper than a tissue-based test. For example,

Table 1. Summary statistics for the OncotypeDX1 cohort by age (mean +/- sd years), grade (mean +/- sd), race (A: Asian, AA: African American, C: Caucasian, F:

Philipina, H: Hispanic, ME: Middle Eastern, -: not documented), and histology (IDC: invasive ductal carcinoma, ILC: invasive lobular carcinoma, IDC/ILC: invasive

ductal carcinoma with lobular features). The bottom row highlights ANOVA p-values. � indicates statistical significance (p <0.05).

Age (years) Grade� Race Histology

54.2+/-9.4 1.8+/-0.70 A: 11 IDC: 56

AA: 13 ILC: 8

C: 12 mucinous: 5

F: 3 other: 1

H: 30

ME: 1

p-value 0.6 0.0000002 0.55 0.64

https://doi.org/10.1371/journal.pone.0226634.t001

Table 2. Summary statistics for the MammaPrint1 cohort by age (mean +/- sd years), grade (mean +/- sd), race

(A: Asian, AA: African American, C: Caucasian, F: Philipina, H: Hispanic, ME: Middle Eastern, -: not docu-

mented), and histology (IDC: invasive ductal carcinoma, ILC: invasive lobular carcinoma, IDC/ILC: invasive duc-

tal carcinoma with lobular features). The bottom row highlights ANOVA p-values. � indicates statistical significance

(p<0.05).

Age (years) Grade� Race Histology

51.2+/-10.3 2.22+/00.68 A: 15 IDC: 132

AA: 38 IDC/ILC: 3

C: 21 ILC: 11

F: 5 mucinous: 1

H: 69 other: 2

-: 1

p-value 0.37 0.00023 0.16 0.23

https://doi.org/10.1371/journal.pone.0226634.t002
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recently MRI has been explored as a radiogenomic surrogate for some of these tests. Unfortu-

nately classification of the breast MRI features do not achieve an accuracy that can reasonably

compete or provide surrogacy for the established transcriptomic tests [24, 25]. Additionally

the cost of MRI scans are non-trivial and rival the MammaPrint1 and OncotypeDX1 test

costs (doubling the cost without providing substantive additional information). However, the

ultrasound-based assessments used in this study was focused on the latter the second and third

classifications (complementary or supplementary to tissue-based tests).

Although the role of OncotypeDX1 and MammaPrint1 in management of breast cancer

have been promising, there is a non-negligible cost for these tests, in the $3000-$4000 range.

Fig 1. OncotypeDX1 classification based upon BI-RADS ultrasound feature descriptors for hypoechoic breast masses. A) The classification tree

involves two features, the margins of the tumor and the type of shadowing phenomenon for the tumor. B) The area under the ROC curve was 0.77 with 52

subjects in the training set and 18 in the testing set.

https://doi.org/10.1371/journal.pone.0226634.g001

Fig 2. MammaPrint1 classification based upon BI-RADS ultrasound feature descriptors for hypoechoic breast masses. A) The classification tree involves three

BI-RADS ultrasound features, the type of shadowing phenomenon for the tumor, the margins of the tumor, and the internal echo pattern. B) The area under the ROC

curve was 0.65 with 111 subjects in the training set and 38 in the testing.

https://doi.org/10.1371/journal.pone.0226634.g002
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Recent evidence suggests that this may not be cost effective [26], thus it would be beneficial to

have a low- or no-cost non-invasive screening test, to determine whether there would be added

value from these tests. In a similar vein, the cost of bilateral breast MRI is on average $3000,

nearly ten-fold the cost of breast ultrasound [27, 28]. In contrast, part of the established diagnos-

tic evaluation of breast masses involves the breast ultrasound, so there is no additional cost bur-

den. Given the invasive nature of tissue-based tests and the costs associated with tissue biopsies,

processing and analysis, in addition to the costs of commercial tests [29], the use of ultrasound

imaging information to help identify cases in which transcriptomic tests may alter patient man-

agement, provides a potential means to make the transcriptomic tests more cost effective.

The principle limitations of this study include the sample size, the number of available fea-

tures, and the lack of quantitative measurements. The difference in the sample size between

the two cohorts may in part explain why the performance of the OncotypeDX1 predictor

exceeded the MammaPrint1 predictor and highlights the point that, with larger sample sizes

and prospective evaluation at different hospitals, classification performance may improve.

Although both tests provide guidance for treatment (i.e. low scores for both tests can justify

sole anti-estrogen treatment), the MammaPrint1 test is applicable to estrogen receptor posi-

tive and negative women, whereas the Oncotype1 test has been applied demonstrated to

estrogen positive cohorts. The difference in the clinical applications may also provide an expla-

nation for the difference in the performance of the ultrasound feature descriptors. For exam-

ple, ‘internal echoes’ may not have any predictive significance in estrogen positive women,

although testing this in an independent cohort is warranted before drawing such a conclusion.

Despite the aforementioned limitations, the AUC of the ROC curves for the regression

decision trees suggest that there is a role for the use of ultrasound BI-RADS descriptors beyond

just a probability assessment for malignancy versus benignity. Incorporation of additional fea-

tures such as color Doppler flow and ultrasound contrast agents may also further improve the

molecular predictive value of breast mass sonography. Furthermore, new contrast agents [30]

may provide further improvements in the specificity of the classifier, providing more precise

diagnostic and prognostic value. Future studies may also evaluate other genomic tests, such as

the Breast Cancer Index, EndoPredict, Mammostrat, and Prosigna Breast Cancer Prognostic

Gene Signature Assay, for any potential correlation with imaging studies as well [31–34].

Conclusions

Although BI-RADS was developed to guide decision making in breast imaging studies and to

assess the probability of malignancy, the use of a standardized lexicon and descriptive features

for ultrasound masses provided the opportunity to use NLP to construct regression trees clas-

sifiers for prognostic FDA approved transcriptome-based tissue tests. Using the structured lan-

guage of ultrasound BI-RADS, we assessed the ability of ultrasound feature characteristics to

predict OncotypeDX1 and MammaPrint1 transcriptome-based classifications across 219

patients. Interestingly, NLP classifications of the BI-RADS reports were able to generate classi-

fication trees that were concordant with the transcriptomic tests. Ultrasound findings, notably

the ‘retrotumoral’ and ‘margins’ features, if abnormal, may help provide justification to obtain

one of the transcriptomic tests; future multi-institutional prospective studies will be important

in determining if these observations persist in larger cohorts.

Supporting information

S1 Table. Table of imaging features, IHC, race, age, and OncotypeDX1 scores.

(XLSX)

Breast ultrasound radiogenomics of OncotypeDX and MammaPrint

PLOS ONE | https://doi.org/10.1371/journal.pone.0226634 January 10, 2020 7 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226634.s001
https://doi.org/10.1371/journal.pone.0226634


S2 Table. Table of imaging features, IHC, race, age, and MammaPrint1 scores.

(XLSX)

S3 Table. Summary of correlation between OncotypeDX1 and IHC markers.

(XLSX)

S4 Table. Summary of correlation between MammaPrint1 and IHC markers.

(XLSX)
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