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Diagnostic accuracy 
of keystroke dynamics as digital 
biomarkers for fine motor 
decline in neuropsychiatric 
disorders: a systematic review 
and meta‑analysis
Hessa Alfalahi1,2*, Ahsan H. Khandoker1,2, Nayeefa Chowdhury1, Dimitrios Iakovakis3, 
Sofia B. Dias1,2,4, K. Ray Chaudhuri5,6 & Leontios J. Hadjileontiadis1,2,3

The unmet timely diagnosis requirements, that take place years after substantial neural loss and 
neuroperturbations in neuropsychiatric disorders, affirm the dire need for biomarkers with proven 
efficacy. In Parkinson’s disease (PD), Mild Cognitive impairment (MCI), Alzheimers disease (AD) and 
psychiatric disorders, it is difficult to detect early symptoms given their mild nature. We hypothesize 
that employing fine motor patterns, derived from natural interactions with keyboards, also knwon as 
keystroke dynamics, could translate classic finger dexterity tests from clinics to populations in‑the‑
wild for timely diagnosis, yet, further evidence is required to prove this efficiency. We have searched 
PubMED, Medline, IEEEXplore, EBSCO and Web of Science for eligible diagnostic accuracy studies 
employing keystroke dynamics as an index test for the detection of neuropsychiatric disorders as 
the main target condition. We evaluated the diagnostic performance of keystroke dynamics across 
41 studies published between 2014 and March 2022, comprising 3791 PD patients, 254 MCI patients, 
and 374 psychiatric disease patients. Of these, 25 studies were included in univariate random‑effect 
meta‑analysis models for diagnostic performance assessment. Pooled sensitivity and specificity are 
0.86 (95% Confidence Interval (CI) 0.82–0.90,  I2 = 79.49%) and 0.83 (CI 0.79–0.87,  I2 = 83.45%) for PD, 
0.83 (95% CI 0.65–1.00,  I2 = 79.10%) and 0.87 (95% CI 0.80–0.93,  I2 = 0%) for psychomotor impairment, 
and 0.85 (95% CI 0.74–0.96,  I2 = 50.39%) and 0.82 (95% CI 0.70–0.94,  I2 = 87.73%) for MCI and early 
AD, respectively. Our subgroup analyses conveyed the diagnosis efficiency of keystroke dynamics for 
naturalistic self‑reported data, and the promising performance of multimodal analysis of naturalistic 
behavioral data and deep learning methods in detecting disease‑induced phenotypes. The meta‑
regression models showed the increase in diagnostic accuracy and fine motor impairment severity 
index with age and disease duration for PD and MCI. The risk of bias, based on the QUADAS‑2 tool, is 
deemed low to moderate and overall, we rated the quality of evidence to be moderate. We conveyed 
the feasibility of keystroke dynamics as digital biomarkers for fine motor decline in naturalistic 
environments. Future work to evaluate their performance for longitudinal disease monitoring and 
therapeutic implications is yet to be performed. We eventually propose a partnership strategy based 
on a “co‑creation” approach that stems from mechanistic explanations of patients’ characteristics 
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derived from data obtained in‑clinics and under ecologically valid settings. The protocol of this 
systematic review and meta‑analysis is registered in PROSPERO; identifier CRD42021278707. The 
presented work is supported by the KU‑KAIST joint research center.

Motor abnormalities, a transdiagnostic domain of an array of neurological and psychiatric disorders that begin 
years if not decades before clinical  diagnosis1, stem from perturbed brain networks involving cognitive, emotional 
and motor  domains2,3. Despite their well-established neurobiological mechanisms and clinical criteria, early 
diagnosis remains a devastating obstacle against effective, disease-modifying treatment and sustained quality 
of life. In fact, the progression of motor symptoms to warrant clinical diagnosis usually occurs after substantial 
neural loss in neurodegenerative disorders, and at advanced stages of psychiatric disorders. In the case of Par-
kinson’s Disease (PD), for instance, the hallmark symptoms of bradykinesia, rigidity and tremor are detected 
after a neural loss of at least 50%4, rendering clinical diagnosis accuracy unsatisfactory at early stages as per a 
recent meta-analysis5. In addition, Alzheimer’s disease (AD) is preceded by a mild cognitive impairment (MCI) 
stage, characterized by a decline in memory and executive functions that is hardly distinguishable from normal 
aging, but with pronounced impact on the activities of daily  life6. In psychiatric disorders, the descriptive nature 
of clinical scales lacks sensitivity to subtle psychomotor symptoms, either in early or remission stages, resulting 
in a median delay in diagnosis of 14 years after disease  onset7. Generally, these diseases, affecting the frontal 
cortical and subcortical circuits are characterized with executive dysfunction that begins years before  diagnosis1, 
entailing the need for dimensional, fine-grained behavioral measures, thereby alleviating the “floor-ceiling” effect 
associated with qualitative clinical scales as well as the inter- and intra-rater diagnosis variability.

According to the scientific vision (2025) of the Brain Research through Advancing Innovative Neurotechnolo-
gies (BRAIN) of the National Institute of Health (NIH)8, and the Research Domain Criteria (RDoC) of National 
Institute of Mental Health (NIMH)9, automated behavioral quantification, analysis and classification are a crucial 
start to high-throughput readout of brain activity, whose impact is envisioned to facilitate breakthroughs in early 
identification and disease management in both neurology and psychiatry. Concurrent with the ever-increasing 
interest in behavioral measures, is the lack of hypothesis-supported behavioral  experiments10. The latter require 
not only experimental design, but also robust computational and analysis methodologies, supported by clinical 
ground truth and neurobiological theories. With the booming of smartphones in recent years, keyboard typing 
became an everyday habit, reflecting unique behavioral profile for every  user11. We hypothesize that the kinetic 
movement of fingers during keyboard/touchscreen typing embeds features related to subtle decline in motor 
sequencing and force  steadiness12. These are referred to as Neurological Soft Signs (NSS), sub-clinical motor 
abnormalities that can serve as early “warning signs” of brain dysfunction, and additional clinical evaluation 
remains essential for precise  diagnosis13–15.

Besides the passive acquisition of user-device interactions, the intricate Artificial Intelligence (AI) and 
Machine Learning (ML) methods allowed the definition of new disease-related  features16,17, resulting in a new 
class of digital biomarkers, that of keystroke dynamics. We found that the latter provide a rich space of the 
assessment parameters, similar to that of finger tapping tests that quantitatively score the frequency and speed of 
tapping in clinical settings, either in single or alternating  fashion13. Therefore, employing keystroke dynamics for 
fine motor analysis facilitates a paradigm shift from conventional, subjective diagnosis to objective, in-the-wild 
assessment. As opposed to other papers in the area of digital phenotyping that provide an overview of an “island 
of experts”, we hereby concentrate on a specific digital biomarker class with plausible connection to neurobiologi-
cal mechanisms and clinical workflow. In fact, keystroke dynamics were used for PD and MCI, yet, and to our 
best knowledge, no systematic reviews and/or meta-analysis attempted to convey their diagnostic potential or 
their clinical significance for identifying patterns with plausible connections to disease characteristics.

In this systematic review and meta-analysis, we aimed to appraise the diagnostic performance of keystroke 
dynamics for an array of neurological and psychiatric disorders. Moreover, we sought to assess the impact of data 
collection settings, labeling methods, and model characteristics on the diagnostic performance, with emphasis 
on clinical relevance and ecological validity. In the meta-analysis, we provided a quantitative evaluation of the 
keystroke dynamics diagnosis of PD, MCI and psychiatric disorders independently, to convey their reproducibil-
ity and clinical impact. More importantly, we performed regression analysis, to convey the relationship between 
patients’ demographic and clinical characteristics with the diagnostic potentiality of keystroke dynamics, as well 
as the derived fine motor impairment index. Lastly, due to the immature progress of this area towards clinical 
adoption, we cast-in-concrete a detailed, multidisciplinary agenda for all stakeholders involved in the digital 
biomarker research, and open an avenue to multidisciplinary intervention and care delivery in neurology and 
psychiatry.

Results
Our search identified 9576 results of which 4365 were removed as duplicates and 4045 were excluded by automa-
tion tools, as illustrated by the PRSIMA 2020 flowchart in Fig. 1. We therefore screened the title and the abstract 
of 1166 articles, and we identified 1120 as not meeting our eligibility criteria. Thirty-nine (39) full eligible articles 
were screened and from their list of references, we identified seven more articles that meet our eligibility criteria. 
From the resulting 46 articles, five full articles, listed in supplementary file (p. 7) were excluded. At the end of 
our systematic search, we ended up with 41 full articles of which 25 reported sufficient data to be included in the 
meta-analysis. Overall, 25 studies are targeting PD, ten studies targeting mood disorders, and six studies were 
on mild cognitive impairment and AD. The characteristics of the included studies are summarized in Table 1 
and are discussed in the following section.
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Characteristics of included studies. Of the 41 included studies, we identified 25 on PD with 3791 
patients of whom 33.9% were female, six on MCI and early AD with 254 patients of whom 52.4% were female, 
and ten on psychiatric disorders with 374 patients of whom 56.0% were female (not all studies reported gender 
information). Regardless of the target condition and the data collection setting (in-the-clinic, in-the-wild), typ-
ing patterns, or keystroke dynamics, are always passively collected as series of time stamps of consecutive key 
presses and releases. The derived kinematic parameters are then used for motor behavior pattern analysis.

Of the PD studies, 12 were conducted in-the-clinic18–29, while 13 were conducted in-the-wild30–42. The earli-
est studies, that were mainly on PD, collected data in clinical settings, and attempted to correlate the extracted 
keystroke dynamic features to the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) score, which is 
currently the gold standard for PD  diagnosis43. On this basis, PD patients were found to have longer inter-key 
delay, also known as Flight Time (FT), smaller number of total taps (over a fixed tapping duration), and shorter 
total distance of finger movement compared to  controls22. Keystroke dynamics analysis also showed that PD 
patients are characterized by arrhythmokinesia, that is, hastening or freezing in the typing  kinetics44, as well as 
heteroscedasticity or dispersion of  FT24.

Owing to the establishment of reproducible digital biomarkers on the basis of keyboard interaction patterns, 
the neuroQWERTY index, for example, was estimated using an ensemble regression model that digests variance 
and histogram features extracted from 90 s windows of the hold time (HT) series obtained from early stage PD 
 patients18. The HT, which is the time required for pressing and releasing a key, was particularly employed in early 
studies given that it is neither affected by the typing skill nor by conscious control. Consequently, the numeri-
cal index derived from it, neuroQWERTY, did not only discriminate early-stage PD patients from controls, but 
also de novo PD patients, reflecting its high sensitivity to subtle motor changes. Besides the HT, the flight time 
(FT), the latency between releasing a key and pressing the next one was analyzed  in24 to test the hypothesis that 
PD patients are characterized by higher dispersion and temporal variability compared to controls. The analysis 
of the typing patterns of PD patients through the neuroQWERTY keyboard revealed their slower fine-motor 
kinetics as  well40. Compared to the Alternating Finger Tapping (AFT) test, employing skewness, kurtosis and 
covariance features of the FT distribution resulted in a higher diagnosis accuracy, meaning that the typing pat-
terns embed specific irregularities of PD motor symptoms, mainly attributed to rigidity and bradykinesia. In 
an effort to enrich the feature space of keystroke dynamics, Iakovakis et al.19 developed a two-stage machine 
learning model based on low- and high-order statistical features derived from the HT, Normalized FT and Nor-
malized Pressure. Their results were consistent with earlier studies, and showed higher and more variable HT, 
lower pressure and high FT skewness. While these features were significantly correlated to the motor sub-scores 
of the UPDRS-III, correlating the outcome of such standardized clinical scales, which encompass a mixture of 
symptoms not related to fine motor impairments, to the typing behavior might be misleading. Taking this into 
consideration and with the objective of enhancing the interpretability of the fine-grained indicators, Iakovakis 
et al.32 analyzed keystroke dynamics with single items scores of the UPDRS Part III, in order to create a plausi-
ble connection between the typing behavior and fine motor impairment symptoms. Employing typing kinetics 
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Figure 1.  PRISMA 2020 flow diagram for study selection.
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Author 
(year) Disease

Data set characteristics and experimental protocol Data processing Problem formulation

Funding
Collection 
settings

#patients 
(avg 
age, SD, 
%female)

# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Memedi 
et al. 
(2013)30

PD In-the-wild 
(36 months)

65 (65, 11, 
33.8%)

10 (61, 7, 
50%)

Hoehn and 
Yahr scales, 
UPDRS, 
visual evalu-
ation of 
the tapping 
pattern

Tap position 
(x–y pixel 
coordinates) 
and time-
stamps (in 
millisec-
onds)

Subject level

Total tap-
ping time 
and speed, 
features 
derived 
using 
dynamic 
time warp-
ing and 
zero-cross-
ing signals 
to assess 
typing regu-
larity and 
accuracy

Linear 
mixed 
effects 
models with 
maximum 
likelihood 
estimation 
(long-term 
analysis)

Logistic 
regression

Swedish Knowl-
edge Foundation

Printy et al. 
(2014)26 PD In-the-clinic 18 (68.5, 

12.1, 44.4%) NA

UPDRS-
III, clinical 
assessment 
of upper 
limb kin-
ematics

Boolean 
values 
describing 
screen con-
tact, tri-axial 
gyroscope 
and acceler-
ometer data

Subject level

Tapping 
frequency 
(# taps/5 s 
with 50% 
overlapping 
windows), 
tapping 
rhythmicity 
(ampli-
tude peak 
frequency of 
normalized 
power spec-
tral density), 
tapping 
rhythmicity 
(coefficient 
of variation 
(CV) of 
between-tap 
intervals, 
CV of finger 
contact 
time)

NA 
Support vector 
machines 
and random 
forests

NR

Giancardo 
et al. 
(2016)18

PD In the clinic 42 (59.0, 9.8, 
43%)

43 (60.1, 
10.2, 60%)

Clinical 
evaluation: 
UPDRS, 
Alternating 
Finger Tap-
ping, Single 
Finger Tap-
ping tests

Keystroke 
timing data Session level

HT variance 
features 
(outliers, 
skewness, 
and finger 
coordi-
nation) 
and HT 
probability 
features 
(histograms 
bins)

NA Support vector 
regression

Comunidad de 
Madrid, Fundacion 
Ramon Areces 
and The Michael 
J Fox Foundation 
for Parkinson’s 
research (grant 
number 10860)

Vesel et al. 
(2020)58

Bipolar 
disorder

In-the-wild 
(8 weeks) NR 250 (37.7, 

12.25, 70%)

Self-
reported 
Patients 
Health 
Question-
naire 
(PHQ-8 )

Keyboard 
metadata 
including 
consecu-
tive time 
stamps of 
key presses, 
character, 
punctuation, 
backspace, 
autocorrect 
rates

Session level Inter-key 
delay

Hierarchi-
cal growth 
curve 
mixed-
effects 
models

Mood Challenge 
for Research kit 
1R01MH120168

Giancardo 
et al. 
(2015)64

Psychomo-
tor impair-
ment

In-the-wild 
(NA) NA 14 (30.8) Self-reports Keystroke 

timing data Session level

Hold time 
evolution 
matrix, its 
peak and 
self-simi-
larity

Rayleigh test 
for circular 
uniformity

Linear sup-
port vector 
machines

Comunidad de 
Madrid, Fundacion 
Ramon Areces 
and The Michael 
J Fox Foundation 
for Parkinson’s 
research (grant 
number 10860)

Continued
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Funding
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#patients 
(avg 
age, SD, 
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# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Masto-
ras et al. 
(2019)63

Depression In-the-wild 
(2 months)

11 (23.6, 
3.24, 
36.36%)

14 (23.8, 
4.44, 
42.86%)

Self-
reported 
Patients 
Health 
Question-
naire 
(PHQ-9 )

Keyboard 
interactions 
including 
consecu-
tive time 
stamps of 
key presses, 
typing meta-
data includ-
ing session 
duration 
and number 
of special 
characters

Subject level

Low- and 
high order 
statistics 
of the 
HT, NFT, 
normalized 
pressure and 
typing speed 
(inter-key 
distance/
NFT)

Best perform-
ing model: 
random forests

Al Jalila Founda-
tion 2017 Research 
Grants

Zulueta 
et al. 
(2018)56

Bipolar 
disorder

In-the-wild 
through 
“BiAffect” 
Smartphone 
Application 
(8 weeks)

9 (48.7, 9.63, 
89%) NR

Hybrid 
(clinical 
assessment: 
HDRS, 
YMRS/fre-
quent mood 
self-reports)

Keystroke 
meta-data, 
accelerom-
eter data, 
mobile use 
activity

Subject level

Avg. accel-
erometer 
displace-
ment, IKD, 
Backspace 
ratio, avg. 
session 
length, 
number of 
sessions, 
circadian 
baseline 
similarity

Mixed 
effects 
regression

NA
Mood Challenge 
for Research kit 
1R01MH120168

Stange et al. 
(2018)57

Bipolar 
disorder

In-the-wild 
through 
“BiAffect” 
smartphone 
application 
(10 weeks)

18 (NR) NA

Hybrid 
(clinical 
assessment: 
HDRS, 
YMRS/
ecological 
momentary 
assessment)

Keyboard 
meta-data Subject level

Root mean 
square 
successive 
difference 
(rMSSD) 
between 
keystrokes

Multi-level 
and boot-
strapped 
mediation 
analysis

NA
Mood Challenge 
for Research kit 
1R01MH120168

Vizer et al. 
(2015)49 MCI

In-the-clinic 
(4 typing 
sessions, 
20–45 min 
each)

17 (81.12, 6, 
NR)

20 (79.24, 6, 
NR)

Clinical 
evalua-
tion: mini 
mental state 
examination 
(MMSE)

Keystroke 
timing data 
and their 
linguistic 
content

Subject level

Paralinguis-
tic: pause 
rate and 
duration, 
time per 
key and 
keystroke 
rate and 
linguistic 
features: 
sentence 
complex-
ity, rate of 
nouns, verbs 
and adjec-
tives

NA Logistic 
regression

US National Sci-
ence Foundation 
graduate
research fellow-
ship, and the US 
National Library 
of Medicine 
Biomedical and 
Health Informatics 
Training
Program at the 
University of 
Washington 
(grant number 
T15LM007442)

Ntracha 
et al. 
(2020)50

MCI In-the-wild 
(6 months)

11 (67.2, 
5.96, 81.8%)

12 (66.2, 
4.72, 58.3%)

Clinical 
Assess-
ment (SCI, 
MMSE, 
FUCAS, 
FRSSD)

KD and 
texts 
simulating 
Spontane-
ous Written 
Speech 
(SWS)

Subject level

NLP 
features and 
R/B/AFT 
indices from 
KD

NA

kNN (KD 
alone, logistic 
regression 
(NLP alone), 
ensemble 
model (fused 
features)

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Matarazzo 
et al. 
(2019)34

PD In-the-wild 
(6 months)

30 (63.00, 
NR, 48.3%)

29 (59.78, 
NR, 53.3%)

Clinical 
assessment HT Subject level HT distribu-

tion matrix NA RNN

Michael J. Fox 
Foundation 
for Parkinson’s 
Research Grant 
10860

Pham et al. 
(2018)20 PD In-the-clinic 

(NA)
42 (59.0, 9.8, 
43%)

43 (60.1, 
10.2, 60%)

Clinical 
assessment 
(UPDRS-III, 
alternating/
single finger 
tapping 
tests)

HT Ses-
sion Level

Recurrence 
plots and 
scalable 
network 
features

NA Support vector 
machines NR

Pham et al. 
(2019)21 PD In-the-clinic 

(NA)
42 (59.0,9.8, 
43%)

43 (60.1, 
10.2, 60%)

Clinical 
assessment 
(UPDRS-III, 
alternating/
single finger 
tapping 
tests)

HT Session 
Level

Recurrence 
plots and 
scalable 
network 
features

NA
Long-short 
term memory 
(LSTM)

NR

Continued
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Author 
(year) Disease

Data set characteristics and experimental protocol Data processing Problem formulation

Funding
Collection 
settings

#patients 
(avg 
age, SD, 
%female)

# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Iakova-
kis et al. 
(2018)19

PD In-the-clinic 
(NA)

18 (61, 8.4, 
22%)

15 (57, 3.9, 
46%)

Clinical 
assessment 
(UPDRS-
III)

Time stamps 
of key 
presses and 
releases

Subject level

High and 
low order 
statistics of 
HT, normal-
ized FT and 
normalized 
pressure

NA

Two stage ML 
pipeline (best 
performing: 
random forest 
and mean 
voting)

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Iakova-
kis et al. 
(2018)32

PD In-the-wild 
(52 weeks)

13 (62, 6, 
38%)

35 (57, 8, 
40%) Self-reports

Time stamps 
of key 
presses and 
releases

Subject and 
session level NA NA

Subject and 
typing session 
level
Regression 
model for 
severity esti-
mation

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Iakova-
kis et al. 
(2020)37

PD In-the-wild 
(NR)

TS1: 22 
(58.6, 8.4, 
22%), TS2: 
9 (de novo) 
(56, 8, 33%)
TS3: 67 (61, 
7, 35.8%)

TS1, TS2: 17 
(54.6, 9.4, 
41%) TS3: 
186 (58.7, 
7.5, 36%)

DB1, clini-
cal evalua-
tion, DB2 
self-reports

Keystroke 
timing data Subject level NA NA

Hybrid deep 
learning 
model based 
on data in-
the-clinic and 
in-the-wild

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Papado-
poulos et al. 
(2020)36

PD In-the-wild 
(NR)

DB1: 14 
PD (60.7, 
9.8, 27.3%), 
DB2: 26, 
(60.7, 8.9, 
64.1%)

DB1:8 (50.5, 
9, 50%), 
DB2: 131 
(54.5, 10, 
41.98%)

DB1; clini-
cal evalua-
tion, DB2; 
self-reports

Typing and 
tri-axial 
accelerom-
eter data

Subject level

Independ-
ent feature 
transformer 
for typing 
and acceler-
ometer data

NA Deep learning

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Chen et al. 
(2019)51 MCI In-the-wild 

(3 months)

MCI: 24 
(69.0, 1.8, 
54%)/AD: 
7 (72.1, 3.5, 
57%)

82 (66.3, 
0.8, 71%)

Clinical 
assessment 
conducted 
using the 
National 
Institute of 
Aging-
Alzheimer’s 
Association

Acceler-
ometer, 
pace, stride, 
heart rate, 
sleep cycle, 
distance 
from home, 
workout 
sessions, 
breathing 
sessions, 
standing 
hours, exer-
cise minutes, 
phone calls, 
apps, sleep 
stages, steps, 
mood/
energy 
surveys, tap-
ping tests

Subject level

Tapping 
speed, tap-
ping regu-
larity, typing 
speed, 
sentence 
complexity, 
drag path 
efficiency, 
and reading 
times

NA Extreme gradi-
ent boosting NR

Arroyo-Gal-
lego et al. 
(2017)24

PD In-the-clinic 
(NA)

21 (59.24, 
11.43, 52%)

23 (54.3, 
13.95, 83%)

Clinical 
assessment 
(UPDRS-III, 
alternating/
single finger 
tapping 
tests)

NFT Session level

Skewness, 
kurtosis, 
covariance 
of NFT time 
series

NA
Best perform-
ing model: 
SVM

Comunidad de 
Madrid, Fundación 
Ramón Areces, 
and The Michael 
J Fox Foundation 
for Parkinson’s 
research (grant 
number 10860)

Prince et al. 
(2018)31 PD In-the-wild 

(6 months)
312 (63.8, 
6.8, NR)

86 (61.9, 
7.7, NR)

Self-reports 
using 
digitized 
UPDRS

timestamps 
(time of fin-
ger touching 
the screen) 
and the x,y 
screen pixel 
coordinates 
for each tap 
instance

Subject level
Progression 
rate and 
steady state 
indexes

Spearman’s 
correlation NA

Digital Economy 
Programme 
grant number 
EP/G036861/1 
(Oxford Centre for 
Doctoral Training 
in Healthcare 
Innovation)

Continued
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Author 
(year) Disease

Data set characteristics and experimental protocol Data processing Problem formulation

Funding
Collection 
settings

#patients 
(avg 
age, SD, 
%female)

# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Lipsmeier 
et al. 
(2018)35

PD In-the-wild 
(6 months)

43 (57.5, 
8.45, 18.6%)

35 (56.2, 7.8, 
22.9%)

Clinical 
assessment 
(UPDRS)

Sustained 
phonation, 
rest tremor, 
postural 
tremor, fin-
ger tapping, 
balance, gait

Subject level

Features 
correspond 
to tasks in 
order: mel-
frequency 
cepstral 
coefficient, 
skewness, 
total power, 
intra-tap 
variability, 
mean veloc-
ity, turn 
speed

Mann Whit-
ney, linear-
effects 
mixed 
models

NA
F. Hoffmann-La 
Roche Ltd. and 
Prothena Bio-
sciences Inc

Stringer 
et al. 
(2018)52

MCI In-the-clinic 
(NA)

20 (75.60, 
5.78, 30%)

24 (71.09, 
5.38, 58%)

Clinical 
assessment 
using ACE-
III, ECog 
scores

Computer 
use behavior 
(keyboard 
and mouse)

Subject level
Typing 
speed and 
pausing 
frequency

NA Regression

The Engineer-
ing and Physical 
Sciences Research 
Council (EPSRC) 
under Grant EP/
K015796/1

Rabinow-
itz et al. 
(2014)54

MCI In-the-clinic 
(NA)

170 (82.1, 
6.2, 51.2%) NA

Clinical 
assessment 
(MMSE, 
recall, digit 
span test)

Finger tap-
ping signal 
(via pressure 
transducer)

Subject level

Mean, SD, 
coefficient 
of variation 
of the HT 
and the FT, 
mean and 
SD of HT/
tapping 
periodratio

The 
Kruskal–
Wallis test, t 
test, Mann–
Whitney U 
test

LDA and SVM NR

Waes et al. 
(2017)53 MCI In-the-clinic 

(NA)
12 (73.9, 4.3, 
NR)

20 (22.5, 
1.0, NR), 20 
(74.3, 5.8, 
NR)

Clinical 
assessment 
(Petersen’s 
diagnostic 
criteria), 
MMSE, 
GDS

Time stamps 
of keystroke 
loggings

Subject level Inter-key 
latency MANOVA NA

The University of 
Antwerp Research 
Fund; the Alz-
heimer Research 
Foundation

Lee et al. 
(2016)22 PD In-the-clinic 

(NA)
57 (65.4, 9, 
60.4%)

87 (53.4, 
14.8, 60.9%)

Clinical 
assessment 
(UPDRS; 
sub-scores 
of motor, 
bradykin-
esia, rigidity, 
postural 
instability 
and gait 
disturbance, 
UK brain 
bank)

Number of 
taps (correct 
taps and 
tap errors), 
inter-tap 
distance and 
total finger 
distance

Subject level
Mean and 
variance 
(1st order 
statistics)

Means 
of the 
continuous 
variables 
compared 
using t-test 
or Mann 
Whit-
ney test. 
Univariate 
analysis for 
the deter-
mination of 
the impact 
of age, sex, 
asymmetry 
and hand 
dominance

Linear regres-
sion

Hallym University 
Research Fund 
(HURF-2015-34)

Arora et al. 
(2018)23 PD In-the-clinic 

(NA)
334 (66.1, 9, 
37%)

84 (66.3, 
9.1, 33%)

Clinical 
assessment

7 smart-
phone tasks 
assessing 
voice, bal-
ance, gait, 
finger tap-
ping, reac-
tion time, 
rest tremor, 
and postural 
tremor

Subject level

Vocal fold 
excita-
tion ratio, 
tapping 
rhythm, 
pitch, accel-
eration

NA Random 
forests (RF)

Digital Economy 
Programme 
grant number 
EP/G036861/1 
(Oxford Centre for 
Doctoral Training 
in Healthcare 
Innovation)

Arora et al. 
(2018)23

Idiopathic 
REM sleep 
disorder

In-the-clinic 
(NA)

104 (64.5, 
9.4, 12%)

84 (66.3, 
9.1, 33%)

Clinical 
assessment

7 smart-
phone tasks 
assessing 
voice, bal-
ance, gait, 
finger tap-
ping, reac-
tion time, 
rest tremor, 
and postural 
tremor

Subject level

Vocal fold 
excita-
tion ratio, 
tapping 
rhythm, 
pitch, accel-
eration

NA Random 
forests (RF)

Digital Economy 
Programme 
grant number 
EP/G036861/1 
(Oxford Centre for 
Doctoral Training 
in Healthcare 
Innovation)

Continued
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Author 
(year) Disease

Data set characteristics and experimental protocol Data processing Problem formulation

Funding
Collection 
settings

#patients 
(avg 
age, SD, 
%female)

# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Zhan et al. 
(2016)39 PD In-the-wild 

(6 months)
121 (57.6, 
9.1, 41%)

105 (45.5, 
15.5, 47%) Self-reports

Tri-axial 
accelerom-
eter data, 
tasks assess-
ing voice, 
balance, 
gait, finger 
tapping, and 
reaction 
time

Subject level

Higher and 
lower order 
statistics for 
voice, gait, 
and tapping 
parameters

NA Random 
forests (RF) NR

Wissel et al. 
(2017)27 PD In-the-clinic 

(NA)
11 (60.6, 9, 
27.3%)

11 (62.5, 11, 
55%)

Clinical 
assessment 
(MDS-
UPDRS-III 
during ON 
and OFF 
states)

Timestamps 
of taps, pixel 
locations

Subject level

The total 
number of 
taps, tap 
interval 
(time [ms] 
between two 
consecutive 
finger/hand 
screen taps), 
tap duration 
(time [ms] 
the index 
finger/hand 
touches the 
screen per 
tap), and 
tap accuracy 
(tap distance 
[pixels] 
from the 
center of the 
target) were 
recorded

T test/
correlation 
analysis

NA NR

Adams et al. 
(2017)28 PD In-the-clinic 

(NA)
32 (NR, NR, 
NR)

71 (NR, NR, 
NR)

Clinical 
assessment 
(UPDRS)

Keystroke 
timing 
information 
(preproc-
essed as n 
tuples)

Subject level

Mean, 
skewness 
and kurtosis 
of hold time 
and key 
latency (left 
and right 
differ-
ences were 
considered 
to assess 
symmetry)

NA

Ensemble 
machine 
learning 
classification 
models

NR

Milne et al. 
(2018)29 PD In-the-clinic 

(NA)
42 (59.0, 9.8, 
43%)

43 (60.1, 
10.2, 60%)

Clinical 
evaluation: 
UPDRS, 
AFT, SFT

Keystroke 
timing 
information

Subject level

Mean and 
SD, mean 
absolute 
consecutive 
difference 
of the HT, 
features 
extracted 
using feature 
extraction 
based on 
scalable 
hypothesis 
(FRESH)

NA Logistic 
regression NR

Arroyo-Gal-
lego et al. 
(2018)33

PD In-the wild 
(2 months)

25 (60.2, 
12.0, 48%)

27 (60.8, 
10.6, 52%)

Clinical 
assessment 
(UPDRS)

Keystroke 
timing 
information

Subject level neuroQW-
ERY index NA Support vector 

regressor

Comunidad de 
Madrid, Fundación 
Ramón Areces, 
and The Michael 
J Fox Foundation 
for Parkinson’s 
research (grant 
number 10860)

Huang et al. 
(2018)60

Bipolar 
disorder

In-the-wild 
(2 months)

Bipolar 
1: (45.6, 
9.9, 57%), 
bipolar 2: 5 
(52.4, 9.4, 
80%)

8 (46.1, 107, 
63%)

The 
Hamilton 
Depression 
Rating Scale 
(HDRS) 
and Young 
Mania 
Rating Scale 
(YMRS), 
daily self-
reports

Keystroke 
timing data, 
alphanu-
meric data, 
accelerom-
eter data

Subject level

HT, FT, 
and pixel 
coordinates, 
tri-axial 
accelerom-
eter

NA

Stacked con-
volutional and 
recurrent neu-
ral networks 
(CNN-RNN)

NSF through 
grants IIS-1526499, 
IIS-1763325, and 
CNS-1626432, and 
NSFC 61672313

Continued
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features as independent variables, the UPDRS single items that correspond to the severity of Bradykinesia, 
Tremor, Rigidity, and AFT were estimated. The regression results indicated that dominant hand rigidity and 
bradykinesia were estimated with lower error compared to tremor, meaning that the effect of the latter is less 
pronounced from the typing cadence.

Furthermore, the “transferability” of typing patterns-based models developed and tested on clinically vali-
dated data to naturalistic, quasi-continuous, self-reported data from daily interaction with keyboards was evalu-
ated. While the models achieved higher diagnostic performance in clinical settings, they still show high potential-
ity for real-life detection of disease-induced abnormal  behavior32,33,36–38. Moreover, exploiting the passive nature 
of typing data acquisition, data from 970 PD patients, part of the mPower  database45, facilitated the detection 
of early motor decline through Support Vector Machine and Random  Forests42. Similarly, using the mPower 

Author 
(year) Disease

Data set characteristics and experimental protocol Data processing Problem formulation

Funding
Collection 
settings

#patients 
(avg 
age, SD, 
%female)

# controls 
(avg age)

Labeling 
method

Data 
streams

Analysis 
level

Extracted 
features

Statistical 
analysis Classification

Cao et al. 
(2019)59

Bipolar 
disorder

In-the-wild 
(2 months)

Bipolar 1: 
7 (45.6, 
9.9, 57%), 
bipolar 2: 5 
(52.4, 9.4, 
80%)

8 (46.1, 10.7, 
63%)

The 
Hamilton 
Depression 
Rating Scale 
(HDRS) 
and Young 
Mania 
Rating Scale 
(YMRS), 
daily self-
reports

Keystroke 
timing data, 
alphanu-
meric data, 
accelerom-
eter data

Subject level

HT, FT, 
and pixel 
coordinates, 
tri-axial 
accelerom-
eter, auto-
correct, 
backspace, 
space rate

NA
Multi-layer 
gated recur-
rent units 
(GRUs)

NSF through 
grants IIS-1526499, 
IIS-1763325, and 
CNS-1626432, and 
NSFC 61672313

Iakova-
kis et al. 
(2019)38

PD In-the-wild 
(NR) 27 (NR) 84 (NR) Self-reports Keystroke 

timing data Subject level NA NA CNN

Horizon 2020 
research and inno-
vation programme 
under grant 
agreement No 
690494—i-PROG-
NOSIS

Wang et al. 
(2021)40 PD In-the-wild 

(NR)
8 (60.5, 9.2, 
37.5%)

8 (23.6, 3.7, 
62.5%)

Clinical 
assessment

Keyboard 
touch-
points (as 
pixels) and 
keystroke 
timing data

Session level

Text entry 
speed 
(words per 
minute), 
typing error, 
uninten-
tional 
repetitive 
touch

Elastic 
probabilistic 
model

NA

National Key R&D 
Program of China 
under Grant No. 
2019YFF0303300, 
the Natural Science 
Foundation of 
China under Grant 
No. 62002198, No. 
61902208

Goni et al. 
(2021)42 PD In-the-wild 

(NR)
970 (59.85, 
9.05, 35%)

1630 (46.84, 
10.05, 
15.2%)

Clinical 
assessment

Smartphone 
application 
with 4 tasks: 
gait, balance, 
voice and 
tapping

Subject level

700 features 
extracted, 
comprising 
statistical 
features of 
time and 
frequency 
locomotion

NA

Least absolute 
shrinkage 
and selection 
operator 
(LASSO), RF, 
SVM

NR

Surang-
srirat et al. 
(2022)41

PD In-the-wild 
(NR)

1851 (44.27, 
0.44, 31.5%) NA Self-reports

Demograph-
ics, MDS-
UPDRS 
I–II, PDQ-8, 
memory, 
tapping, 
voice, and 
walking

Subject level 

High and 
low order 
statistics of 
keystroke 
dynamics

NA
K-means 
unsupervised 
clustering

National Science 
and Technology 
Development 
Agency (NSTDA), 
Thailand

Zulueta 
et al. 
(2021)62

Bipolar 
disorder

In-the-wild 
(35 months)

227 (35, 11, 
75%)

117 (41, 16, 
60%) Self-reports

Keystroke 
dynamics 
and typing 
metadata 
(autocor-
rect and 
backspace 
rate)

Session level

Low order 
statistics of 
keystroke 
dynamics, 
entropy 
(complexity) 
features

NA RF
Mood Challenge 
for Research 
kit1R01MH120168

Ross et al. 
(2021)61

Bipolar 
disorder

In-the-wild 
(2 months)

11 (47, 10.6, 
72.7%)

8 (46.1, 10.6, 
62.5%)

Hybrid 
(clinical 
assessment 
and self-
reports)

Keystroke 
timing data  Session level Low-order 

statistics
Longitudi-
nal mixed 
effects

NA

The Heinz C. 
Prechter Research 
Program; Richard 
Tam Founda-
tion; Michigan 
Institute for 
Clinical and Health 
Research, Grant/
Award Number: 
UL1TR002240

Table 1.  Characteristics of included studies. NR—not reported; NA—not applicable.
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database, unsupervised clustering of smartphone tapping data was used to discriminate the severity of motor 
symptoms in  PD41.

Given that amalgamating multiple data streams in one model boosts its diagnostic accuracy, multimodal 
analysis has been uniquely adopted by Papadopolous et al.36 in order to achieve symptom-specific detection, 
wherein accelerometer data are used to yield a tremor estimation index, while the typing behavior is leveraged for 
estimating fine motor impairment. Besides diagnosis, five longitudinal clinical studies investigated medication 
 response27,30,31,34,39 with the longest follow up being 36  months30. For instance, typing behavior has been utilized 
to detect longitudinal disease phenotype to uncover short- and long-term variations in the motor behavior profile 
of PD patients as  in31. This was achieved by the definition of reliable parameters, such as the progression ratio and 
the steady state ratio, derived by comparisons between motor behavior across consecutive time windows. While 
this aspect is still in its infancy, Matarazzo et al.34 showed promising results in detecting response to levodopa 
using recurrent neural networks. This implication, in turn, suggests that deep learning is a robust predictive 
model in biomarkers research, and is therefore being used in five clinical  studies21,34,36–38.

Besides PD, Growing evidence, from studies targeting imaging biomarkers, suggests that the accumulation 
of Amyloid β starts up to 20 years before the manifestation of clinical symptoms of Alzheimer’s disease (AD) 
and that this is detected in one third of the clinically normal elderly  population46. Whether this population will 
convert to AD, and at what time frame remain elusive, entailing the search for quantitative assessments during 
this preclinical stage. AD is in fact preceded by a mild cognitive impairment (MCI), which is an intermediate 
stage characterized by subtle deficits in memory, lexical and information processing, besides sensory and motor 
 abnormalities47,48. In particular, fine motor impairment has been linked to functional loss at the MCI stage, and 
is specifically compromising the performance of daily life activities. Therefore, six studies were identified on MCI 
and  AD49–54. The validity of utilizing the typing kinetics as biomarkers for early stage cognitive decline came 
about after the pioneering experimental trials that attempted to replicate finger dexterity tests in naturalistic 
environments. Specifically, the inter-keystroke interval, which is the FT, showed promising cognitive assess-
ment performance of the elderly  population55. This is particularly linked to breakdowns in attentional control 
and short-term memory, which constitute two key domains of time-reproduction tasks, such as typing. On this 
basis, increased latency variability and slower performance were observed in MCI and dementia patients, as 
compared to age- matched healthy  participants54. Therefore, capturing computer-use profiles, including mouse 
and keyboard interactions successfully discriminated MCI patients from age-matched healthy  controls52.

Interestingly, the multi-domain dysfunction of the prefrontal cortex motivated the development of multi-
modal assessment methods, to validate the co-existence of motor and cognitive impairment. The sharp degrada-
tion of lexical processing and syntactic complexity reflects on MCI-specific language characteristics including 
increased verb and pronoun rate and decreased noun rate. To this end, Vizer and colleagues combined keystroke 
timing features including the HT and the pause rate with linguistic features collected in clinical settings to 
distinguish PreMCI subjects from age matched healthy  controls49. Taking the analysis a step further, with the 
advancement in Natural Language Processing (NLP), and the capability of capturing objective linguistic features, 
usually not recognized by human raters, Ntracha et al. employed NLP of Spontaneous Written Speech (SWS), 
fused with keystroke dynamics features captured in-the-wild, to reinforce the interplay of cognitive and fine 
motor  functions50. Furthermore, the pronounced advancement in computational modeling now allows aligning 
multiple data lines, what facilitated the development of “behaviorgrams” that capture activity levels, physiological 
and behavioral signals on a longitudinal bases, yielding a more comprehensive overview of individuals’ health, 
yet without solid interpretability on longitudinal transient  behavior51.

Of the ten studies targeting psychiatric disorders, we identified seven studies on bipolar  disorder56–62, one 
study on idiopathic REM Sleep Behavior  disorder23, two studies are on  depression63 and sleep induced psycho-
motor  impairment64, respectively. All these studies were conducted in-the-wild except the one on REM sleep 
 disorder23. Mental and psychiatric disorders, with major depression being the most prevalent, are the leading 
cause of the disease burden worldwide, accounting for 32.4% of years lived with  disability65, and substantially 
contributing to health loss across the  lifespan66. The underlying mechanisms of depression include dopaminer-
gic, noradrenergic and serotonergic disturbances along with inflammatory and psychosocial  factors67. Depres-
sion has therefore been identified as an epiphenomenon in PD, MCI and AD patients, and has been linked to 
higher prevalence of neurodegeneration. As per the recommendations of the National Institute of Mental Health 
(NIMH), deep phenotyping of disease mechanisms at multiple analysis levels, including genetic, neural, and 
behavioral levels, is key for early diagnosis and  monitoring9.

From pathological and clinical perspectives, psychomotor perturbation is a well-defined criterion of manic 
and depressive  states68. Stemming from this, keyboard interaction patterns, along with accelerometer data, back-
space and autocorrect rate were used a predictor variables in a linear mixed effects model to estimate Hamilton 
Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) scores of bipolar disorder  patients56. 
Besides the psychomotor slowing observed by the longer FT, the analysis of the typing meta data including auto-
correct and backspace rate, reflect the cognitive states associated with depressive and manic states. For instance, 
the high autocorrect rate associated with depressive states reflect the degree of concentration impairment. In 
contrast, the high backspace rate during manic states is associated with deteriorated error-response inhibition. 
The impact of circadian rhythm, depression severity, and age also have a profound impact on the typing  kinetics58. 
In this vein, the analysis of typing kinetics, along with the clinical scores, facilitated the prediction of brain 
age and revealed that the predicted age of bipolar disorders patients is higher than their actual age, compared 
to healthy controls, reflecting a marker of brain  pathology62. Moreover, keystroke dynamics predict cognitive 
decline, diminished visual attention, reduced processing speed and task switching in bipolar disorder  patients61.

Beside these approaches, employing machine learning methods such as random forests yielded high discrimi-
natory performance between mildly and severely depressed patients, and controls, from typing data collected 
in-the-wild63. Considering the impact of individual’s unique typing style and the circadian rhythm, stacking 
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convolutional neural networks that detect personalized features, along with recurrent neural networks that learn 
the dynamic patterns, resulted in personalized mood  detection59,60. Taking the analysis a leap forward, leveraging 
passively acquired keystroke dynamics with day-to-day ecological momentary assessment for mood prediction 
suggested that higher mood instability, inferred from the self-reports and the typing kinetics are highly predic-
tive of worsening depressive and manic  symptoms57. They also showed that continuous monitoring for up to 
seven days is sufficient for accurate symptom prediction using multilevel statistical analysis. The longest follow 
up period among studies targeting psychiatric disorders was eight  weeks56.

Diagnostic potentiality of keystroke dynamics. Twenty-five (25) independent studies were included 
in the meta-analysis, given that the symmetry condition of the funnel plots is respected (Figs. S1–S4). Whenever 
possible, if one study formulated multiple models, we treat them independently and their specific characteris-
tics are reported in Supplementary Table 7. We identified 29 independent models for the diagnosis of PD on 
the basis of keystroke dynamics. Pooled AUC and accuracy of keystroke dynamics classification methods for 
PD were 0.85 (95% confidence interval (CI): 0.83–0.88;  I2 = 94.04%) and 0.82 (95% CI 0.78–0.86;  I2 = 71.55%), 
respectively. In addition, pooled sensitivity and specificity were 0.86 (95% CI 0.82–0.90,  I2 = 79.49%) and 0·83 
(95% CI 0.79–0.87,  I2 = 83.45%), as shown in Fig. 2a–d. For MCI and AD (Fig. 3a–d) we found ten independ-
ent classification models, except for the study  of51 that only reported AUC for their three models. The pooled 
AUC and accuracy were 0.84 (95% CI 0.78–0.90,  I2 = 87.43%) and 0.82 (95% CI 0.74–0.89,  I2 = 72.63%), respec-
tively. Pooled sensitivity and specificity for the same category were also found to be 0·85 (95% CI 0.74–0.96, 
 I2 = 50.39%) and 0.82 (95% CI 0.70–0.94,  I2 = 87.73%). We identified four independent models for psychiatric 
diseases  with59 only reporting accuracy. Pooled AUC and accuracy for psychomotor impairment were 0.90 (95% 
CI 0.82–0.97,  I2 = 0%) and 0.89 (95% CI 0.83–0.95,  I2 = 35.56%). Pooled sensitivity and specificity for psycho-
motor impairment were 0.83 (95% CI 0.65–1.00,  I2 = 79.10%) and 0.87 (95% CI 0.80–0.93,  I2 = 0%) as shown in 
Fig. 4a–d. More importantly, the non-significance, inferred by the sensitivity analysis for every disease category, 
reveals the consistency of the reported diagnostic accuracy, for all pooled measures.

Assessment of experimental design on diagnostic performance. In order to decipher the hetero-
geneity sources of the included studies, we have conducted multiple subgroup analyses. Comparing the perfor-
mance of the diagnostic models when per- formed on data captured in-the-clinic to data captured in-the-wild 
revealed that the AUC (p = 0.007) and the accuracy (p = 0.032) were significantly higher under clinical settings. 
The AUC and the accuracy for the data captured in-the-clinic were 0.89 (95% CI = 0.86–0.91,  I2 = 87.15%, n = 21) 
and 0.87 (95% CI = 0.83–0.90,  I2 = 62.33%, n = 18), respectively. The same measures for data captured in-the-wild 
were 0.82 (95% CI = 0.79–0.84,  I2 = 74.02%, n = 21) and 0·81 (95% CI = 0.77–0.85,  I2 = 71.82%, n = 17), respec-
tively. In terms of the sensitivity and the specificity, we found that the pooled sensitivity was not significantly 
higher for data captured in-the-clinic (p = 0.903), while the specificity was significantly higher for data captured 
in-the-clinic (p = 0.032). These metrics for data captured in-the-clinic were 0.85 (95% CI = 0.80–0.99,  I2 = 82.06%, 
n = 20) and 0.87 (95% CI = 0.83–0.91,  I2 = 81.81%, n = 18). For data captured in-the-wild, pooled sensitivity and 
specificity were 0.85 (95% CI = 0.79–0.90,  I2 = 52.55%, n = 14) and 0.79 (95% CI = 0.73–0.85,  I2 = 68.96%, n = 16). 
Similarly, the AUC (p = 0.004), the accuracy (p = 0.013), and the specificity (p = 0.002) are significantly higher for 
clinically-validated databases, compared to self-reports labeled typing data. For the former, the AUC, accuracy, 
pooled sensitivity and specificity were 0.86 (95% CI = 0.83–0.89,  I2 = 86.41%, n = 31), 0.86 (95% CI = 0.83–0.89, 
 I2 = 64.17%, n = 26), 0.86 (95% CI = 0.81–0.90,  I2 = 78.77%, n = 21) and 0.87 (95% CI = 0·0.84–0.91,  I2 = 73.41%, 
n = 22). On the other hand, these metrics for the self-reported data were 0.78 (95% CI = 0.73–0.84,  I2 = 0.00%, 
n = 6), 0.79 (95% CI = 0.74–0.83,  I2 = 29.24%, n = 8), 0.83 (95% CI = 0.76–0.90,  I2 = 50.11%, n = 9) and 0.76 (95% 
CI = 0.69–0.82,  I2 = 77.43%, n = 11).

From a methodological point of view, we report no statistical significance between pooled AUC (p = 0.525) 
and sensitivity (p = 0.074) when we compare unimodal and multimodal analysis methods. The specificity 
(p = 0.042) and the accuracy (p = 0.022), however, were significantly higher for multimodal analysis. Pooled 
AUC, accuracy, sensitivity and specificity for multimodal analysis were as follows: 0·83 (95% CI = 0·77–0·90, 
 I2 = 90·83%, n = 9), 0·87 (95% CI = 0·83–0·91,  I2 = 66·24%, n = 11), 0·89 (95% CI = 0·84–0·94,  I2 = 45·77%, n = 7) 
and 0.87 (95% CI = 0.79–0·95,  I2 = 90·19%, n = 8). The same measures for unimodal analysis were 0·86 (95% 
CI = 0.84–0.89,  I2 = 76.42%, n = 31), 0.82 (95% CI = 0.78–0.85,  I2 = 63.98%, n = 25), 0.84 (95% CI = 0.79–0.89, 
 I2 = 76.41%, n = 22) and 0.80 (95% CI = 0.76- 0.84,  I2 = 68.23%, n = 17).

Comparing the performance of ML classifiers and deep learning methods, the sensitivity was significantly 
higher for deep learning classifiers (p = 0.029), compared to linear machine learning methods, while the AUC 
(p = 0.859), accuracy (p = 0.299), and specificity (p = 0.882) were all associated with insignificant difference. The 
pooled AUC, accuracy, sensitivity and specificity for machine learning classifiers were 0.86 (95% CI = 0.83–0.88, 
 I2 = 75.29%, n = 33), 0.83 (95% CI = 0.80–0.87,  I2 = 66.49, n = 26), 0.82 (95% CI = 0.78–0.86,  I2 = 71.49, n = 24) and 
0.83 (95% CI = 0.78–0.87,  I2 = 75.82%, n = 26), respectively. On the other hand, in the case of deep learning, the 
pooled measures are 0.86 (95% CI = 0.79–0.94,  I2 = 86.77%, n = 7), 0·86 (95% CI = 0.81–0.91,  I2 = 51.77%, n = 8), 
0.89 (95% CI = 0.83–0.96,  I2 = 44.25%, n = 9) and 0.83 (95% CI = 0.76–0.91,  I2 = 80.37%, n = 9). Figure 5 represents 
scatter-bar plots of the subgroup analyses results forest plot representations can be found in Figs. (S5–S20).

Association of diagnostic performance with age and disease duration. We hypothesize that 
patients’ demographics and clinical characteristics affect the diagnostic potentiality of keystroke dynamics. To 
this aim, we performed multiple linear regression analyses to convey the influence of age, disease duration, and 
medication on the diagnosis potentiality of keystroke dynamics. We also pooled fine motor impairment indexes, 
mainly related to bradykinesia, to investigate the influence of disease stage on the estimated motor impair-
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Figure 2.  (a): Pooled AUC with 95% CI of PD studies. (b) Pooled accuracy with 95% CI for PD studies. (c) 
Pooled sensitivity with 95% CI for PD studies. (d) Pooled specificity with 95% CI for PD studies.
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ment severity. Due to the unavailability of sufficient data for MCI and psychiatric disorders studies, we were 
mainly able to perform the regression analysis for PD diagnosis. Figure 6a shows the relationship between PD 
patients’ age and disease duration (years from diagnosis). The figure intuitively suggests that PD disease duration 
increases with age, and the relationship between the two is statistically significant (p = 0.013) as inferred from 
the regression analysis. Accordingly, adjusting for disease duration, we analyzed its relationship with diagnostic 
AUC as represented in Fig. 6b. The regression analysis yielded a statistically significant increase in AUC with 
disease duration (p = 0.005), reflecting the progression of fine motor impairment skills of PD patients. Next, 

Figure 2.  (continued)
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using the same data, we investigated the AUC relationship with disease duration, when de novo PD patients are 
compared to early PD patients taking levodopa (l-Dopa). Interestingly, when we use linear fitting to each group, 
the higher slope associated with the de novo PD patients, compared to that of early PD patients on l-Dopa 

Figure 3.  (a) Pooled AUC with 95% CI for MCI studies. (b) Pooled accuracy with 95% CI for MCI studies. (c) 
Pooled sensitivity with 95% CI for MCI studies. (d) Pooled specificity with 95% CI for MCI studies.
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indicates that although the diagnostic AUC of de novo patients is lower, the evolution of the AUC with respect 
to disease progression for this patients’ category is more significant, mainly during the first three years after 
diagnosis, than that of early, medicated PD (Fig. 6c). Perhaps this implication also suggests the sharper decline 
in fine motor skills at this stage, resulting in a clear improvement in the diagnostic AUC. This is in line with the 
recent evidence suggesting an exponential neurodegeneration patterns of the Substantia Nigra pars compacta, 
parallel to a sharper decline in motor skills in early  PD69. Besides the diagnostic performance, we sought to 
investigate the association of PD disease duration and the severity of fine motor symptoms. We pooled the fine 
motor impairment index, that derived from the HT, as an estimation of bradykinesia, as it was reported by multi-
ple studies with sufficient data. However, not all studies reported the fine motor impairment index derived from 
the HT. Figure 6d depicts the significant correlation (p = 0.010) between the disease duration and fine motor 
impairment index.

Although the included studies on MCI were generally few compared to those targeting PD, we were able to 
perform regression analysis to convey the diagnostic potentiality relationship with patients’ age. As represented 
in Fig. 6e, there is a significant increase in the diagnostic AUC of MCI based on fine motor skills inferred by 
keystroke dynamics (p = 0.017). The full regression results are reported in Supplementary Tables 9–12.

Figure 4.  (a) Pooled AUC with 95% CI for psychiatric disorder studies. (b) Pooled Accuracy with 95% CI 
for psychiatric disorder studies. (c) Pooled Sensitivity with 95% CI for psychiatric disorder studies. (d) Pooled 
Specificity with 95% CI for psychiatric disorder studies.
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Evaluation of between‑study heterogeneity and bias risk. The large between-study heterogene-
ity made combining data from multiple studies to generate a representative effect size on the diagnosis per-
formance problematic. It is due to this reason that we decided to pool four diagnostic metrices via univariate 
random-effect meta-analysis models. Consequently, we assume that pooled diagnosis metrics of PD, MCI, and 
psychiatric disorders, as well as the subgroup analysis results, are adequate to convey the diagnostic potenti-
ality of keystroke dynamics models and the impact of study characteristics; namely data collection settings, 
labeling methods, and the modeling characteristics. Hence, we group the studies based on the desired outcome 
and assume that despite the heterogeneity, the pooled outcome contributes to the evidence. For instance, when 
evaluating the diagnostic performance for every disease category, the heterogeneity stems from the between-
study differences in experimental design and model characteristics, however, when we group the studies based 
on experimental characteristics despite the disease category, we attribute the heterogeneity to patients’ charac-
teristics, and other experimental design aspects that are not under investigation. Furthermore, we reinforce our 
findings from the global performance of studies by evidence from methodological perspectives. Nonetheless, we 
still caution against overinterpretation.

Figure 7 shows the graphical representation of the risk of bias of included studies, and the per-study risk of 
bias assessment is reported in Supplementary Table 6. Given that we target the diagnostic accuracy, the included 
studies are case–control including a priori labeled diseased and healthy participants. We consider the studies that 
labeled the participants using self-reports without clinical evaluation at high risk of bias, because participants’ 
honesty, recall bias and unawareness of their medical conditions influence the correctness of the labels. Further-
more, most studies did not assess the appropriateness of the sample size, we therefore deemed this of unclear 
risk of bias for most studies, except 12 studies that aimed at enlarging the sample pool, mainly collecting data 
outside clinics. Besides, we deemed all the studies that performed independent clinical evaluation and keystroke 
dynamics analysis (outcome assessment blindness) to be of low risk of bias,  except30,39, that did finger dexterity 
and clinical evaluation of PD without blindness. All studies were characterized with low risk of bias when we 
consider timing of ground-truth labeling and data collection. Most studies are of unclear risk of bias in terms 
of selective reporting. Overall, we deemed the risk of bias to be low to moderate, and the quality of evidence, as 
inferred by the GRADE tool, to be moderate to high, as illustrated in Supplementary Table 8.
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Figure 5.  Scatter–Bar plots for the Subgroup Analysis results for (a) data collected in-the-clinic vs. data 
collected in-the-wild, (b) clinically validated data vs. self-reported data, (c) multimodal analysis vs. unimodal 
analysis and (d) deep learning vs. other machine learning classifiers. The dots represent the individual studies 
and the height of the bars corresponds to the outcome of the random effects meta-analysis model with 95% CI. 
** denotes p < 0.005 and * denotes p < 0.05.
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Figure 6.  Evaluation of the impact of patients’ age and disease duration on the diagnostic performance of 
keystroke dynamics represented by the AUC. (a) Regression analysis results of PD patients age and years from 
diagnosis (disease duration). (b) Regression analysis results of PD studies reporting diagnostic AUC and disease 
duration reveals their significant association. (c) Pooled AUC of de novo PD patients (blue) and early PD 
patients on L-Dopa (orange) depicts the sharper increase in AUC with disease duration of de novo PD patients, 
compared to that of early, medicated PD patients. (d) Regression analysis results of Fine motor impairment 
index derived from the HT and the disease duration. (e) Regression analysis results of MCI patients age and 
diagnosis AUC.
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Figure 7.  Risk of bias assessment.
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Discussion
To our best knowledge, this is the first systematic review and meta-analysis that provides a concentrated overview 
of the clinically-relevant diagnostic performance of keystroke dynamics, their ecological validity and association 
with patients’ demographics and clinical characteristics. We found that most studies are targeting PD, given 
its hallmark motor symptoms, however, there are now multiple studies dedicated to the assessment of motor 
perturbation in MCI, bipolar disorder, and depression. The diagnostic accuracy revealed by our meta-analysis 
reflects, for the first time, the reproducibility of keystroke dynamic models in the assessment of multiple disorders 
with neurologically defined fine motor impairment. Besides the three disease categories reviewed in this paper, 
researchers are currently employing them for Multiple  Sclerosis70,71 and Huntington’s  disease72. We therefore 
conclude that we can rely on keystroke dynamics obtained passively from natural interactions with keyboards 
to detect fine motor impairments induced by early stage neurological and/or psychiatric disorders. Despite this 
diagnostic performance, several experimental and analysis deficiencies need to be discussed to mitigate between-
study heterogeneity, pave the way for future research. For clinical adoption of this technology, we propose a 
partnership strategy based on a “co-creation” approach that stems from mechanistic explanations of patients’ 
characteristics derived from data obtained in-clinics and under ecologically valid settings. It is the multi-level 
analysis of patients’ data on genetic-, organ-, and behavior-level that will be at the center of the translational 
paradigm to precision medicine when the heterogeneous brain disorders are to be considered.

While computer/smartphone interaction behavior outperformed clinical gold standards such as the AFT 
and the single finger tapping tests in detecting specific fine motor symptoms of PD patients, the transition from 
highly-controlled assessment in-the-clinic, to naturalistic, real-life assessment models should be approached with 
 caution73–75. From the sampling perspective, home-based data collection usually results in highly sparse bursts 
of unpredictable typing activity, that are highly sensitive to real-life contexts, emotional burden and diurnal pat-
terns. This is in line with the higher discriminatory performance of the models on data captured in-the-clinic 
and labeled by clinical assessment, elucidated by our subgroup analysis. Therefore, to establish robust detection 
models for diagnosis outside clinics, integrating multiple latent domains, or confounders and defining multiple 
predictor parameters, such as emotions, activity levels, and sleep patterns, is particularly an interesting avenue 
for future research to enhance ecological  validity76. Such integrated frameworks might therefore capture the 
heterogeneous, neuropsychiatric symptoms in different behavioral disorders, let alone the intra-subject vari-
ability that occurs across different time windows. Moreover, because there is neither a consensus on the optimal 
assessment duration to detect meaningful disease trajectories and progression of neurological disorders, nor for 
episodic relapse in psychiatric disorders, long-term analysis of behavioral profiles is essential. Moreover, optimiz-
ing the analysis window length, that is, the distribution of observation period, to precisely detect disease-induced 
transient behavior is yet to be performed.

The inherent, progressive nature of psychiatric and neurodegenerative disorders makes them amenable to 
frequent treatment regimen modifications, yet satisfying symptom control is not achieved given the high eco-
nomic burden of clinical  visits77. Besides screening and diagnosis, the concept of remote monitoring is realized 
thanks to the passive acquisition of high frequency, objective behavioral data. While this undoubtedly constitutes 
a promising arena, the lack of standardization objective features and the inconsistent analysis methods remain 
a  challenge78. A contributing factor to this, according  to76, is the short assessment time and the rare outcome 
assessment during the study duration. To be more precise, the ground truth clinical evaluations that are per-
formed at intermittent intervals during longitudinal data acquisition results in many unlabeled days, therefore 
the validity of propagating these labels for long time windows is still unclear. Perhaps undertaking a hybrid 
labeling approach combining low frequency clinical assessment and higher frequency Ecological Momentary 
Assessment via self-reports along the study duration might therefore mitigate this dilemma.

As illustrated earlier in our subgroup analysis, the adoption of deep learning methods that efficiently extract 
meaningful patterns from unstructured data is now on the rise. However, deep learning methods that outweighed 
the rest of machine learning models in terms of diagnostic accuracy are associated with considerable uncertainty. 
Interestingly, with the aim of enhancing the efficacy of remote assessment of PD, Iakovakis et al.37 combined two 
databases captured in-the-clinic and in-the-wild in a deep learning, hybrid model capable of learning fine motor 
symptoms, thereby overcoming the induced quantization error of the UPDRS-III and enhancing the performance 
of deep learning. Similarly, our meta-analysis showed that multimodal analysis, although reinforces the diagnostic 
accuracy, is characterized with considerable diagnostic between-studies uncertainty, therefore, future studies 
should adopt a more transparent and well-conducted study designs to reduce bias. Perhaps combining voice 
analysis techniques along with keystroke dynamics will boost the detection of early motor impairment signs, as 
these are also reflected on speech characteristics of PD  patients79. Moreover, from the methodological perspec-
tives, several pattern recognition tools have the potential to learn and decipher the nonlinear, dynamic nature 
of human-keyboard interactions. For example, fuzzy recurrence plots and scalable recurrence networks visually 
revealed finer texture and more regularity in the hold time series of healthy controls to early stage PD  patients20,21.

Psychiatric and neurodegenerative disorders that develop and progress across the lifespan are characterized 
by a heterogeneous phenotype of motor and non-motor  symptoms80. Early stage behavioral perturbations con-
stitute a priori link with plausible connection to disease likelihood, but the high cross-talk between symptoms 
obscures accurate diagnosis and pathogenesis understanding especially at preclinical stages. This heterogeneity is 
a central problem to diagnostic research, entailing additional methods for analyzing similarities and differences 
across disease-induced behavioral disturbances. As opposed to previous reviews that put too much emphasis 
on specific disorders, we hereby deliberately included studies on PD, MCI and affective disorders to convey that 
the neurobiological mechanisms differ greatly among disorders that are characterized with similar traits, such 
as motor slowing. Rather than focusing on specific disorders in isolation of others, we advocate a dimensional 
approach that stresses more on the symptoms per se, also referred to as comorbidities. We believe that a central 
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challenge, in this realm, is formulating databases with a full representation of the population, to expand our 
understanding of the heterogeneous disease-related traits.

Although the previous years witnessed an increase lean towards digital health technologies, the premature 
adoption of these measures by clinics precludes meaningful  outcome81. Our work highlights important direc-
tions for future research. The definition of clinically meaningful thresholds is yet to established, and this cannot 
be attained without a “co-creation” approach, whereby high-level data and clinically validated interpretations 
are made. For instance, amalgamating low level, behavioral data, with high level imaging data is not explored 
yet. We think that this will not only inform better health information, but might also generate new knowledge 
on “brain fitness” and behavior, across the generations. Further, the importance of interdisciplinary interactions 
also propagates to ethical implications, for enhanced transparency, informed consent from patients, privacy and 
 accountability82. We therefore summarize domain-specific limitations and future research directions in Table 2.

We acknowledge that our study has several limitations. Among them is the sparsity and the inherent heteroge-
neity of the included studies. While we were able to perform regression analysis with patients’ demographic and 
clinical characteristics (i.e., age, disease duration respectively) for PD, our meta-analysis lacks the investigation 
of additional covariates, such as gender differences and medication response, especially for MCI and psychiat-
ric disorders. Although promising results have been revealed by leveraging typing patterns for diagnosing and 
monitoring mood and cognitive decline, the majority of the studies are, so far, disproportionately targeting PD. 
While this is understandable given the hallmark motor disturbance in this latter, we see that the need for further 
validations of this approach in other disorders is still pressing. This will be an important avenue for future stud-
ies. The data collected and analyzed in the included studies are collected either in the United States (US) and 
Europe, therefore, future clinical trials of the diagnostic performance of keystroke dynamics in other populations, 
with possibly lower education level and smartphone usage, particularly in ageing populations and low-income 
countries are needed. Perhaps also a global consortium on the translation possibility of this technology to these 
populations with limited neurological care access is the first step in this context. We can therefore investigate how 
the diagnostic potentiality changes across time, by site and for different populations. Concerning per-patient vari-
ability and disease progression, future work should be more focused on identifying temporal symptom profiles 
and behavioral trajectories indicative of conversion to brain disease. More importantly, latent domains such as 
emotions, sleep pattern should be considered as confounders, given their direct influence on motor behavior and 
general health status. Estimation of motor impairment severity, that correlates with disease stage and subtype is 
also an important future avenue. Furthermore, future researchers in the field should collaborate with clinicians 
to make the models more interpretable, thereby enhancing clinical adoption. Research on the area of explainable 
AI (XAI) is now rapidly  growing83, but collaborative work between data scientists, engineers and clinicians is not 
yet established, especially in mutual exchange of data (i.e., behavioral data, imaging). Eventually, we declare, as 
a limitation, that the protocol of this systematic review and meta-analysis is registered in PROSPERO, but has 
not been published yet.

Lastly, we note the strength of our meta-analysis conclusions that conveyed the feasibility of using key-
stroke dynamics derived from the natural interaction connected devices keyboards as digital biomarkers for 

Table 2.  Future directions for the digital biomarkers research based on the “co-creation approach”.

Domain Stakeholders Limitations Recommendations

Surveillance/screening Clinicians
Researchers

lack of benchmarking databases with a whole representa-
tion of the population; overfitting of the models, and the 
inability to pinpoint disease-specific phenotypes, and 
shared symptoms between the disorders

Enlarging clinically validated databases; mapping digital, 
behavioral data with disease-specific mechanisms across 
neurological and psychiatric disorders

Diagnosis
Clinicians
Researchers
Patients

Lack of data interpretability; high sensitivity to contextual 
content

Identify high-risk populations; identify behavioral patterns 
that are not associated with disease (inflection points) by 
analyzing latent domains; fine tune sensitivity and specific-
ity of models; encourage patients to seek early medical 
diagnosis

Monitoring
Clinicians
Researchers
Patients

Lack of robust dynamic analysis methods; lack of meaning-
ful behavioral profiles that indicate prognosis and symp-
toms fluctuation; difficulties in data alignment

Develop multimodal, deep learning models that digests 
temporal, dense behavioral data; analyze behavioral trajec-
tories that reflect disease progression

Prediction Researchers Lack of explanations and trust towards digital health 
technology

Employ deep learning methods, such as restricted Boltz-
man machines, for behavioral modeling and prediction

Real-time feedback
Clinicians
Researchers
Patients

Absence of robust risk assessment models; ambiguous 
relationships of behavioral trajectories associated with 
disease progression and those not related to health; lack of 
patients’ education about the value of medical technology

Generating interpretations of longitudinal behavioral 
change and linking them
to genetic and organ level function for better under-
standing of disease-induced transitions; designing high- 
throughput, computationally efficient risk assessment 
models that runs in real-time; educating patients about 
the merit of personalized digital technology and its role in 
improving quality of life

Behavioral intervention
Clinicians
Researchers
Patients

Lack of personalized behavioral change platforms for 
digital rehabilitation

Correlate symptoms and disease severity with lifestyle 
requirements such as exercise intensity and frequency; 
employ virtual reality for the design of collaborative serious 
games

Ethics
Clinicians
Researchers
Ethical regulatory frameworks

Security and transfer issues with individuals’ personal data Secured data repositories (Cloud); obtain patients’ consent 
in a transparent way
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early decline in fine motor skills associated with neuropsychiatric disorders. Based on experimental design 
comparisons, we showed that the keystroke dynamics constitute an ecologically valid diagnostic platforms in-
the-wild, reflecting their translational potentiality outside clinics, despite the methodological challenges that 
arises, including but limited to confounders influence and sampling difficulties. Further, given the influence 
of data labeling on the diagnosis models, we conclude that even when self-reported data in-the-wild are used 
for training, keystroke dynamics models still achieve sound discriminatory potential. From methodological 
perspectives, we show that employing multimodal and advanced deep learning models, which are at the high 
edge of the contemporary data science methodologies, offer promising opportunities for boosting the diagnostic 
accuracy, but with considerable heterogeneity across the studies. Consequently, the establishment of intricate 
and generalizable diagnostic models, that not only achieve accurate diagnosis, but are also sensitive to temporal 
change and symptom progression. To this end, our regression models showed the evolution of diagnosis AUC 
and fine motor impairment with age and disease duration for PD. We reperformed the regression analysis for 
MCI, and showed how the diagnostic AUC increases with age, reflecting the increasing fine motor impairment 
severity. In conclusion, the importance of digital technology also goes beyond the diagnostic yield, so once at-
risk cohorts are identified, digital technologies can also be employed to reinforce behavior change and patients’ 
empowerment, towards a sustained quality of life, as detailed in Table 2.

Methods
Search strategy and selection criteria. In this systematic review and meta-analysis, conducted in 
accordance with the Diagnostic Test Accuracy extension of Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses (PRISMA-2020)84, a systematic search of MEDLINE, PubMed, IEEE Xplore, Web of Science, 
and EBSCO has been independently performed by two authors (H.A and N.C) for publications between Janu-
ary 1st, 2010 and March 30th, 2022, on pattern recognition and neuropsychiatric disease classification on the 
basis of natural interactions with keyboards, without language restrictions. These date restrictions were specified 
a priori, because typing patterns constitute a new class in the fruitful digital phenotyping area. The full search 
strategy of all databases is reported in Supplementary Tables 1–5 and in the PRISMA 2020 checklist. Eligible 
studies assessed the influence of motor impairment induced by psychiatric or neurological disorders on the typ-
ing patterns (i.e., keystroke dynamics). Those deemed eligible were case–control studies, comparing the typing 
behavior of neuropsychiatric disease patients to age- and education-matched healthy control subjects. Studies 
that used statistical analysis without classification were included in the narrative synthesis, while those employ-
ing machine learning models for classification were included in a random effects meta-analysis to evaluate the 
diagnosis performance on the basis of typing behavior. We performed a manual search of the reference lists 
from the eligible studies, and we searched the grey literature for unpublished data, conference proceedings and 
dissertations. Prior to the writing of this paper, we searched if there are existing systematic reviews and meta-
analyses on the same topic.

All search results were uploaded to Rayyan web of intelligent systematic  reviews85 for duplicates removal and 
screening. One author (H.A.) screened titles and abstracts of the included studies, that were double-screened by 
a second author (L.H.). Three authors (H.A., A.K. and L.H.) assessed the eligibility of the included full articles. 
Any disagreement was resolved by discussion.

Protocol registration. The protocol of this systematic review and meta-analysis has been registered in 
PROSPERO with identifier CRD42021278707.

Data extraction and quality assessment. Two authors (H.A. and L.H.) extracted data from the included 
studies. We extracted the following data from the included studies: (1) disease, (2) first author and publication 
year, (3) experimental protocol of data collection including collection settings and study duration, (4) num-
ber and mean age of participants in diseased and healthy groups, (5) data labeling methodology (self-reported 
meta-data vs. clinical evaluation), (6) data streams employed by the study, (7) extracted features, (8) analysis and 
feature extraction level (subject- level vs. typing session-level), (9) problem formulation and validation whether 
through statistical analyses or classification, (10) 2 × 2 data (True Positives, True negatives, False Positives, False 
Negatives), and from here we extracted the sensitivity and the specificity (11) Classification Accuracy and (12) 
Area Under the Receiver Operating Characteristics Curve (AUC). Three authors (H.A., A.K. and L.H.) discussed 
and assessed the quality of the included studies. The studies that did not perform classification, were included in 
the systematic review but not in the meta-analysis.

Statistical analysis and diagnosis evaluation. Our primary outcome is the diagnosis efficiency of 
machine learning models employing typing features (i.e., keystroke dynamics). Secondary outcomes include 
longitudinal disease monitoring on the basis of pattern recognition of keystroke dynamics, treatment response, 
and key features that discriminate diseased from healthy groups.

In particular, the outcomes of the meta-analysis were the Area Under the receiver operating characteristic 
Curve (AUC), accuracy, sensitivity and specificity. These outcomes were pooled and included in a univariate 
random effect model independently for three disease categories, namely PD, MCI, and psychiatric disorders. 
Heterogeneity was assessed using the  I2 statistics, attributable to non-sample related between-studies differences, 
in addition to the Cochran Q  (X2) test (p < 0·05). Given that in this study we report the validity of keystroke 
dynamics models as diagnostic tools for different disorders, we accepted high heterogeneity  (I2 > 50%). Further-
more, to ensure the completeness and transparency of the reported diagnostic accuracy measures, we followed 
the Standards for the Reporting of Diagnostic Accuracy Studies (STARD)86.



21

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7690  | https://doi.org/10.1038/s41598-022-11865-7

www.nature.com/scientificreports/

After pooling the data, we processed them using the Meta Essential  tool87. For each study, we entered the 
(per-subject) AUC and the accuracy and the sample size, while for the sensitivity and specificity, we entered 
the number of participants in diseased and healthy groups, respectively. These measures, along with the 95% 
confidence interval (CI), were represented by univariate forest plots. All included studies, that reported AUC, 
accuracy, sensitivity and specificity were included in the meta-analysis given that we maintain symmetry of the 
funnel plots to minimize publication bias. Studies that did not report any of these measures and/or were associ-
ated with high bias risk were included in the systematic review but not in the meta-analysis. Furthermore, for 
each of the three disorder groups, we performed a sensitivity analysis using leave-one-study-out, to investigate 
the impact of individual studies on the diagnostic metrics. Two authors (H.A. and L.H.) performed and agreed 
on the performance and the outcome of the statistical analysis.

Subgroup analysis. Subgroup analyses were conducted to assess the source of heterogeneity between the 
studies, if each subgroup contained more than three studies (n > 3) after subgroup division. We particularly focus 
on the performance of data acquisition and analysis methods, given that they are the main intellectual challenges 
of the highly fertile arena of digital  phenotyping73. In spite of the increasing interest in real-life diagnosis, we 
segregated the studies based on the data acquisition modality as (1) in-the-clinic and in-the-wild. Furthermore, 
we compared the attained AUC, accuracy, sensitivity and specificity between (2) clinically validated and self-
reported data. In addition, comparisons between (3) multimodal and unimodal studies, as well as (4) deep 
learning and other machine learning classification methods were performed.

Regression analysis. Four linear regression models were fitted for (1) PD patients’ age and years from 
diagnosis (disease duration), (2) PD diagnosis AUC and disease duration, (3) PD fine motor impairment index 
and disease duration and (4) MCI diagnosis AUC and patients’ age. These tests were two-sided with a statistical 
significance threshold of 0.05 and 95% CI.

Publication bias assessment. Publication bias was assessed based on Begg and Mazumdar’s rank correla-
tion test and visualized by funnel plots. Importantly, if one database was used in multiple studies, or if one study 
employed multiple analysis methods, we treat those as independent studies.

To assess the internal validity of the included studies, quality assessment was performed employing the tool 
for Quality Assessment of Diagnostic Test Accuracy (QUADAS-2)88. All discrepancies were resolved by mutual 
discussions between three authors (H.A., A.K., and L.H.). Moreover, we generated four funnel plots for AUC, 
accuracy, sensitivity and specificity to visually illustrate the publication bias of the included  studies89.

Quality of evidence assessment. To convey the clinical value of keystroke dynamics, we have used the 
Grades of Recommendations, Assessment, Development and Evaluation (GRADE)  tool90 to systematically and 
transparently assess the diagnostic accuracy evidence of keystroke dynamics for neuropsychiatric disorders. 
The systematic appraisal of the evidence quality is determined by (1) the design of the study, (2) risk of bias, (3) 
inconsistency of reported results, (4) indirectness of the outcome, (5) imprecision of the reported results, and 
(6) publication bias.

Data availability
The search strategy and extracted data contributing to the meta-analysis is available in the appendix; any addi-
tional data are available on request from the corresponding author.
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