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The expression level of the transcription ® e
factor Aryl hydrocarbon receptor nuclear
translocator (ARNT) determines cellular

survival after radiation treatment
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Abstract

Background: Tumour hypoxia promotes radioresistance and is associated with poor prognosis. The transcription
factor Aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as Hypoxia-inducible factor (HIF)-1(3, is
part of the HIF pathway which mediates cellular adaptations to oxygen deprivation and facilitates tumour
progression.

The subunits HIF-1a and ARNT are key players within this pathway. HIF-1a is regulated in an oxygen-dependent
manner whereas ARNT is considered to be constitutively expressed. However, there is mounting evidence that
certain tumour cells are capable to elevate ARNT in hypoxia which suggests a survival benefit.

Therefore the objective of this study was to elucidate effects of an altered ARNT expression level on the cellular
response to radiation.

Methods: Different human cell lines (Hep3B, MCF-7, 786-Owt, 786-Ovhl, RCC4wt and RCC4vhl) originating from
various tumour entities (Hepatocellular carcinoma, breast cancer and renal cell carcinoma respectively) were X-
irradiated using a conventional linear accelerator. Knockdown of ARNT expression was achieved by transient siRNA
transfection. Complementary experiments were performed by forced ARNT overexpression using appropriate
plasmids. Presence/absence of ARNT protein was confirmed by Western blot analysis. Clonogenic survival assays
were performed in order to determine cellular survival post irradiation. Statistical comparison of two groups was
achieved by the unpaired t-test.

Results: The results of this study indicate that ARNT depletion renders tumour cells susceptible to radiation
whereas overexpression of this transcription factor confers radioresistance.

Conclusions: These findings provide evidence to consider ARNT as a drug target and as a predictive marker in
clinical applications concerning the response to radiation.
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Background

Treatment of cancer by radiation is a common mo-
dality in oncology and applied depending on tumour
entity and staging [1-4]. In breast cancer patients, ad-
juvant radiotherapy reduces the risk of recurrence
and improves overall survival [3]. In radioresistant
malignancies such as hepatocellular carcinoma (HCC)
and renal cell carcinoma (RCC) radiotherapy is pri-
marily used in a palliative setting in order to control
metastatic spread [4, 5].

The resistance/sensitivity of tumour cells to radiation
is governed by the intracellular oxygen (O,) concentra-
tion [6]. Oxygen is a biologically important element re-
quired as electron acceptor in mitochondrial energy
generation [7, 8]. Additionally, it is a potent radiosensiti-
zer due to its chemical properties as a highly reactive
electrophile [6]. The oxygenation of solid tumours is
heterogeneous and depends on the distance to the near-
est blood vessel [9]. Oxygen deprived (i.e., hypoxic) areas
are commonly found within neoplasms due to an exces-
sive cell proliferation and are associated with increased
radioresistance [1, 10, 11]. In general, tumour hypoxia is
considered as a prognostic parameter predicting poor
overall- and disease-free survival independent of the
tumour grade [6].

In order to survive, tumour cells are forced to adapt to
hypoxic conditions [7, 12]. This is mainly mediated by
activation of the Hypoxia-inducible factor (HIF) pathway
which consists of several transcription factors of the Per-
ARNT-Sim family [12]. HIF target genes (e.g., Vascular
endothelial growth factor (VEGF), Lactate dehydrogenase
(LDH), etc.) regulate a number of cellular responses
including metabolic alterations leading to reduced mito-
chondrial oxygen consumption and augmented glycolysis
[12, 13]. The induction of angiogenesis and invasion/
metastasis are HIF-dependent processes accelerating
tumour progression. Furthermore, HIF signalling contrib-
utes to the cancer stem-cell phenotype and radioresistance
[12, 14, 15]. Therefore inhibition of the HIF pathway in
various ways is considered as a treatment option in cancer
therapy [2, 16-21] and as an opportunity to overcome
radioresistance [1].

Three structurally related HIF-a subunits have been
described which are regulated in a similar manner
but differ in their pattern of expression. HIF-la is
ubiquitously expressed whereas HIF-2a is more re-
stricted to certain cell types [12, 22]. HIF-3a exists in
several splice variants which can activate and inhibit
hypoxia-dependent gene expression [23]. The impact
of specific HIF-a subunits on tumourigenesis relies
on the cellular context [24]. For instance, both HIF-
la and HIF-2a are correlated with poor prognosis in
breast cancer [24] whereas clear cell renal carcinomas
are addicted to HIF-2a [22].
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The subunit HIF-1a plays a key role in the HIF path-
way and is regulated in an oxygen-dependent manner.
Under normoxic conditions HIF-1a is hydroxylated at
two conserved proline residues by specific Prolylhydrox-
ylase domain (PHD) enzymes. Subsequently this post-
translational modification is recognized by the von
Hippel-Lindau tumour suppressor protein (pVHL)
which is part of an ubiquitin ligase complex and medi-
ates the proteasomal degradation of HIF-1a [12, 14, 15].
In contrast, oxygen deprivation prevents enzymatic ac-
tivity of PHDs thus leading to accumulation of HIF-1a
and nuclear translocation [25]. Within the nucleus, HIF-
la binds to the Aryl hydrocarbon receptor nuclear
translocator (ARNT), also known as HIF-1f, and forms
the transcriptional active HIF-1 complex [14]. After-
wards target gene expression is initiated by binding of
HIF-1 to hypoxia-responsive elements within the pro-
moter sequence in conjunction with co-factors such as
CBP/p300 [12, 14, 15].

An equivalent mechanism applies for HIF-2a and spe-
cific HIF-3a variants. In general, all HIF-a subunits are
capable to heterodimerize with ARNT in order to form
functional HIF complexes (HIF-1, HIF-2 and HIF-3 re-
spectively) [12, 23]. Therefore a competition of HIF-a
subunits in binding to ARNT was proposed [23].

In contrast, ARNT is generally regarded to be consti-
tutively expressed meaning to be unaffected by oxygen
tension. However, there is mounting evidence that cer-
tain cell types are capable to elevate ARNT in response
to hypoxia [15, 26, 27]. It was demonstrated, that
hypoxia-dependent upregulation of ARNT was mediated
in a HIF-la-dependent manner in human melanoma
cells [26].

Therefore it is reasonable to hypothesize that an
elevated ARNT expression level might provide a
clonal advantage for tumour cells. The aim of this
study was to elucidate the effects of ARNT silencing
and overexpression in different tumour cell lines re-
garding radioresistance.

Methods

Cell culture

The human breast adenocarcinoma cell line MCEF-7
(ATCC) and human renal carcinoma cells 786-Owt,
786-Ovhl, RCC4wt and RCC4vhl (all described in [28])
were maintained in DMEM high glucose medium
(Gibco®) supplemented with 10 % fetal bovine serum
(FBS, Gibco®) and Penicillin/Streptomycin. Human hepa-
tocellular carcinoma Hep3B cells (ATCC) were cultured
in RPMI 1640 medium (Gibco®) supplemented with
10 % FBS and Penicillin/Streptomycin. Cell cultures
were maintained at 37 °C in a humidified atmosphere
containing 5 % v/v CO,. Cells were harvested by
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trypsinization and subcultured at least twice a week in a
ratio of 1:5 — 1:10.

Hypoxic exposure

1,7 x 10° cells were plated on 10 cm Petri-dishes and
allowed to adhere overnight. On the next day, the super-
natant was replaced by 10 ml fresh growth medium and
cells were exposed to hypoxia (3 % v/v O,) for 8 h at
37 °C using a standard cell culture incubator with satu-
rated humidified atmosphere (5 % v/v CO,, balanced
N,). For control, cells were maintained under normoxic
standard cell culture conditions.

siRNA transfection

Gene silencing was achieved by a reverse transfection
procedure using Lipofectamine® RNAIMAX (Life tech-
nologies) in accordance with the manufacturer’s guide-
lines. Therefore, cells were seeded on 24-well plates and
mixed with the transfection mixture containing either
ARNT siRNA (#s1613, Ambion) or BLOCK-iT™ Fluores-
cent Control siRNA (#442926, Life technologies). Subse-
quently cells were incubated overnight and subjected to
irradiation. To gain protein lysates for Western blot ana-
lysis, the transfection procedure was performed in 6-well
plates.

Transient plasmid transfection

4% 10* cells/well were seeded in 24-well plates using
antibiotic-free growth medium and incubated overnight.
On the next day, the medium was renewed and transfec-
tion procedure was performed using GeneJuice® (Merck
Millipore) according to the supplier’s protocol. Cells
were transfected overnight either with 0.5 pg DNA/well
of an appropriate ARNT expression vector (pcDNA3-
ARNT) or the empty plasmid for control (pcDNA3).
Subsequently cells were subjected to irradiation. To gain
protein lysates for Western Blot analysis, transfection
procedure was up-scaled and performed in 6-well plates.

Irradiation of cells and clonogenic survival assays

Untransfected cells were seeded in 24-well plates at a
density of 5 x 10* cells/well 1 day before irradiation. X-
rays were applied using a conventional linear accelerator
(Mevatron-74, Siemens or Clinac DHX, Varian) at doses
ranging from 0 to 10 Gray (Gy) with 2Gy intervals. Clo-
nogenic survival of cells was assayed as described previ-
ously [2]. Briefly, cells were harvested after irradiation
using Accutase™ (PAA), counted by an automated trypan
blue-exclusion technique (Cellometer™, Nexcelom Bio-
science) and seeded in triplicates in 6-well plates at a de-
fined density. Subsequently cells were grown in
normoxia for 9 or 12 days (MCEF-7). Finally, cells were
washed with cold Phosphate buffered saline (PBS), fixed
with 3.7 % Formaldehyde and 70 % Ethanol. Colonies

Page 3 of 9

were stained with Coomassie and counted. Clonogenic
survival of irradiated cells was calculated on a percent-
age basis compared to appropriate non-irradiated
controls.

Gene expression analysis

Gene expression was analysed by quantitative reverse
transcription — polymerase chain reaction (qRT-PCR).
Therefore total RNA was isolated using the innuPREP
RNA Mini Kit (Analytik Jena) as described in the sup-
plier’s protocol. Reverse transcription was performed
using oligo-dT primer and M-MuLV Reverse Transcript-
ase (New England Biolabs) in accordance with the man-
ufacturer’s guidelines. ARNT mRNA expression was
measured using TagMan® Gene Expression Assays
(#Hs01121918_m1, Applied Biosystems) and compared
to endogenous Beta-2-microglobulin (B2M) mRNA ex-
pression levels (#Hs00984230_m1, TagMan® Gene Ex-
pression Assays, Applied Biosystems). Quantitative real-
time PCR was carried out on an ABI PRISM® 7000 in-
strument (Applied Biosystems) applying the protocol for
comparative relative quantitation (AAC; method).

Western blot analysis

Cells were lysed using urea buffer as described previ-
ously [2, 27]. The protein concentration of sonicated cell
lysates was determined using the DC™ Protein Assay
(Bio-Rad) according to the supplier’s guidelines. A total
protein amount of 50 pg/lane was dissolved on a 7.5 %
acrylamide gel and blotted onto Polyvinyl difluoride
(PVDF) membrane (Immobilon-P, 0.45 pm, Merck Milli-
pore) using the semi-dry technique. Unspecific binding
sites were blocked with 5 % non-fat dry milk/PBS for
1 h. Membranes were probed with anti-HIF-1a (1:1000,
clone 54/HIF-1a, #610959, BD Transduction Laborator-
ies™), anti-HIF-2a (1:1000, polyclonal, #NB100-122,
Novus Biologicals) or anti-ARNT (1:2000, clone 2B10,
#NB300-525, Novus Biologicals) antibodies overnight
agitating at 4 °C. Equal loading of samples and transfer
was verified using an anti-Actin (1:2000, polyclonal, #sc-
1615, Santa Cruz Biotechnology) antibody applied for
1 h at room temperature. Appropriate HRP-conjugated
secondary antibodies (DAKO, 1:5000) were applied for
1 h at room temperature followed by chemo-
luminescence detection using the ECL reagent (Clarity™
Western ECL, Bio Rad). Finally membranes were ex-
posed to X-ray films (Amersham Hyperfilm™ MP, GE
Healthcare).

Statistics

Statistical analysis was performed using GraphPad
Prism® 4 software (GraphPad). All values are presented
as mean +/- standard error of the mean (SEM). Each
experiment was repeated at least three times. Clonogenic
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survival curves represent the mean +/- SEM of at least
five independent experiments. The unpaired ¢-test was
applied to compare two groups. P values <0.05 were
considered as statistically significant.

Results

ARNT depletion renders tumour cells susceptible to
radiation

Human Hep3B cells are capable to upregulate ARNT in
response to reduced oxygen supply as demonstrated by
previous studies [27, 29]. In order to investigate the im-
portance of this transcription factor in cellular radiore-
sistance, ARNT was knocked down in Hep3B cells using
siRNA. Western blot analysis confirmed the successful
depletion of the transcription factor in ARNT-siRNA
transfected Hep3B cells (Fig. 1a).

The same siRNA-based approach was applied prior ra-
diation treatment. Therefore Hep3B cells were again
transfected either with a non-target control or ARNT
siRNA and irradiated with doses from 2 to 10 Gy. Subse-
quently the tumour-initiating capacity of cells was mea-
sured by clonogenic survival assays. As shown in Fig. 1b
(and Additional file 1: Figure Sla), silencing of ARNT
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significantly reduces radioresistance in Hep3B cells com-
pared to appropriate controls.

In order to test whether ARNT influences the re-
sponse of human breast cancer cells to radiation, MCF-7
cells, which represent one of the most widely used
models of this malignancy [30], were transfected either
with control- or ARNT siRNA. The functionality of the
knockdown procedure was tested by Western blotting
(Fig. 1c). Irradiated ARNT-silenced MCEF-7 cells exhib-
ited a significant decrease in radioresistance as com-
pared to control cells (Fig. 1d, Additional file 1: Figure
S1b).

These findings indicate a key role of the transcription
factor ARNT mediating cellular radioresistance.

ARNT mRNA and protein expression differs among renal
cell carcinoma cell lines and depends on pVHL status
Renal carcinoma cells are characterized by constitutive
HIF signalling due to pVHL loss of function [22]. In
order to test whether ARNT is affected by pVHL-status
in addition to reduced oxygen supply in this cell type,
786-O and RCC4 wildtype (wt) and stably pVHL-
transfected counterparts (vhl) were subjected to 3 % O,
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Fig. 1 Effect of ARNT knockdown on radioresistance. a Hep3B cells were transfected with non-target control siRNA (ctrl) or siRNA against ARNT
(SIARNT) and subjected to Western blot analysis. Actin levels were determined for loading control. Protein masses are indicated on the right in kDa.

b Clonogenic survival assays of control- (ctrl.) or ARNT siRNA (siARNT) transfected and irradiated Hep3B cells. n =6, mean +/— SEM, unpaired t-test; ()
MCF-7 cells were transfected and Western blot analysis performed as described in a). d Clonogenic survival assays of irradiated MCF-7cells transfected
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for 8 h or maintained in normoxia for control. As shown
in Fig. 2a, 786-0O cells lack HIF-1a. As expected, HIF-2a
protein was pronounced expressed even under normoxic
conditions in 786-Owt cells. In contrast, HIF-2a was de-
tected in normoxic 786-Ovhl cells at lower levels com-
pared to wildtype counterparts. Elevation of HIF-2a due
to hypoxic exposure demonstrates a functional canonical
HIF pathway in 786-Ovhl cells. ARNT protein levels
were unaffected by oxygen deprivation in both 786-Owt
and 786-Ovhl cells. Interestingly, ARNT was decreased
in stably transfected 786-Ovhl cells compared to wild-
type controls under normoxic and hypoxic conditions.
HIF-la and HIF-2a were profoundly expressed in
RCC4wt cells independent of oxygen tension. Both
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subunits were not detected in normoxic RCC4vhl cells
but accumulate under hypoxic conditions which indicate
canonical HIF signalling. ARNT protein level was equal
in RCC4wt and RCC4vhl cells and unaffected by
hypoxia.

To confirm these findings, ARNT mRNA levels were
measured by qRT-PCR using the same experimental
conditions and normalized to normoxic 786-Owt cells
(Fig. 2b). Noteworthy and in contrast to ARNT protein
level, ARNT mRNA expression was equal in both 786-
Owt and 786-Ovhl cells independent of oxygen tension.

In order to test whether pVHL expression facilitates
proteasomal degradation of ARNT, 786-Ovhl cells were
treated with various concentrations of the proteasome
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Fig. 2 ARNT expression in renal carcinoma cells and response to radiation. a 786-O and RCC4 wildtype (wt) and pVHL expressing (vhl) cells respectively
were seeded on Petri-dishes followed by exposure to normoxia (N) or hypoxia (H, 3 % O,) for 8 h. Protein levels of HIF-1q, HIF-2a and ARNT were
assayed by Western Blotting. Actin levels were determined for loading control. Protein masses are indicated on the right in kDa. Representative result
of n =3 independent experiments. b ARNT mRNA expression in 786-Owt, 786-Ovhl, RCC4wt and RCC4vhl cells exposed to normoxia (N) or hypoxia
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inhibitor MG-132. ARNT protein expression was not
rescued by MG-132 treatment (not shown) in 786-Ovhl
cells thus indicating a post-transcriptional mechanism.

The ARNT mRNA level in RCC4wt cells was slightly
elevated in hypoxia compared to normoxic controls
(Fig. 2b). Stably pVHL expressing RCC4vhl counterparts
exhibited an approximately three fold increase of ARNT
mRNA independent of oxygen tension. Interestingly, this
effect was not accompanied with an appropriate increase
of ARNT protein level in RCC4vhl cells (Fig. 2a). These
findings again point towards a pVHL-dependent regula-
tion on ARNT mRNA level in this model system.

Radiosensitivity of renal carcinoma cells is influenced by
pVHL

Next, radiosensitivity of renal carcinoma cell lines was
investigated. As shown in Fig. 2c (and Additional file 2:
Figure S2a), 786-Ovhl cells were significantly more re-
sistant to radiation treatment compared to wildtype
counterparts. Interestingly, an opposite effect was ob-
served in the RCC4 model system (Fig. 2d, Additional
file 2: Figure S2b). Herein stably transfected RCC4vhl
cells were more sensitive to X-rays as compared to
RCC4wt cells. These results demonstrate that pVHL af-
fects radiosensitivity in a cell-specific manner.

Effects of ARNT on radiosensitivity of 786-Owt cells
786-Owt cells exhibited an elevated ARNT protein level
compared to stably transfected 786-Ovhl cells (Fig. 2a).
In order to test whether ARNT affects radiosensitivity in
this cell line, the transcription factor was silenced by
siRNA prior to irradiation. Figure 3a shows the success-
ful depletion of the transcription factor in ARNT-siRNA
transfected 786-Owt cells. As shown in Fig. 3b, silencing
of ARNT rendered 786-Owt cells more susceptible to
radiation beyond doses of 4Gy as compared to appropri-
ate control cells.

Page 6 of 9

Overexpression of ARNT confers tumour cells a
radioresistant phenotype

In order to test whether an increased ARNT expression
might affect radiosensitivity, Hep3B cells were transiently
transfected either with an appropriate expression- or
empty control vector prior to irradiation. Elevated ARNT
protein expression in appropriate transfected cells was
analysed as shown in Fig. 4a. Clonogenic survival assays of
irradiated ARNT-overexpressing Hep3B cells revealed a
significant increase in radioresistance compared to vector-
transfected controls (Fig. 4b, Additional file 3: Figure S3a).

To investigate whether ARNT overexpression also shifts
breast cancer cells towards a more radioresistant pheno-
type, MCEF-7 cells were transiently transfected as described
above. Successful transfection and ARNT overexpression
in this cell line was confirmed as shown in Fig. 4c. ARNT-
overexpressing MCEF-7 cells exhibited an increased resist-
ance to radiation as compared to appropriate control cells
(Fig. 4d, Additional file 3: Figure S3b).

The results of these complementary experiments indi-
cate a clonal benefit of an elevated ARNT expression in
tumour cells regarding the cellular survival after radi-
ation treatment.

Discussion

The results of this study demonstrate a novel and more
pronounced role of the transcription factor ARNT re-
garding the cellular survival after irradiation. Depletion
of ARNT by siRNA conferred Hep3B and MCE-7
tumour cells a radiosensitive phenotype whereas overex-
pression promotes radioresistance. This quantitative ef-
fect indicates that an elevated ARNT expression
provides a selective survival benefit after radiation treat-
ment in these cell models. Therefore it is reasonable to
hypothesize whether radiotherapy might be a selection
pressure and facilitates the enrichment of high ARNT
expressing cells in hepatocellular carcinoma and breast
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Fig. 3 Knockdown of ARNT in 786-Owt cells and effects on radioresistance. a 786-Owt cells were transfected with non-target control (ctrl.) siRNA or
SIRNA against ARNT (siARNT) and subjected to Western blot analysis. Actin levels were determined for loading control. Protein masses are indicated on
the right in kDa. b Clonogenic survival assays of irradiated 786-Owt cells transfected as described in (a). n =6, mean +/— SEM, unpaired t-test
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cancer respectively. This issue should be addressed in fu-
ture studies. For instance, by analysis of appropriate clin-
ical samples using immunohistochemistry.

A similar radio-sensitizing effect was observed in
ARNT-silenced 786-Owt renal carcinoma cells at high
doses. Interestingly, the results demonstrate that pVHL
status affects radiosensitivity and ARNT mRNA and
protein expression in both renal carcinoma cell models
analysed. These effects are cell-context dependent and
differ among 786-O and RCC4 cells. This raises the
question regarding the mechanistic linkage between
pVHL and ARNT expression.

It was demonstrated that kidney cancers exhibit in-
creased NF-kB activity and that pVHL is a negative
regulator of this pathway [31]. In addition, Van Uden et
al. showed that ARNT is a NF-kB target gene [32]. A
similar mechanism might therefore explain the reduced
ARNT protein level in 786-Ovhl cells.

Furthermore, it was reported that pVHL is a multi-
functional protein also influencing the mRNA stability
of certain genes. In 786-O cells, pVHL affects the ex-
pression of approximately 800 genes which strongly sug-
gests a more complex role beyond its participation in
the HIF pathway [33]. However, the exact mechanism

how pVHL regulates ARNT expression remains to be
elucidated.

Renal cancer is a radioresistant malignancy [4] and ef-
forts have been made in order to improve radiosensitiv-
ity [34]. For instance, treatment of renal carcinoma cells
with the anti-inflammatory drug Ibuprofen resulted only
in moderate effects [34]. Targeting the pVHL/HIF path-
way in an effective way was proposed as a treatment op-
tion in renal cell carcinoma [35] but quantitative and
qualitative differences among HIF-a subunits in this ma-
lignancy need to be considered [22]. In general, HIF in-
hibition is regarded to be beneficial in anti-cancer
therapy [2, 16, 36].

ARNT was also anticipated as a profound thera-
peutic target in certain types of cancer [37]. Indeed,
the data presented in our study supports this notion.
Inhibition of ARNT expression might therefore render
appropriate tumour cells more susceptible to
radiotherapy.

According to the majority of literature, ARNT is
regarded to be constitutively expressed but certain
tumour cell lines are capable to elevate ARNT in hyp-
oxia [15, 26, 27]. Investigating the molecular mechanism
of ARNT expression under oxygen deprivation might
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reveal further opportunities for intervention in order to
promote radiosensitivity.

The “drugability” of a target is important for validation
and clinical application. One option is the prevention of
protein-protein interactions which are mediated via large
domains [38]. The PAS domains are conserved struc-
tures among HIF proteins including ARNT [12]. Studies
have demonstrated that blocking of PAS domains by
specific inhibitors is a feasible approach to prevent het-
erodimerization among subunits [18, 39, 40]. Recently,
an ARNT inhibitor was described by Guo et al. which
selectively interacts with the PAS-B domain [17]. It is
likely that the described pro-survival effects of ARNT in
our study are mediated by interaction with a HIF-a
subunit.

Isaacs et al. demonstrated, that ARNT can stabilize its
binding partner HIF-1a [41]. Thus an elevated ARNT
level might lead to a prolonged HIF signalling after ir-
radiation. Avoidance of HIF-a/ARNT heterodimeriza-
tion by an appropriate inhibitor or small molecule ligand
might therefore contribute to radiosensitivity.

Another possible mechanism to prevent ARNT from
exerting its function as a transcription factor might be
to modulate nuclear translocation. It was demonstrated
that HIFs are transferred into the nucleus in an
importin-dependent manner [42]. Additionally, it was
proposed that targeted mislocalization of proteins might
be a promising strategy in cancer therapy [14].

Moreover, Harada et al. showed that cancer cells ac-
quire HIF-1 activity after radiotherapy [43]. Our results
are in-line with this observation demonstrating that
ARNT is required for clonogenic cell survival after ir-
radiation. The fact that ARNT overexpression promotes
a radioresistant phenotype in Hep3B and MCF-7 cells
supports the concept of ARNT as being a limiting factor
in HIF signalling as previously proposed [26].

Conclusions

The transcription factor Aryl hydrocarbon receptor nu-
clear translocator (ARNT), also known as Hypoxia-
inducible factor (HIF)-1p, is part of the HIF signalling
pathway which mediates cellular adaptations to oxygen
deprivation and contributes to radioresistance of neo-
plasms. ARNT is generally considered as constitutively
expressed but emerging evidence indicates the capability
of certain tumour cells to upregulate ARNT in response
to hypoxia. Thus an elevated ARNT expression level
might provide a clonal advantage for tumour cells.

The results of our study demonstrate that ARNT de-
pletion renders tumour cells susceptible to radiation
whereas overexpression of this transcription factor pro-
motes radioresistance. These findings provide a rationale
to consider ARNT as a drug target and as a predictive
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marker in clinical applications regarding the response to
radiation.
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