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Abstract 

Background: Despite the recognized importance of module discovery in biological networks to enhance our 
understanding of complex biological systems, existing methods generally suffer from two major drawbacks. First, 
there is a focus on modules where biological entities are strongly connected, leading to the discovery of trivial/well-
known modules and to the inaccurate exclusion of biological entities with subtler yet relevant roles. Second, there is a 
generalized intolerance towards different forms of noise, including uncertainty associated with less-studied biological 
entities (in the context of literature-driven networks) and experimental noise (in the context of data-driven net-
works). Although state-of-the-art biclustering algorithms are able to discover modules with varying coherency and 
robustness to noise, their application for the discovery of non-dense modules in biological networks has been poorly 
explored and it is further challenged by efficiency bottlenecks.

Methods: This work proposes Biclustering NETworks (BicNET), a biclustering algorithm to discover non-trivial 
yet coherent modules in weighted biological networks with heightened efficiency. Three major contributions are 
provided. First, we motivate the relevance of discovering network modules given by constant, symmetric, plaid and 
order-preserving biclustering models. Second, we propose an algorithm to discover these modules and to robustly 
handle noisy and missing interactions. Finally, we provide new searches to tackle time and memory bottlenecks by 
effectively exploring the inherent structural sparsity of network data.

Results: Results in synthetic network data confirm the soundness, efficiency and superiority of BicNET. The applica-
tion of BicNET on protein interaction and gene interaction networks from yeast, E. coli and Human reveals new mod-
ules with heightened biological significance.

Conclusions: BicNET is, to our knowledge, the first method enabling the efficient unsupervised analysis of large-
scale network data for the discovery of coherent modules with parameterizable homogeneity.
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Introduction
The increasing availability of precise and complete bio-
logical networks from diverse organisms provides an 
unprecedented opportunity to understand the organiza-
tion and dynamics of cell functions [1]. In particular, the 
discovery of modules in biological networks has been 
largely proposed to characterize, discriminate and predict 

such biological functions [1–6]. The task of discover-
ing modules can be mapped as the discovery of coherent 
regions in weighted graphs, where nodes represent the 
molecular units (typically genes, proteins or metabolites) 
and the scored edges represent the strength of interac-
tions between the biological entities. In this context, a 
large focus has been placed on the identification of dense 
regions [7–10], where each region is given by a statistically 
significant set of highly interconnected nodes. In recent 
years, several biclustering algorithms have been pro-
posed to discover dense regions from (bipartite) graphs 
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by mapping them as adjacency matrices and searching for 
dense submatrices [8, 10–13]. A bicluster is then given by 
two subsets of strongly connected nodes.

Despite the relevance of biclustering to model local 
interactions [14, 15], the focus on dense regions comes 
with key drawbacks. First, such regions are associated 
with either trivial or well-known (putative) modules. Sec-
ond, the scores of the interactions associated with less 
studied genes, proteins and metabolites have lower con-
fidence (being the severity of these penalizations highly 
dependent on the studied organism) and may not reflect 
the true role of these molecular interactions in certain cel-
lular processes [16]. In particular, the presence of (well-
studied) regular/background cellular processes may mask 
the discovery of sporadic or less-trivial processes, pre-
venting the discovery of new putative functional modules.

Although biclustering has been proved to be an effec-
tive tool to retrieve exhaustive structures of dense 
regions in a network [8, 11–13, 17], it has not yet been 
effectively applied to the discovery of modules with alter-
native forms of coherency due to two major challenges. 
First, despite the hypothesized importance of discover-
ing biclusters associated with non-dense regions (char-
acterized for instance by constant, order-preserving or 
plaid coherencies), there are not yet mappings enabling 
the understanding of their biological meaning. Second, 
the hard combinatorial nature of biclustering data when 
considering non-dense forms of coherency, together 
with the high dimensionality of the adjacency matrices 
derived from biological networks, are often associated 
with memory and time bottlenecks, and/or undesirable 
restrictions on the structure and quality of biclusters.

This work aims to tackle these problems by: (1) ana-
lyzing the biological relevance of modeling non-dense 
regions in a biological network, and (2) enabling the 
efficient discovery of flexible biclustering solutions 
from large-scale networks. For this end, we propose 
the algorithm Biclustering NETworks (BicNET). Bic-
NET integrates principles from pattern-based bicluster-
ing algorithms [15, 18] and adapts their data structures 
and searches to explore efficiency gains from the inher-
ent sparsity of biological networks. Furthermore, we 
motivate the relevance of finding non-dense yet coher-
ent modules and provide a meaningful analysis of Bic-
NET’s outputs. In this context, this paper has six major 
contributions:

  • Principles for the discovery of modules in weighted 
graphs given by parameterizable forms of coherency 
(including constant, order-preserving, symmetric 
assumptions) with non-dense yet meaningful interac-
tions, and given by plaid structures to accommodate 
weight variations explained by the network topology;

  • Principles for the discovery of modules robust to 
missing and noisy interactions;

  • New biclustering algorithm (BicNET) able to accom-
modate the proposed principles and adequately dis-
cover modules from data with arbitrary-high spar-
sity;

  • Adequate data structures and searches to guarantee 
BicNET’s applicability over large networks;

  • Principles for biclustering different types of net-
works, including homogeneous and heterogeneous 
networks, and networks with either weighted or 
labeled interactions;

  • Theoretical and empirical evidence of the biological 
relevance of the modules discovered using non-dense 
coherency assumptions.

Results gathered from synthetic and real data demon-
strate the relevance of the proposed principles for biclus-
tering large-scale biological networks, and in particular the 
ability of BicNET to discover a complete set of non-trivial 
yet coherent and (biologically) significant modules from 
molecular-interactions inferred from knowledge reposito-
ries [16] and experimental data [19] for different organisms.

Figure 1 provides a structured view on the challenges 
and proposed contributions. Accordingly, this work is 
organized as follows. First, we provide background on 
the target task. "BicNET: solution" and "BicNET: algo-
rithmic aspects" sections describe the principles used 
by BicNET and its algorithmic details. "Results and 
discussion" section provides empirical evidence for the 
relevance of BicNET to unravel non-trivial yet relevant 
modules in synthetic and real biological networks. 
Finally, we draw conclusions and highlight directions for 
future work.

Background
In this section, we provide the basics on biological net-
works, background on biclustering network data, and 
a discussion on the importance and open challenges of 
biclustering non-dense network modules. Finally, the 
opportunities and limitations of pattern-based bicluster-
ing for this end are surveyed.

Biological networks
A biological network is a linked collection of biological 
entities (proteins, protein complexes, genes, metabolites, 
etc.). Biological networks are typically classified accord-
ing to the observed type of biological entities and their 
homogeneity. Homogeneous networks are given, for 
instance, by protein-protein interactions (PPI) and gene 
interactions (GI). Heteregeneous networks capture inter-
actions between two distinct data sources, such as pro-
teins and protein complexes, host and viral molecules, 
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biological entities and certain functions, among others. 
Biological networks can be further classified according 
to the type of interactions: weighted interactions (either 
determining the degree of physical or functional associa-
tion) or qualitative/labeled interactions (such as ’binding’, 
’activation’ and ’repression’, etc.). The methods targeted 
by this work aim to analyze both homogeneous and het-
erogeneous biological networks with either weighted or 
qualitative interactions.

Biclustering network data
The introduced types of biological networks can be 
mapped as bipartite graphs for the subsequent discovery 
of modules.

Definition 1 A graph is defined by a set of nodes 
X = {x1, .., xn}, and interactions aij relating nodes xi and 
xj , either numeric (aij ∈ R) or categoric (aij ∈ L, where L 
is a set of symbols). A bipartite graph is defined by two 
sets of nodes X = {x1, . . . , xn} and Y = {y1, . . . , ym} with 
interactions aij between nodes xi and yj.

Definition 2 Given a bipartite graph (X,  Y), the 
biclustering task aims to identify a set of biclusters 
B  =  {B1, ..,Bp}, where each bicluster Bk  =  (Ik , Jk) is a 
module (or subgraph) in the graph given by two subsets 
of nodes, Ik ⊆ X ∧ Jk ⊆ X, satisfying specific criteria of 
homogeneity and statistical significance.

Under the previous definitions, both homogeneous 
networks (Y = X) and heterogeneous networks are can-
didates for biclustering. The task of biclustering net-
work data can be tackled by using the traditional task 
of biclustering real-valued matrices by subsequently 
mapping a bipartite graph as a matrix (with rows and 
columns given by the nodes and values given by the 
scored interactions). In this case, subsets of rows and 
columns define a bicluster. A bicluster is associated with 
a module in the network with coherent interactions (see 
Figs. 2, 3).

The homogeneity criteria determines the structure, 
coherency and quality of the biclustering solutions, 
while the statistical significance of a bicluster determines 

Fig. 1 Structured view on the existing challenges, proposed contributions (and their applicability) for an effective and efficient (pattern-based) 
biclustering of network data
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whether its probability of occurrence deviates from 
expectations. The homogeneity of a biclustering model 
is commonly guaranteed through a merit function. An 
illustrative merit function is the variance of the values 
in the bicluster. The structure of a biclustering solution 
is essentially defined by the number, size and position-
ing of biclusters. Flexible structures are characterized by 
an arbitrary-high set of (possibly overlapping) biclusters. 
The coherency of a bicluster is defined by the observed 
correlation of values (coherency assumption) and by 
the allowed deviation from expectations (coherency 
strength). The quality of a bicluster is defined by the type 
and amount of accommodated noise. Figure 2 illustrates 
biclusters with varying coherency and quality.

The paradigmatic assumption when biclustering net-
work data is to rely on the dense coherency [20] (Defini-
tion 3). Definitions 4 and 5 formalize for the first time the 
meaning of distinct coherency assumptions in the con-
text of weighted network data. The constant assumption 
(Definition 4) introduces the possibility of accommodat-
ing biological entities with (possibly) distinct strengths/
types of interactions yet coherent behavior. This already 
represents an improvement in terms of flexibility against 
the dense assumption. Alternative coherency assump-
tions can be given by symmetric, order-preserving and 
plaid models (Definition 5).

Definition 3 Let the elements in a bicluster aij ∈ (I , J ) 
have a specific coherency. A bicluster is dense when 

the average of its values is significantly high (deviates 
from expectations), where the average value is given by 
1

|I ||J |�i∈I�j∈J aij .

Definition 4 A constant coherency assumption is 
observed when aij = kj + ηij, where kj is the expected 
strength of interactions between nodes in X and yj node 
from Y and ηij is the noise factor. In other words, constant 
biclusters have similarly scored interactions for each 
node from one of the two subsets of nodes. The coherency 
strength of a constant module is defined by the δ range, 
where ηij ∈ [−δ/2, δ/2].

Definition 5 The symmetric assumption considers 
the (possible) presence of symmetries within a constant 
bicluster, aij = kjci+ηij where ci ∈ {−1, 1}. An Order-
preserving assumption is verified when the values for 
each node in one subset of nodes of a bicluster induce 
the same linear ordering across the other subset of nodes. 
A plaid assumption [21] considers cumulative contri-
butions on the elements where biclusters/subgraphs 
overlap.

Pattern‑based biclustering
The discovery of dense modules in biological networks 
has been mainly accomplished using pattern-based 
biclustering algorithms [8, 10–13, 17] due to their intrin-
sic ability to exhaustively discover flexible structures of 

Fig. 2 Illustrative discrete biclusters with varying coherency and quality

Fig. 3 Pattern-based discovery of biclusters with constant and order-preserving coherency
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biclusters. Despite the focus on dense biclusters, pattern-
based biclustering is natively prepared to model alterna-
tive forms of coherency associated with constant models 
(when using frequent itemset mining) [15] and order-
preserving models (when using sequential pattern min-
ing) [22]. In this context, patterns (itemsets, rules, 
sequences or graphs appearing in a symbolic datasets 
with certain frequency) can be mapped as biclusters 
under a specific coherency strength determined by the 
number of symbols in the dataset (δ = 1/|L|   where L is 
the alphabet of symbols). This mapping1 led to the devel-
opment of several pattern-based approaches for biclus-
tering [15, 22–24]. Figure  3 illustrates how pattern 
mining can be used to derive constant and order-preserv-
ing biclusters. Recent advances on pattern-based biclus-
tering also show the possibility to discover biclusters 
according to symmetric and plaid models [15, 21] and to 
further guarantee their robustness to noise [15, 18, 22].

Related work
A large number of algorithms has been proposed to find 
modules in unweighted graphs (binary interactions) 
and weighted graphs (real-valued interactions) mapped 
from biological networks. In the context of unweighted 
graphs, clique detection with Monte Carlo optimization 
[25], probabilistic motif discovery [26] and clustering 
on graphs [27] have been, respectively, applied to dis-
cover modules in PPIs (yeast), GIs (E. coli) and metabolic 
networks.

In unweighted bipartite graphs, the densest regions 
correspond to bicliques. Bicliques have been efficiently 
discovered using Motzkin-Straus optimization [9], den-
sity-constrained biclustering [28], formal concepts and 
pattern-based biclustering [11, 12, 17]. In the context of 
weighted graphs, the density of a module is given by the 
average weight of the interactions within the module. 
Different scores have been proposed to determine the 
weight of an interaction, including the: functional corre-
lation between biological entities (when interactions are 
predicted from literature or other knowledge-based 
sources); or physical association (when interactions are 

1 Consider the specific case where pattern-based biclustering is given by 
frequent itemset mining. Let L be a finite set of items, and P an itemset 
P ⊆ L. A discrete matrix D is a finite set of transactions in L, {P1, .., Pn}. Let 
the coverage �P of an itemset P be the set of transactions in D in which P 
occurs, {Pi ∈ D | P ⊆ Pi}, and its support supP be the coverage size, | �P |. 
Given D and a minimum support threshold θ, the frequent itemset mining 
(FIM) problem consists of computing: {P | P ⊆ L, supP ≥ θ}.1 Given D, let 
a matrix A be the concatenation of D elements with their column (or row) 
indexes. Let �P of an itemset P in A be its indexes, and ϒP be its original 
items in L. A set of biclusters ∪k(Ik , Jk) can be derived from a set of frequent 
itemsets ∪kPk by mapping (Ik , Jk)=Bk, where Bk=(�Pk ,�Pk ), to compose con-
stant biclusters with coherency across rows (or (Ik , Jk)=(�Pk ,�Pk ) for col-
umn-coherency) with pattern ϒP.

derived from experimental data based for instance on the 
correlated variation of the expression of genes or concen-
tration of molecular compounds). Modules given by 
densely connected subgraphs have been discovered from 
PPIs using betweenness-based partitioning [27] and 
flow-based clustering algorithms in graphs [29]. Biclus-
tering has been largely applied for this end2 using 
SAMBA [20], multi-objective searches [34] and pattern-
based biclustering [6, 8, 10]. The application of these 
methods over both homogeneous and viral-host PPIs 
show that protein complexes largely match the found 
modules [27, 29, 34].

Pattern-based biclustering has been largely applied for 
the discovery of dense network modules [6, 8, 10–13, 
17] due to their intrinsic ability to exhaustively discover 
flexible structures of biclusters. In unweighted graphs, 
closed frequent itemset mining and association rule 
mining were applied to study interactions between pro-
teins and protein complexes in yeast proteome network 
[12, 17] and between HIV-1 and human proteins to pre-
dict and characterize host-cellular functions and their 
perturbations [12, 13]. More recently, association rules 
were also used to obtain a modular decomposition of GI 
networks with positive and negative interactions (aij ∈
{−1,0,1}) [11] for understanding between-pathway and 
within-pathway models of GIs. In weighted graphs, Dao 
et. al [6] and Atluri et. al [10] relied on the loose anti-
monotone property of density to propose weight-sen-
sitive pattern mining searches. DECOB [8], originally 
applied to PPIs and GIs from human and yeast, uses an 
additional filtering step to output dissimilar modules 
only.

Some of the surveyed contributions have been used or 
extended for classification tasks such as function predic-
tion [2, 12, 13]. Discriminative modules, often referred as 
multigenic markers, are critical to surpass the limitations 
of single gene markers and topological markers [2, 6, 
35, 36]. Network-based (bi)clustering methods for func-
tion prediction have been comprehensively reviewed by 
Sharan et al. [2].

The problem with the surveyed contributions is their 
inability to discover modules with parameterizable 
coherency assumption and strength.

Some simple variants of the dense coherency assump-
tion have been reviewed by Dittrich et  al. [37], Ideker 
et al. [4] and Sharan et al. [2]. Yet, the studied algorithms 
do not support the coherency assumptions explored in 
this work (Definitions 4 and 5). A first attempt to apply 

2 In the context of biological networks, biclustering has been also used to 
either validate or extract molecular interactions from biclusters discovered 
in gene expression and proteomic data [30–33]. This a rather distinct task 
that the target in this paper and thus out of the scope.
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biclustering algorithms with non-dense coherency over 
biological networks was presented by Tomaino et al. [40]. 
Despite its disruptive nature, this work suffers from two 
drawbacks. First, only considers very small PPIs (human 
and yeast PPIs with less than 200 interactions) due to the 
scalability limits of the surveyed biclustering algorithms 
to handle high-dimensional adjacency matrices. Second, 
although enriched biological terms have been identified 
for the discovered modules (pointing out the importance 
of using non-dense forms of coherency), an in-depth 
analysis of the modules with enriched terms as well as 
an explanation of the meaning of their coherency in the 
assessed networks is absent.

Research questions
Although biclustering can be easily applied over biologi-
cal networks to discover biclusters with varying coher-
ency criteria, three major challenges have been preventing 
this possibility up to date. First, state-of-the-art bicluster-
ing algorithms are not able to scale for the majority of the 
available biological networks due to the high dimensional-
ity of the mapped matrices [41]. Second, non-dense forms 
of coherency often come with the cost of undesirable 
restrictions on the number, positioning (e.g. non-over-
lapping condition) and quality of biclusters [15]. Finally, 
there is a generalized lack of understanding of the rele-
vance and biological meaning associated with non-dense 
modules [41]. Although pattern-based biclustering can be 
used to address the second challenge [15], it still presents 
efficiency bottlenecks and further knowledge is required 
for the correct interpretation of these regions.

In this context, this work targets two major research 
problems:

  • Discussion on whether biclustering can be efficiently 
and consistently applied over large-scale biological 
networks for the discovery of non-dense modules;

  • Assessment of the biological relevance of discovering 
network modules with varying coherency criteria.

BicNET: solution
In this section, we first introduce principles to enable 
the sound application of (pattern-based) biclustering 
over network data. Second, we motivate the relevance of 
discovering coherent modules following constant, sym-
metric and plaid models. Third, we show how to dis-
cover modules robust to noisy and missing interactions. 
Fourth, we extend pattern-based searches to seize effi-
ciency gains from the inherent structural sparsity of bio-
logical networks. Fifth, we see how module discovery can 
be guided in the presence of domain knowledge. Finally, 
we overview the opportunities of pattern-based biclus-
tering biological networks.

Biclustering network data
For an effective application of state-of-the-art bicluster-
ing algorithms towards (weighted) graphs derived from 
network data, two principles should be satisfied. First, 
the weighted graph should be mapped into a minimal 
bipartite graph. In heterogeneous networks, multiple 
bipartite graphs can be created (each with two disjoint 
sets of nodes with heterogeneous interactions). The 
minimality requirement can be satisfied by identifying 
subsets of nodes with cross-set interactions but with-
out intra-set interactions to avoid unnecessary dupli-
cated nodes in the disjoint sets of nodes (see Fig.  4). 
This is essential to avoid the generation of large bipar-
tite graphs and subsequent very large matrices. Second, 
when targeting non-dense coherencies from homogene-
ous networks, a real-valued adjacency matrix is derived 
from the bipartite graph by filling both aij and aji ele-
ments with the value of the interaction between xi and xj 
nodes. In the context of an heterogeneous network, two 
real-valued adjacency matrices are derived: one matrix 
with rows and columns mapped from the disjoint sets 
of nodes and its transpose. Despite the relevance of this 
second principle, some of the few attempts to find non-
dense biclusters in biological networks fail to satisfy it 
[40], thus delivering incomplete and often inconsistent 
solutions.

Under the satisfaction of the previous two principles, a 
wide-range of biclustering algorithms can be applied to 
discover modules with varying forms of coherency [14]. 
Yet, only pattern-based biclustering [15, 18, 42] is able to 
guarantee the discovery of flexible structures of biclus-
ters with parameterizable coherency and quality crite-
ria. Additionally, pattern-based biclustering provides an 
environment to easily measure the relevance and impact 
of discovering modules with varying coherency and tol-
erance to noise.

In particular, we rely on BicPAM, BiP and BicSPAM 
algorithms [15, 21, 22], which respectively use frequent 
itemset mining, association rule mining and sequential 
pattern mining to find biclusters with constant, plaid 
and order-preserving coherencies (in both the absence 
and presence of symmetries). These algorithms integrate 
the dispersed contributions from previous pattern-based 
algorithms and address some of their limitations, provid-
ing key principles to: (1) surpass discretization problems 
by introducing the possibility to assign multiple discrete 
values to a single element; (2) accommodate meaningful 
constraints and relaxations, while seizing their efficiency 
gains; and (3) robustly handle noise and missing values.

Figure  4 provides a view on how transactions can be 
derived from (heterogeneous) network data for the dis-
covery of constant modules based on the itemization 
(preceded by a noise-free discretization) of the (bipartite) 
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graph. A detailed description and formalization of these 
procedures and subsequent pattern mining and post-
processing steps is provided in [15, 22].

Modules with non‑dense forms of coherency using 
pattern‑based biclustering
Constant model
Given a bicluster defining a module with coherent inter-
actions between two sets of nodes, the constant coher-
ency (Definition 4) requires the nodes in one set to show 
a single type of interaction with the nodes in the other 
set. The constant model is essential to model biological 
entities with possibly distinct (yet coherent) responsive-
ness, influence or role in a given module. Despite the 
inherent simplicity of the constant model, its application 
over biological networks has not been previously tar-
geted. To illustrate the relevance of the constant model, 
consider a biological network with a set of interactions 
between genes and proteins, where their absolute weight 
defines the strength of the association and their sign 
determines whether the association corresponds to acti-
vation or repression mechanisms. The constant model 
guarantees that when a gene is associated with a group of 
proteins, it establishes the same type of interaction with 
all these proteins (such as heightened activation of the 
transcription of a complex of proteins). When analyzing 
the transposed matrix (by switching the disjoint sets of 
the bipartite graph), similar relations can be observed: a 
protein coherently affects a set of genes (softly repressing 
their expression, for example). The constant model can 
also disclose relevant interactions between homogeneous 
groups of genes, proteins and metabolites. Figure 5 pro-
vides an illustrative constant module.

The proposed constant model can be directly applied to 
networks with qualitative interactions capturing distinct 
types of regulatory relations, such as binding, activation 
or enhancement associations. Qualitative interactions are 
commonly observed for a wide-variety of PPIs [12, 13].

The constant model is essential to guarantee that bio-
logical entities with non-necessarily high (yet coherent) 
influence on another set of entities are not excluded. 
Typically, the constant coherency leads to the discovery 
of larger modules than the dense coherency. The excep-
tion is when the dense coherency is not given by highly 
weighted interactions, but instead by all interactions 
independently of their weight (extent of interconnected 
nodes). In this context, dense modules can be larger than 
constant modules.

Symmetric model
The presence of symmetries is key to simultaneously cap-
ture activation and repression mechanisms associated 
with the interactions of a single node [15]. The symmetric 

model introduces a new degree of flexibility by enabling 
the discovery of more complex regulatory modules, 
where a specific gene/protein may positively regulate 
some genes/proteins and negatively regulate other genes/
proteins within a single module, yet still respect the 
observed coherency. Figure  6 (left) illustrates the sym-
metric model, where symmetries (identified with dashed 
lines) are verified on rows.

Plaid model
The plaid assumption [21] is essential to describe over-
lapping regulatory influence associated with cumula-
tive effects in the interactions between the nodes in a 
biological network. Illustrating, consider that two genes 
interact in the context of multiple biological processes, a 
plaid model can consider their cumulative effect on the 
score of their interaction based on the expected score 
associated with each active process. The same observa-
tion remains valid to explain the regulatory influence 
between proteins. The use of the plaid assumption for 
the analysis of GIs and PPIs can also provide insights on 
the network topology and molecular functions, reveal-
ing: (1) hubs and core interactions (based on the amount 
of overlapping interactions), and (2) between- and 
within-pathway interactions (based on the interactions 
inside and outside of the overlapping areas). Figure  6 
(right) illustrates a plaid model associated with two sim-
ple modules with overlapping interactions. These illus-
trative modules could not be discovered without a plaid 
assumption.

Order‑preserving model
An order-preserving module/bicluster is defined by a 
set of nodes with a preserved relative degree of influ-
ence on another set of nodes [22]. Illustrating, given 
a bicluster (I, J) with I = {x3, x5} and J = {y2, y6, y7}, if 
a32 ≤ a36 ≤ a37 then a52 ≤ a56 ≤ a57. Assuming that an 
order-preserving module is observed with two proteins 
acting as a transcription factors of a set of genes/pro-
teins/metabolites, then these proteins show the same 
ordering of regulatory influence on the target set of bio-
logical entities. Order-preserving modules may contain 
interactions according to the constant model (as well as 
modules with shifting and scaling factors [15]), leading 
to more inclusive solutions associated with larger and 
less noise-susceptible modules. The order-preserving 
model is thus critical to accommodate non-fixed yet 
coherent influence of a node on another set of nodes, 
tackling the problem of scores’ uncertainty on less-
researched regions in the network.

An order-preserving coherence with symme-
tries is often used to model biological settings where 
the degree of regulations associated with both the 
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activation and repression of groups of genes/proteins/
metabolites is preserved. Figure  7 provides illustrative 
order-preserving modules in the absence and presence 
of symmetries.

Handling noisy and missing interactions
An undesirable restriction of existing methods for the 
discovery of dense modules is that they require almost 
every node within a module to be connected, thus 

Fig. 5 Biclustering non-dense modules: the constant model and the relevance of tolerating noise

Fig. 6 Non-dense biclustering modules: the symmetric and plaid models

Fig. 4 Pattern-based biclustering of (heterogeneous) biological networks using real-valued matrices derived from minimal weighted bipartite 
graphs
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possibly excluding relevant nodes in the presence of 
some missing interactions. Understandably, meaningful 
modules with missing interactions are common since the 
majority of existing biological networks are still largely 
incomplete.

Pattern-based biclustering is able to recover missing 
interactions recurring to well-established and efficient 
postprocessing procedures [44]. These procedures com-
monly rely on the merging and extension of the discov-
ered modules. Merging is driven by the observation that 
when two modules share a significant amount of interac-
tions it is probable that their merging composes a larger 
module still respecting some homogeneity criteria [44]. 
Extension procedures identify candidate nodes to enlarge 
a given module (yet still satisfying a certain homogene-
ity) by changing the minimum support threshold of the 
pattern-based searches [15]. Furthermore, the scoring 
scheme of interactions might be prone to experimental 
noise (bias introduced by the applied measurement and 
preprocessing) and structural noise (particularly com-
mon in the presence of less researched genes or proteins), 
not always reflecting the true interactions.

Recent breakthroughs in pattern-based biclustering 
show the possibility to assign multiple ranges of values on 
specific interactions (see Fig. 4) to reduce the propensity 
of excluding interactions due to score deviations. Since 
pattern mining searches are inherently able to learn from 
transactions or sequences with an arbitrary number of 
items, this enables the possibility to assign multiple items 
to a single element of the mapped matrix. As such, ele-
ments with values near a boundary of discretization (or 
cut-off threshold) can be assigned with two items corre-
sponding to the closest ranges of values. Under this pro-
cedure, pattern-based biclustering is able to effectively 
address different forms of noise based on parameteriz-
able distances for the assignment of additional items.

According to the previous strategies, the level of spar-
sity and noise of the discovered modules can be paramet-
rically controlled. Illustrating, to strengthen the quality 
of a given module (reducing its tolerance to noise), the 
overlapping thresholds for merging procedures can 
be reduced. Figure  5 provides an illustrative constant 

module with missing interactions (red dashed lines) and 
noisy interactions (red continuous lines).

By default, BicNET relies on a merging procedure 
with an 80  % overlapping threshold (with the computa-
tion of similarities pushed into the mining step accord-
ing to [44]) and on the assignment of multiple items for 
interactions with scores closer to a boundary of discre-
tization (allocation of 2 items for interactions in a range 
aij ∈ [c1, c2] when min(c2−aij , aij−c1)

c2−c1
< 25% according to 

[22]).

BicNET: efficient biclustering of biological networks
Understandably, the task of biclustering modules with the 
introduced coherencies is computationally harder than 
biclustering dense modules (the complexity of bicluster-
ing non-dense models is discussed in [15, 22]). Empirical 
evidence using state-of-the-art biclustering algorithms 
shows that this task in its current form is only scalable 
for biological networks up to a few hundreds of nodes 
[41]. Nevertheless, a key property distinguishing biologi-
cal networks from gene expression or clinical data is their 
underlying sparsity. Illustrating, some of the densest PPI 
and GI networks from well-studied organisms still have 
a density below 5 % (ratio of interconnected nodes after 
excluding nodes without interactions) [16].

While traditional biclustering depends on operations 
over matrices, pattern-based biclustering algorithms are 
prepared to mine transactions of varying length. This 
property makes pattern-based biclustering algorithms 
able to exclude missing interactions from searches and 
thus surpass memory and efficiency bottlenecks. To 
understand the impact of this option, given a homogene-
ous network with n nodes, the complexity of traditional 
biclustering algorithms is bounded by �(f (n2)) (where f 
is the biclustering function), while the target approach is 
bounded by �(f (p)) (where p is the number of pairwise 
interactions) and p ≪ n2 for biological network data.

Based on these observations, we propose BicNET 
(BiClustering Biological NETworks), a pattern-based 
biclustering algorithm for the discovery of modules with 
parameterizable forms of coherency and robustness 
to noise in biological networks. BicNET relies on the 

Fig. 7 Non-dense biclustering modules: the order-preserving model
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following principles to explore efficiency gains from the 
analysis of biological networks.

We first propose a new data structure to efficiently pre-
process data: an array, where each position (node from a 
disjoint set in the bipartite graph) has a list of pairs, each 
pair representing an interaction (corresponding node and 
the interaction weight). Discretization and itemization 
procedures are performed by linearly scanning this struc-
ture. In this context, the time and memory complexity of 
these procedures is linear on the number of interactions. 
Sequential and transactional databases are mapped from 
this preprocessed data structure without time and mem-
ory overhead.

Pattern-based searches commonly rely on bitset vec-
tors due to the need to retrieve not only the frequent 
patterns but also their supporting transactions in 
order to compose biclusters. Pattern-based searches 
for biclustering commonly rely on variants of Aprio-
riTID methods [45] or vertical methods (such as Eclat 
[46]). However, Apriori-based methods suffer from the 
costs associated with the generation of a huge number 
of candidate modules for dense networks or networks 
with modules of varying size [41], while vertical-based 
methods rely on expensive memory-and-time costs of 
intersecting (arbitrarily large) bitsets [47]. These obser-
vations can be experimentally tested by parameteriz-
ing BicNET with these searches (used for instance in 
BiModule [23], GenMiner [48] and DeBi [24] bicluster-
ing algorithms). For this reason, we rely on the recently 
proposed F2G miner [47] and on revised implementa-
tions of Eclat and Charm miners where diffsets are used 
to address the bottlenecks of bitsets in order to effi-
ciently discover constant/symmetric/ plaid models, as 
well as on IndexSpan [22] miner to efficiently discover 
order-preserving models.

Furthermore, the underlying pattern mining searches 
of BicNET are dynamically selected based on the prop-
erties of the network to optimize their efficiency. Hori-
zontal versus vertical data formats [15] are selected 
based on the ratio of rows and columns from the 
mapped matrix. Apriori (candidate generation) ver-
sus pattern-growth (tree projection) searches [15] are 
selected based on the network density (pattern-growth 
searches are preferable for dense networks). We also 
push the computation of similarities between all pairs 
of biclusters (the most expensive postprocessing proce-
dure) into the mining step by checking similarities with 
distance operators on a compact data structure to store 
the frequent patterns.

Scalability
Additional principles from the research on pattern min-
ing can be used to guarantee the scalability of BicNET.

Multiple parallelization and distribution principles are 
directly applicable by enhancing the underlying pattern 
mining searches [49, 50]. Alternatively, data partition-
ing principles can be considered under certain optimal-
ity guarantees [50, 51]. Finally, BicNET can additionally 
benefit from efficiency gains associated with searches for 
approximate patterns [22, 50].

BicNET: incorporating available domain knowledge
As previously discussed, pattern-based biclustering 
algorithms show the unprecedented ability to efficiently 
discover exhaustive structures of biclusters with parame-
terizable coherency and quality. In this context, two valu-
able synergies can be identified. First, the optimality and 
flexibility of pattern-based biclustering solutions provide 
an adequate basis upon which knowledge-driven con-
straints can be incorporated  [39]. Second, the effective 
use of domain knowledge to guide the underlying pattern 
mining searches has been largely researched in the con-
text of domain-driven pattern mining [52, 53].

Constraint‑guided biclustering
In previous work [42], pattern-based biclustering algo-
rithms were extended to optimally explore efficiency 
gains from constraints with succinct, (anti-)monotone 
and convertible properties. For this end, F2G and Index-
Span pattern mining searches were revised (and respec-
tively termed F2G-Bonsai and IndexSpanPG [42]) to 
be able to effectively incorporate and satisfy such con-
straints for the final task of biclustering expression data. 
BicNET can be seen as wrapper over existing pattern 
mining searches, adding new principles to guarantee 
that they are consistently, robustly and efficiently applied 
over biological networks. As such, BicNET’s behavior 
complies with domain-driven pattern mining searches. 
In fact, domain-driven pattern mining searches, such as 
F2G-Bonsai and IndexSpanPG, simply provide mecha-
nisms to interpret constraints and guarantee that they are 
used to guide the pruning of the search space.

To illustrate some of the meaningful constraints that 
can be supported in BicNET, consider the biological 
network provided in Fig. 8. Biological entities are linked 
through interactions whose strength is either negative 
{−3, −2} (e.g. inhibition), weak {−1, 0, 1} or positive {2, 
3} (e.g. activation). Also, consider the pattern ϕB of a 
bicluster with coherency across rows to be the ordered 
set of expected values on a row in the absence of noise 
(ηij  =  0) and plaid effects, ϕB = ∪

|J |
j=1

{kj}. In this con-
text, let us consider illustrations of meaningful succinct, 
(anti-)monotone and convertible constraints.

Succinct constraints can be used to remove ranges of 
uninformative interactions from the network [remove(S) 
where S ⊆ R

+ or S ⊆ L]. Illustrating, some labels may 
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not be relevant when mining biological networks with 
qualitative interactions, while low scores (denoting weak 
associations) can be promptly disregarded from bio-
logical networks with weighted interactions. Despite the 
structural simplicity of this behavior, this possibility can-
not be supported by peer state-of-the-art biclustering 
algorithms [42].

Succinct constraints can be alternatively used for the 
discovery of biological entities interacting according to 
a specific patterns of interest. Illustrating, {−2, 2} ⊆ ϕB 
implies an interest on non-dense network modules (inter-
actions without strong weights) to disclose non-trivial 
regulatory activity, and min(ϕB) = −3 ∧max(ϕB) = 3 
implies a focus on modules with interactions delineating 
strong activation and repression.

Monotone and anti-monotone constraints are key to 
discover modules with distinct yet coherent regulatory 
interactions. Illustrating, the non-succinct monotonic con-
straint countVal(ϕB) ≥ 3 implies that at least three differ-
ent types of interaction’s strengths must be present within 
a module. Assuming a network with {a,b,c} types of biolog-
ical interactions, then |ϕB ∩ {a, b}| ≤ 1 is anti-monotone.

Finally, convertible constraints are useful to fix pattern 
expectations, yet still accommodating deviations from 
expectations. Illustrating, avg(ϕB) ≤ 0 indicates a pref-
erence for network modules with negative interactions 
without a strict exclusion of positive interactions.

Integration of external knowledge
BicNET is also able to benefit from network data con-
texts where nodes can be annotated. These annotations 
are often retrieved from knowledge repositories, seman-
tic sources and/or literature. Annotations can be either 
directly derived from the properties of the biological 
entity (such as functional terms from ontologies) or be 
implicitly predicted based on the observed interactions 
(such as topological properties). Illustrating, consider 
a gene-interaction network where genes are annotated 
with functional terms from Gene Ontology (GO) [54]. 

Since a gene can participate in multiple biological pro-
cesses or, alternatively, its function be yet unknown, 
genes can have an arbitrary number of functional 
annotations.

Since pattern mining is able to rely on observations 
with an arbitrary length, BicNET consistently supports 
the integrated analysis of network data and annota-
tions. For this aim, annotations are associated with a 
new dedicated symbol and appended to the respec-
tive row in the mapped adjacency matrix (see Fig.  8). 
Illustrating, consider T1 and T2 terms to be respec-
tively associated with genes {x1, x3, x4} and {x3, x5}, 
an illustrative transactional database for this scenario 
would be {x1 = {a11, . . . , a1m,T1}, x2 = {a21, . . . , a2m}, 
 x3 = {a31, . . . , a3m,T1,T2}, . . .} . Sequential databases can 
be composed by appending terms either at the end or 
the beginning of each sequence.

Given these enriched databases, pattern mining can 
then be applied with succinct, (anti-)monotone and 
convertible constraints. Succinct constraints can be 
incorporated to guarantee the inclusion of certain terms 
(such as ϕB ∩ {T1,T2} �= 0). (Anti-)monotone convert-
ible constraints can be, alternatively incorporated to 
guarantee that, for instance, a bicluster is functionally 
consistent, meaning that it can be mapped to a single 
annotation. The |ϕB ∩ {T1,T2}| ≤ 1 constraint is anti-
monotone and satisfies the convertible condition: if ϕB 
satisfies the constraint, the ϕB suffixes also satisfy the 
constraint.

Benefits of BicNET against its peers
This section introduced respectively principles to guar-
antee the consistency, flexibility, robustness and efficiency 
of BicNET, as well as its ability to benefit from guidance 
in the presence of domain knowledge. Figure  9 illus-
trates the positioning of BicNET on each one of these 
qualities against alternative state-of-the-art biclustering 
algorithms.

Additional opportunities of BicNET include the:

  • possibility to analyze not only biological networks 
but also sparse biological matrices, such as expres-
sion data (where non-differential expression is 
removed) and genome structural variations (where 
entries without mutations or single-nucleotide poly-
morphisms are ignored);

  • easy extension of BicNET for the discovery of dis-
criminative modules for labeled or class-conditional 

Fig. 8 Illustrative symbolic network with annotations
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biological networks by parameterizing BicNET with 
discriminative pattern mining searches [55, 56];

  • incorporation of statistical principles from pattern 
mining research [57–59] to assess the statistical sig-
nificance of modules given by pattern-based biclus-
ters, thus guaranteeing the absence of false positive 
discoveries [18].

BicNET: algorithmic aspects
The algorithmic basis of BicNET is described in Algo-
rithm 1. BicNET’s behavior can be synthesized in three 
major steps: mapping, mining and postprocessing. First, 
the input network is mapped into one or more mini-
mal (sparse) adjacency matrices, being the number of 

generated matrices given by 
(

max(κ , 2)
2

)

 where κ is 

the number of distinct types of nodes from the input-

ted network. For example, 6 adjacency matrices would 
be generated for a biological network capturing inter-
actions between genes, protein, protein complexes 
and metabolites. Each adjacency matrix is efficiently 

represented using an array of lists of pairs, where each 
position in the array stores both the index/ID of the 
nodes interacting with a given node as well as the val-
ues for those interactions. If the inputted interactions 
are labeled or unweighted, BicNET proceeds directly 
with the mining step. If the inputted interactions have 
real-valued weights, they are discretized (after proper 
normalization and exclusion of outliers) under a given 
coherency strength determining the length of the alpha-
bet for discretization. Multiple items can be assigned 
(according to "Handling noisy and missing interactions" 
section) to mitigate the drawbacks associated with the 
discretization needs. Due to the assignment of multi-
ple items, each list from the array may have duplicated 
indexes/IDs. In the absence of a prespecified coher-
ency strength, BicNET iteratively discretizes the adja-
cency matrices using several alphabets. The modules 
discovered under each coherency strength are jointly 
postprocessed.

Second, transactional and sequential databases are 
mapped from the previous data structures and pat-
tern mining searches iteratively applied (see Fig.  3). 

Fig. 9 Tackling the existing limitations with BicNET: 1 addressing inconsistencies and guarantee the applicability towards different types of 
network; 2 enabling for the first time the discovery of modules with varying coherency criteria; 3 guaranteeing the robustness of the searches and 
the possibility to parameterize the desirable quality of the modules; 4 surpassing efficiency bottlenecks of state-of-the-art and peer pattern-based 
biclustering algorithms; and 5) benefiting from the guidance of available background knowledge
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Transactional databases are used for the discovery of 
constant/symmetric/plaid modules, while sequential 
databases (where discretization is optional) are consid-
ered for the discovery of order-preserving modules. In 
the context of transactional databases, the values of each 
pair (node index/ID, value) are concatenated to gener-
ate transactions of items. Given a transactional database, 
frequent itemset mining (for the discovery of noise-intol-
erant constant biclusters [18]) or association rule mining 
(for noise-tolerant constant biclusters [21]) are iteratively 
applied with a decreasing support until a high number of 
biclusters (or coverage of the inputted network of interac-
tions) is achieved. In the context of sequential databases, 
the node indexes/IDs that interact with a given node 
are sorted according to the associated values to com-
pose sequences of indexes. Given a sequential database, 
sequential pattern mining is then iteratively applied with 
a decreasing support for the discovery of order-preserv-
ing biclusters. Figure 10 provides a simplified illustration 
of these major steps for the task of discovering constant 
and order-preserving modules.

Understandably, additional strategies need to be pre-
sent to discover modules with more intricate coherency 
aspects. As introduced, modules with symmetric effects 
are essential to model biological entities that coherently 

establish both upstream and downstream regulatory 
interactions with an additional set of nodes, while mod-
ules with plaid effects are essential to model cumulative 
contributions in the interactions from biological entities 
participating in more than one module/putative biologi-
cal process. For the discovery of modules with symme-
tries, BicNET iteratively performs sign corrections on 
the mapped data, executing the mining step for each 
adjusted dataset (see Fig. 9). Pruning principles are made 
available (according to [15]) to  guarantee the efficiency 
of these searches. For the discovery of modules wit plaid 
effects, three principles are considered. Modules with 
high tolerance to noise are discovered by performing 
association rule mining with low confidence thresholds 
(as described in [21]), and the nodes with noisy interac-
tions within each module are tested in order to check 
whether their interactions are explained by cumulative 
contributions. The inclusion of regions explained by 
plaid effects and the removal of noisy interactions is per-
formed iteratively according to the BiP algorithm [21] in 
order to be able to deal with an arbitrary-high number 
of cumulative contributions. BiP is formally described 
in Appendix. Figure 11 provides a simplified illustration 
of how BicNET is able to accommodate symmetric and 
plaid effects.

Fig. 10 Simplified illustration of BicNET behavior: efficient storage of multi-item discrete adjacency matrices mapped from network data; iterative 
application of distinct pattern mining searches with decreasing support for the discovery of modules with varying coherency criteria; and post-
processing of the discovered modules
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Domain knowledge and user expectations can be 
declaratively specified as a set constraints and inputted 
as a parameter to BicNET. For this aim, BicNET sim-
ply replaces the underlying pattern mining searches by 
F2G-Bonsai (for the constant/symmetric/plaid model) or 
IndexSpanPG (for the order-preserving model) [42].

Third and finally, postprocessing procedures to merge, 
filter, extend or reduce modules are applied according to 
the principles respectively introduced in "Handling noisy 
and missing interactions" and "BicNET: efficient biclus-
tering of biological networks" sections.

Computational complexity
The computational complexity of BicNET is bounded by 
the pattern mining task and computation of similarities 
among biclusters. For this analysis, we discuss the major 
computational bottlenecks associated with each one of 
the three introduced steps. The discretization (including 
outlier detection and normalization) and noise correc-
tion procedures (for the assignment of multiple items) 
within the mapping step are linear on the size of the 
matrix, �(p), where p is the number of interactions and 
typically p ≪ n2. To dynamically select an adequate dis-
cretization procedure, distribution fitting tests and 
parameter estimations3 are performed in �(p). The com-
plexity of the mining step depends on three factors: the 
complexity of the pattern miner and the amount of 

3 Tests and estimations based on the calculus of approximated statistical 
ratios described in http://www.pitt.edu/super1/ResearchMethods/Ricci-
distributions-en.pdf (accessed January 2016).

iterations need for the discovery of modules with varying 
coherency assumptions. The cost of the pattern mining 
task depends essentially on the number and size of trans-
actions/sequences (essentially defined by the size and 
sparsity of the inputted network), selected mining proce-
dures (FIM, SPM or association/sequential rules defined 
by the desired coherency assumption) and respective 
algorithmic implementations, the frequency distribution 
of items (essentially defined by the target coherency 
strength), the selected pattern representation (closed by 
default), and the presence of scalability enhancements 
(listed throughout "BicNET: efficient biclustering of bio-
logical networks" section). Empirical evidence shows that 
the complexity of the mining step, when iteratively 
applied with a decreasing support threshold, is bounded 
by the search with lowest support. A detailed analysis of 
the complexity of the pattern mining task has been 
attempted in literature [60] and it is out of the scope of 
this paper. Let �(℘) be the complexity of the pattern 
mining task. For the discovery of symmetric and plaid 
effects, the previous mining procedure is iteratively 
applied, being the final search bounded by �(d × ℘), 
where d ≈

(n
2

)

. Finally, the complexity of the postprocess-
ing step depends essentially on two factors: (1) the com-
plexity of computing similarities among biclusters to 
merge and filter modules (bounded by �(

( k
k/2

)

r̄ s̄) based 
on [15], where k is the number of modules and r̄ s̄ is the 
average number of interactions per module), and (2) the 
complexity of extending and reducing modules (bounded 
by k ′(r̄n+ ns̄), where k ′ is the number of biclusters after 

Fig. 11 Advanced aspects of BicNET: 1 allowing symmetries within the discovered modules through iterative sign adjustments to model biological 
entities simultaneously involved in up- and down-regulatory interactions, and 2 allowing plaid effects through the guided inclusion of new interac-
tions explained by cumulative contributions to model biological entities involved in multiple biological processes (commonly associated with 
overlapping regions or hub-nodes within a network)

http://www.pitt.edu/super1/ResearchMethods/Ricci-distributions-en.pdf
http://www.pitt.edu/super1/ResearchMethods/Ricci-distributions-en.pdf
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merging and filtering). Summing up, the complexity of 
BicNET is bounded by �(d℘ +

( k
k/2

)

r̄ s̄ + k ′(r̄n+ ns̄)), 
which for large-scale networks (where typically k ≫ k ′) is 
approximately given �(d℘ + 

( k
k/2

)

r̄ s̄).

Default and dynamic parameterizations
As BicNET makes available a high number of options and 
thus fine tunable parameters, there is the need to guar-
antee that it provides a robust and friendly environment 
to be used by users without expertise in network module 
discovery and pattern-based biclustering.

For this aim, BicNET makes available: (1) default 
parameterizations (data-independent setting) and (2) 
dynamic parameterizations based on the properties 
of the input dataset (data-dependent setting). Default 
parameterizations include: (1) zero-mean row-oriented 
normalization followed by overall Gaussian discretiza-
tion with n/4 items for order-preserving coherencies (for 
an adequate trade-off of precedences vs. co-occurrences) 
and a number of items in the set {3, 5, 7} for the remain-
ing coherencies; (2) iterative discovery of modules with 
distinct coherencies (dense, constant, symmetric, plaid 
and order-preserving); (3) F2G search for closed FIM and 
association rule mining, and IndexSpan search for SPM; 
(4) multi-items assignment (according to criteria intro-
duced in section “Handling noisy and missing interac-
tions”); (5) merging procedure with the computation of 
Jaccard-based similarities pushed into the mining step 
and an 80 % overlapping threshold; (6) filtering procedure 
for biclusters without statistical significance (according to 
[44]) and a 70 % Jaccard-based similarity against a larger 
bicluster; and (7) no extension or reduction procedures. 
For the default setting, BicNET iteratively decreases the 

support threshold by 10 % (starting with θ = 80 %) until 
the output solution discovers 50 dissimilar modules or a 
minimum coverage of 10 % of the elements in the input-
ted network interactions.

The dynamic parameterizations differ with regards 
to the following aspects: (1) the fit of different distribu-
tions are tested to select adequate normalization and 
discretization procedures, (2) the size and sparsity of the 
biological network are used to affect the pattern mining 
search (according to [18]), and (3) data partitioning pro-
cedures are considered for large-scale networks with over 
100 million of interactions for dense and constant mod-
ule discovery and 1 million of interactions for the discov-
ery of modules with alternative coherency assumptions.

Software
BicNET is provided within both graphical and program-
matic interfaces4 to offer a supportive environment for 
the analysis of biological networks. BicNET supports the 
loading of input data and the exportation of results 
according to a wide-variety of formats.

The web-based graphical interface of BicNET can be 
used to soundly parameterize the searches and visualize 
the outputs. Figure  12 provides an illustrative snapshot 
of the graphical interface. Soundness is guaranteed by 
disabling options when certain parameters are selected, 
providing form checks and adequately displaying possi-
ble causes of error (such as data inconsistencies or time-
out alerts for extremely heavy requests). This interface 
is compatible with all browsers and the privacy of the 

4 BicNET software can be accessed at https://web.ist.utl.pt/
rmch/bicnet/.

Fig. 12 BicNET graphical interface for sound parameterizations and visual analyzes of results
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requests is guaranteed. Upon running BicNET, when the 
stopping criteria is met, a message of success is displayed, 
enabling the presentation of the output. Both textual and 
graphical presentations of the discovered biclusters are 
provided. Biclusters can be sorted, filtered and exported 
to be visualized by alternative software or stored in 
knowledge bases. These outputs can be displayed on the 
website or via email.

Alternatively, BicNET is made available through a pro-
grammatic interface based on a Java API with the respec-
tive source code and accompanying documentation. This 
interface can be used to: extend pattern-based biclustering 
algorithms for alternative tasks, such as classification and 
indexation, and easily adapt its behavior in the presence of 
biological networks with very specific regularities. Illustra-
tive cases are provided in the webpage of the authors.

Results and discussion
Results are organized as follows. First, we describe the 
selected data settings, metrics and algorithms. Second, 
we compare the performance of BicNET against state-of-
the-art algorithms for biclustering and network module 
discovery, using synthetic networks with varying proper-
ties. Finally, we use BicNET for the analysis of large-scale 
PPI and GI networks to show the relevance of discover-
ing modules with varying forms of coherency and param-
eterizable levels of noise and sparsity. BicNET is 
implemented in Java (JVM v1.6.0-24). Experiments were 
run using an Intel Core i5 2.30GHz with 6GB of RAM.

Experimental settings
Synthetic data
Networks with planted biclusters were generated respect-
ing the commonly observed topological properties of 
biological networks [41]. For this end, the following key 
variables were varied:

  • Size of networks: number of nodes and density;
  • Distribution of the weight of interactions for real-

valued networks (Uniform or Gaussian assignment of 
positive and negative ranges of values) and of labels 
for symbolic networks;

  • Number, size (Uniform distribution on the num-
ber of nodes to plant biclusters with dissimilar size), 

overlapping degree, and shape (imbalance on the dis-
tribution of nodes per disjoint set) of modules;

  • Modules’ coherency: dense, constant, symmet-
ric, plaid (according to [21]) and order-preserving 
assumptions, with the respective 1.2, 1, 1.2, 1.1 and 
1.5 scale adjustments to the expected size (to guaran-
tee their statistical significance as the different coher-
ency assumptions impact the probability of module 
to unexpectedly occur by chance);

  • Planted degree of noisy and missing interactions 
(from 0 to 20 %).

Table 1 summarizes the default data settings for some 
of these variables when assuming that the generated net-
work is homogeneous. The generation of heterogeneous 
networks is also made available through the specifica-
tion of the size of each disjoint set of nodes and pairwise 
density between the sets of distinct types of nodes. For 
a sound evaluation of the target algorithms, 30 data 
instances were generated for each data setting.

Real data
We used four biological networks: two distinct GI net-
works for yeast according to DryGIN [19] and STRING 
v10 [16] databases, and two licensed PPIs from human 
and Escherichia coli organisms from STRING v10 
database [16]. The scores in these networks reveal the 
expected strength of influence/physical interaction 
between genes/proteins. DryGIN networks are inferred 
from experimental data, while STRING networks are 
primarily inferred from literature and knowledge bases. 
Table  2 shows some basic statistics of the selected 
networks.

Performance metrics
Given the set of planted modules H in a synthetic net-
work, the accuracy of the retrieved modules B is here 
given by two match scores [(see (1)]: MS(B,H) defin-
ing the extent to what found biclusters match with hid-
den biclusters (completeness/coverage), and MS(H,B) 
reflecting how well the hidden biclusters are recovered 
(precision). The presented scores in this work are the 
average matches collected from 30 instantiations of 
synthetic networks. These accuracy views surpass the 

Table 1 Default synthetic data benchmarks for network data analyzes

Network nodes (10 % density) Network density (2000 nodes)

200 500 1000 2000 10,000 1 % 5 % 10 % 25 %

Nr. of hidden modules 5 10 15 20 30 3 5 10 20

Nr. of nodes per module [20, 30] [30, 40] [40, 50] [50, 70] [100, 140] [50, 70] [50, 70] [50, 70] [50, 70]

% interactions in modules 19.5 12.2 7.6 4.5 1.1 22.5 9.0 4.5 2.3
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incompleteness of the Jaccard matching scores (only 
focused on one of the two subsets of nodes at a time [61]) 
and the loose matching criteria of relative non-intersect-
ing area (RNAI) [62]. Efficiency, statistical and biological 
significance are used to complement this analysis.

Introductory notes on tools for network data analysis
As surveyed, a wide diversity of algorithms and tools 
have been proposed for the modular analysis of biologi-
cal networks. For this end, three major options have been 
considered: (1) exhaustive clustering (discovery of sets of 
nodes C such that ∪kCk = X ∧ ∩kCk = ∅) using different 
algorithms; (2) non-exhaustive clustering with the allow-
ance of overlapping nodes between clusters (∪kCk ⊆ X ); 
and (3) biclustering (discovery of bi-sets of nodes (I,  J) 
coherently related). Table 3 provides a compact view on 
the differences between the solutions gathered by the dif-
ferent techniques, disclosing their intrinsic limitations 
for the discovery of coherent modules within the target 
synthetic and biological networks. For this end, kMeans, 
affinity-propagation and spectral clustering algorithms 
[63] for weighted networks were tested using MEDUSA 
software [64], CPMw (clique percolation method for 
weigthed networks) algorithm [65] using CFinder soft-
ware was applied for non-exhaustive clustering, and 
traditional algorithms for biclustering dense network 
modules (based on the discovery of hypercliques from 
unweighted and/or weighted networks [6, 8, 11, 12]) were 
applied using BicNET software.

This analysis highlights some limitations of clustering 
algorithms, including their sensitivity to a (prespecified or 
estimated) number of clusters, efficiency bottlenecks for 
large-scale networks, and solutions with a large number 
of clusters/modules without statistical and/or biologi-
cal significance. Also, the set of modules discovered with 
clustering algorithms strongly differs from biclustering-
based modules since the similarity criteria placed by state-
of-the-art clustering techniques disregards the coherency 
of local interactions within the module. Instead, the simi-
larity criteria is primarily driven by the global interactions 
that each node establish with all of the remaining nodes 

(1)

MS(B,H) =
1

|B|
�(I1, J1)∈Bmax(I2, J2)∈H

√

|I1 ∩ I2|

|I1 ∪ I2|

|J1 ∩ J2|

|J1 ∪ J2|
,

in the network and by additional topological information 
pertaining to each node. Based on these observations, 
the conducted experimental analyzes in this section will 
primarily concern assessing the performance of BicNET 
against alternative biclustering algorithms.

Algorithms for comparisons
For the purpose of establishing fair comparisons, we 
select 7 state-of-the-art biclustering algorithms that, sim-
ilarly to BicNET, are prepared to find biclusters with non-
dense coherencies5: FABIA6 [67], ISA [69], xMotifs [70] 
and Cheng and Church [71] (all able to discover variants 
of the introduced constant model); OPSM [72] and OP-
Clustering [43] (able to discover order-preserving mod-
els); and SAMBA [20] (inherently prepared to discover 
dense biclusters). The number of seeds for FABIA and 
ISA was set to 10 and the number of iterations for OPSM 
was varied from 10 to 100. The remaining parameters of 
the selected methods were set by default.

Results on synthetic data
In Fig.  13, we compare the efficiency of BicNET with 
state-of-the-art biclustering algorithms with non-dense 
coherency criteria for the analysis of networks with vary-
ing size and density and planted modules following a 
constant coherency assumption.

Three major observations can be retrieved. First, Bic-
NET shows heightened efficiency levels, constrasting with 
peer biclustering algorithms. Understandably, as most of 
the remaining algorithms are only prepared to analyze 
(non-sparse) matrices, they show efficiency bottlenecks 
for even small networks. Second, the majority is not able 
to accurately recover the planted modules as they cannot 
interpret missing interactions. Third, although SAMBA 
[20] and some pattern-based biclustering algorithms, 
such as BiMax and DECOB [8, 12], are able to discover 
dense models efficiently, they are not prepared to discover 
modules with alternative coherence criteria.

Figure 14 zooms-in the performance of BicNET, quan-
tifying the efficiency gains in terms of memory and time 

5 To run the experiments, we used: fabia package [67] from R, BicAT 
[68], BicPAM [15] and expander [20] softwares.
6 Sparse prior equation with decreasing sparsity until able to retrieve a non-
empty set of biclusters.

Table 2 Biological networks used to assess the relevance and efficiency of BicNET

Type Organism ♯Nodes ♯Interactions Density (%) Notes

GI Yeast 4455 1,91,309 1.0 Links (65 % negative) from double-mutant arrays [19]

GI Yeast 6314 4,23,335 1.1 Known and predicted associations benchmarked from 
multiple data sources and text mining, and combined 
through an integrative score [16]

PPI E. Coli 8428 32,93,416 4.6

PPI Human 19,247 85,48,002 2.3
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from using adequate data structures (replacing the need 
to use matrices) and searches (replacing the need to rely 
on bitset vectors). It also shows that the costs of assigning 
multiple symbols per interaction are moderate, despite 
resulting in an increased network density.

Figure  15 compares the performance of BicNET with 
peer algorithms for discovering dense network modules 
(hypercliques) in the presence of noisy and missing inter-
actions. This analysis clearly shows that existing pattern-
based searches for hypercliques have no tolerance to errors 
since their accuracy rapidly degrades for an increased 
number of planted noisy/missing interactions. Thus, they 
are not able to deal with the natural incompleteness and 
scoring uncertainty associated with biological networks. 
On the other hand, the observed accuracy levels of Bic-
NET demonstrate its robustness to noise (validating the 
importance of assigning multiple ranges of weights for 
some interactions) and to missing interactions (showing 
the effectiveness of BicNET’s postprocessing procedures).

Finally, Fig.  16 shows that, even in the presence of 
medium-to-high levels of noise, BicNET can be effec-
tively applied for the discovery of modules with distinct 
coherencies. All of the target coherencies are associated 
with searches showing high levels of accuracy, with the 
plaid model being slightly worse than its peers due to the 
inherent harder nature of this task when multiple mod-
ules overlap according to a complex schema. Addition-
ally, order-preserving models have higher propensity to 

define modules with false positive nodes for dense net-
works due to the higher probability of background values 
to respect this coherency.

Results on real data
Results gathered from the application of BicNET over 
real biological networks are provided in three parts. 
First, we show basic statistics that motivate the relevance 
of using BicNET against peer algorithms. Second, we 
explore the biological relevance of the retrieved mod-
ules when considering varying levels of tolerance to noise 
and different forms of coherency. Finally, we make use 
of some of the meaningful constraints provided in "Bic-
NET: incorporating available domain knowledge" section 
in order to discover less-trivial modules (such as mod-
ules characterized by the presence of plaid effects, flex-
ible constant patterns or symmetries), and provide a brief 
analysis of their enriched terms and transcription factors.

The biological significance of the retrieved modules 
from real data is here computed by assessing the over-
representation of Gene Ontology (GO) terms with an 
hypergeometric test using GOrilla [73]. A module is sig-
nificant when its genes or proteins show enrichment for 
one or more of the “biological process” terms by having a 
(Bonferroni corrected) p value below 0.01.

Figure  17 shows some of the properties of BicNET 
solutions for the four biological networks described 
in Table  2. In particular, 97  % of the BicNET’s modules 

Table 3 Comparison of widely-used tasks for modular analysis of networks using the introduced synthetic and real data-
sets

Approach Method Solution aspects and concerns Efficiency

Clustering (exhaustive 
and non-overlapping 
node coverage)

k-Means Majority of clusters show loose connectedness; High 
variation on the size of modules (1-to-3 clusters cov-
ering almost all nodes and the remaining clusters 
being statistically non-significant [66])

Efficiency problems for networks with 
>100.000 interactions

Spectral Able to isolate modules where the degree of con-
nectedness is approximately constant per module; 
Only a small subset of clusters is relevant (medium-
to-high degree of connectedness)

Medusa implementation only scales for 
networks with <10.000 interactions

Affinity propagation The clusters collected from (small samples of ) the 
target biological networks show a generalized lack 
of biological relevance

Time and memory bottlenecks for small 
nets (<1000 interactions)

Clustering (non-exhaus-
tive and possibly  
overlapping node 
coverage)

CPMw (weighted  
k-clique percolation)

Intolerance to noise; Intractably large solutions 
(explosion of similar clusters) with strict coherency 
criterion (k-clique); Dependence on parameters  
(e.g. k, intensity level)

Only scales for nets with <5000 nodes 
(5–10 % density). Bottlenecks for the 
target biological data even when 
removing >95 % interactions

Biclustering (bi-sets of 
nodes)

Hypercliques  
(unweighted)

Intolerant to missing interactions; Large number of 
highly similar modules; Dense coherency only

BicNET implementation efficient for 
large networks (>10000 nodes) with 
density up to 25 %

Hypercliques  
(differential)

Intolerant to noise and the prone item-boundaries 
problem during the selection of differential weights; 
Dense coherency only

BicNET implementation scales for large 
dense networks

BicNET (dense  
assumption)

Focus on dissimilar modules robust to noise and 
missings, with possibly distinct forms of coherency 
strength (|L| ∈{1,2,3,5})

Efficiency bounded by the search for 
unweigthed hypercliques (|L|=1)
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discovered in DRYGIN’s yeast GIs were significantly 
enriched, while all the BicNET’s modules discovered in 
STRING’s yeast GIs were significantly enriched. BicNET 
is able to discover the largest number of (non-similar 
and statistically significant) biclusters. The analysis of 
the enriched terms for these modules (see Tables  4, 6) 
against the significant terms found in other biclustering 
solutions supports the completeness of BicNET’s solu-
tions, as well as their exclusivity and relevance since the 
majority of the enriched modules were not discovered by 
peer algorithms (see Table 5). The biological significance 
of peer biclustering algorithms focused on dense regions 
is further hampered by noise and discretization errors (in 
accordance with Fig.  17). Alternative biclustering algo-
rithms able to discover non-dense regions were not able 

to scale. The subsequent analyzes (Tables 4, 5, 6, 7) pro-
vide further empirical evidence for the relevance, com-
pleteness and exclusivity of BicNET solutions.

Modules with varying coherency
A subset of the overall modules collected from the 
application of BicNET over the selected biological net-
works is provided in Table 4. This table gathers modules 
with varying: tolerance to noise (overlapping threshold 
for merging procedures varied between 60 and 90  %), 
coherency assumption (dense, constant and order-pre-
serving models) and coherency strength (D1–D4 with 
L =  {−2,−1,1,2}, Y1–Y5 and H1–H3 with L =  {1,2,3}, Y6 
and H4 with L = {1,2,3,4}). All of the modules were dis-
covered using multi-item assignments whenever values 

Fig. 13 Efficiency of biclustering algorithms able to discover non-dense modules for synthetic networks with varying size and density

Fig. 14 Efficiency gains of BicNET when using sparse data structures, pattern mining searches providing robust alternatives to bitset vectors, and 
noise handlers

Fig. 15 Accuracy of BicNET against pattern-based biclustering algorithms on networks for the discovery of dense modules with varying degree of 
noisy and missing interactions (networks with 2000 nodes and 10 % density)
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were found to be near a discretization boundary. The col-
lected results show that all of BicNET’s modules had not 
only highly enriched terms, but also the enriched terms 
were found to be functionally related (taxonomically 
closed biological processes [54]). This observation sug-
gests that the discovered modules are characterized by a 
cohesive set of putative biological functions. To support 
this observation, Figs. 18 and 19 provide an hierarchical 
visualization of some of the enriched terms (recurring to 
GOrilla tool [73]) for a subset of the discovered modules.

Three major observations are retrieved from the con-
ducted analyzes. First, the combination of the dense 
model with the provided procedures to foster robustness 
leads to higher enrichment factors as key genes/proteins 
with subtler yet functional relevance were not excluded 
from the modules. Nevertheless, this form of coherency 
is mainly associated with broader biological processes, 
such as general metabolic and regulatory processes (see 
Y1, Y2, H1 and H2 modules). Second, the constant model 
is indicated to guarantee a focus on less trivial mod-
ules associated with a compact set of more specific bio-
logical processes. Modules Y3–Y6, H3–H4 and D2–D4 

are example of the relevance of considering non-dense 
interactions since these interactions are often related 
with latent or secondary (yet critical) cellular functions. 
Third, the order-preserving coherency is associated with 
modules as large as the ones provided under the noise-
tolerant dense coherency, yet with the additional benefit 
of enabling the presence of weaker interactions as long as 
their coherency among the nodes is respected.

Non‑trivial modules
The provided modules in Table  4 already show unique 
properties that surpass some of the inherent limitations of 
the existing methods for network module discovery. Even 
so, BicNET can be used to further disclose less trivial 
modules, such as modules characterized by the presence 
of constant patterns with multiple symbols, symmetries 
and plaid effects. For this purpose, we parameterized 
BicNET with simple constraints ("BicNET: incorporat-
ing available domain knowledge" section) to guarantee 
that such modules appear in the output. Table 5 shows an 
illustrative set of such modules with significantly enriched 
terms. All of the illustrated modules show coherent 

Fig. 16 Assessment of BicNET’s ability to recover planted modules with constant, symmetric, plaid and order-preserving coherencies from noisy 
networks (networks with 2000 nodes according to Table 1)

Fig. 17 Properties of BicNET solutions against hypercliques discovered in GI and PPI networks (described in Table 2) when considering varying 
coherency criteria
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patterns of interaction between nodes and have an average 
amount of 5–10  % of missing interactions. This analysis 
reinforces that BicNET is well positioned to find modules 
with varying size, coherency and quality. Illustrating, the 
constant modules G6 and G7 have, respectively, 25 and 
50 nodes and distinct quality, being G7 more tolerant to 
noisy interactions. Understandably, the number of nodes 
per module is naturally affected by the size and sparsity of 
the target network. The discovered modules clearly show 
non-trivial yet meaningful correlations (as they include 
interactions with coherent yet non-differential scores), 
whose relevance is pinpointed by the number of highly 
enriched terms after correction.

Table 6 lists some of the enriched terms for the mod-
ules in Table  5, showing their functional coherence and 
role to unravel putative biological processes. Interest-
ingly, as illustrated in Table  7, some of the identified 
modules are part of an additive plaid model (with in-
between condition [21]). Illustrating, modules G6 and 
S4 share, respectively, 21 and 42  % of their interactions 
with modules G7 and S2 under a plaid assumption. Some 
properties of the two illustrative sets of overlapping mod-
ules are provided in Table  7. Without this assumption, 

only smaller modules (excluding key nodes) could be 
obtained, resulting in a lower enrichment of their terms.

The analysis of the enriched transcription factors (TFs) 
for each putative biological process in Table  6 further 
supports the previous functional enrichment analyzes. 
For this end, we retrieved the TFs that are more repre-
sentative (high coverage of the genes in the module) 
and significant (high functional enrichment: p value<
1E−3). Illustrating, G1 has diverse TFs regulating dif-
ferent families of histones, such as Jhd1p [74]; in G4 we 
found regulators of meiosis, including Sin3p [74]; the TFs 
of G7 activate genes required for cytokinesis (exit from 
mitosis); in S1 we found TFs associated with responses 
to oxygen-related stress, such as the activation of beta-
oxidation genes by Pip2p [74]; proteins regulating S2 
respond to DNA damaging, such as Plm2p and Abf1p 
[75]; membrane sensors, such as Ure2p, are active in the 
regulation of genes in S3; S4 has proteins promoting the 
organization and remodeling of chromatin, including 
Abf1p, Plm2p and Rsc1p [75]; regulators of ribosomal 
biogenesis, such as Sfp1p (100 % representativity), and of 
its subunits, such as Cse2p [74], are core TFs for S6.

Table 4 Description of the biological role of an illustrative set of BicNET’s modules with varying properties

ID Homogeneity ♯Nodes |I| × |J| Putative functionality: group of enriched terms (p <1E−10)

STRING (yeast) Y1 Dense (high noise-tolerance) 231 × 14 Metabolic processes with incidence on protein, peptide and amide metabo-
lism and biosynthesis

Y2 Dense (medium noise-tolerance) 217 × 9 Metabolism of nitrogen compounds and some organic substances

Y3 Constant (few high aij) 103 × 8 Amino acid activation and tRNA metabolism for tRNA aminoacylation

Y4 Constant (few high aij) 206 × 6 Organic acid metabolic process and its subterms

Y5 Constant (few high or low aij) 55 × 7 Signal transduction and its subterms

Y6 Constant (few high or low aij) 43 × 6 Phosphorylation related terms (with incidence on protein phosphorylation)

Y7 Order-preserving 176 × 12 Transport of organic acids (with incidence on aminoacid transmembrane 
transport)

Y8 Order-preserving 235 × 9 Oxidation-reduction process and metabolism of aminoacids. Assembly of 
ribonucleoprotein

Y9 Order-pres. (few high aij) 146 × 8 Transport of molecules (highest enrichment found for drug transmembrane)

STRING  
(human)

H1 Dense (high noise-tolerance) 811 × 28 Multiple metabolic processes with incidence on transcription activity

H2 Dense (high noise-tolerance) 787 × 25 Regulation of metabolic processes (both positive and negative regulation)

H3 Constant (few high aij) 693 × 14 Regulation of intracellular signal transduction (over 20 highly enriched 
terms)

H4 Constant (few high aij) 645 × 10 Regulation of molecular functions (incidence on catalytic activity)

H5 Order-preserving 720 × 24 Establishment of protein localization (protein targeting to ER and mem-
brane)

H6 Order-preserving 733 × 29 Protein phosphorylation and its subterms

DryGIN D1 Dense (high noise-tolerance) 28 × 17 Organelle localization (establishment of spindle and nuclear localization)

D2 Constant (with pos&neg aij) 22 × 10 Chromatin remodeling and nucleosome organization

D3 Constant (with pos&neg aij) 21 × 7 Transport processes for the establishment of protein localization

D4 Constant (with pos&neg aij) 19 × 9 Regulation of growth (incidence on filamentous growth)

D5 Order-preserving 39 × 7 Organelle and nucleous organization

D6 Order-preserving 54 × 6 Regulation of cellular metabolic processes (both positive and negative 
regulation)
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Concluding note
When analyzing networks derived from knowledge-
based repositories and literature (such as the networks 
from STRING [16]), the flexibility of coherence and 
noise-robustness is critical to deal with uncertainty and 
with the regions of the network where scores may be 
affected due to the unbalanced focus of research studies. 

When analyzing networks derived from data experi-
ments (such as the GIs from DRYGIN [19]), the discov-
ery of modules with non-necessarily strong interactions 
(e.g. given by the constant model) is critical to model 
less-predominant (yet key) biological processes, such as 
the ones associated with early stages of stimulation or 
disease.

Table 5 Exclusivity and relevance of BicNET solutions: properties of found modules

ID Type ♯Nodes |I| × |J| Items ♯Terms p <1E−15 Notes

DryGIN G1 Constant 18 × 9 {−4,..,−1} 27 Module with coherent strong (−4) and soft (−1) negative interactions

G2 Symmetric 4 × 9 {−3,..,3} 13 Varying levels of strong (mainly positive) interactions ({±3,±2})

G3 Symmetric 5 × 6 {−2,−1,1,2} 12 Module with either all positive or negative interactions per “row”-node 
({±1,±2})

G4 Constant 7 × 5 {1,2} 12 Module with coherent strong (2) and soft (1) positive interactions

G5 Symmetric 7 × 5 {−2,−1,1,2} 11 Module with either all positive or negative interactions per “row”-node 
({±1,±2})

G6 Order 14 × 11 {−3,..,3} 25 Preserved precedences and co-occurrences per “row”-node before 
postprocessing

G7 Order 42 × 8 {−2,−1,1,2} 50 Noise-tolerant module with mostly preserved orderings per “row”-node

STRING S1 Order 155 × 14 {1,2,3,4} 169 Preserved precedences and co-occurrences per “row”-node before 
postprocessing

S2 Constant 80 × 18 {1,2,3} 98 Module with mostly of non-dense interactions ({1,2})

S3 Constant 83 × 10 {1,2} 93 Module with non-dense positive interactions before postprocessing 
({1})

S4 Constant 50 × 20 {1,2,3} 70 Module with non-dense positive interactions ({1,2}) before postprocess-
ing

S5 Constant 45 × 31 {1,2,3} 76 Module with mostly dense interactions (scores in {2,3})

S6 Constant 55 × 85 {1,2} 143 Module with mostly dense interactions ({2})

Table 6 Illustrative set of biologically significant BicNET’s modules: description of the highly enriched terms in the mod-
ules presented in Table 5 [74, 75]

ID Terms description (♯) ♯Terms p <1E−15 ♯Nodes

DryGIN G1 Histone modification; regulation of histone H3-K79 methylation, histone H2B ubiquitination, H2B conserved 
C-terminal lysine ubiquitination, H3-K4 methylation (4)

6 27

G2 Regulation of gluconeogenesis; glutamate metabolic and catabolic processes (2);nicotinamide riboside meta-
bolic process; nicotinamide nucleotide biosynthetic process

6 13

G3 Positive and negative regulation of transcription from RNA polymerase II; Invasive growth response to glucose 
limitation and hyperosmotic salinity response by regulating RNA polymerase II (5)

5 12

G4 Meiotic anaphase I; activation of anaphase-promoting complex activity involved in meiotic cell cycle 4 12

G5 Negative reg. of phospholipid biosynthesis; lipid homeostasis; isopropylmalate and oxaloacetate transport 4 11

G6 Cotranslational protein targeting to membrane; protein insertion into mitochondrial membrane; protein 
import into peroxisome membrane; reg. sporulation; actin filament bundle assembly involved in cytokinesis

5 25

G7 Acetate fermentation, acetyl-CoA biosynthesis (from acetate), reg. transcription on exit from mitosis 7 50

STRING S1 Response to hypoxia; oxidation-dependent protein catabolic process; anaerobic respiration; age-dependent 
response to reactive oxygen species; cellular response to oxidative stress

36 169

S2 Positive and negative reg. of mitotic and nuclear cell cycle, DNA replication, budding cell apical bud growth 16 98

S3 Transport of aerobic electron, acetyl-CoA, vacuolar transmembrane, amine, transport (5); ribose phosphate 
metabolic process; D-ribose metabolic and catabolic processes (2)

22 93

S4 Heterochromatin maintenance involved in chromatin silencing; sister chromatid segregation 6 70

S5 Cytoplasmic and mitochondrial translation (4); regulation of translational fidelity; ADP biosynthesis 6 76

S6 rRNA processing; separation, cleavage and maturation of SSU-rRNA (5); ribosomal (large subunit) biogenesis 14 143
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Fig. 18 Taxonomy of enriched terms for BicNET’s modules from yeast GIs (on STRING and DryGIN networks)

Table 7 Sets of modules with meaningful overlapping areas (satisfying the in-between plaid assumption [21])

ID Modules with meaningful overlapping regions Pattern ♯Nodes |I| × |J| % Overlapping 
interactions

G6 G7 from Table 6 (orders preserved in overlapping regions before cumulative effect) Order 42 × 8 21

G8: tRNA re-export from nucleus; nuclear mRNA surveillance of mRNP export Constant 12 × 10 62

G9: More general module (background) including cellular responses to pH Constant 41 × 6 16

S4 S2 from Table 6 (satisfying the relaxed additive model proposed in [21]) Constant 80 × 18 42

S7: Telomere maintenance; translocation; protein import into nucleous Constant 104 × 20 37

S8: Response to ionizing radiation; ribose phosphate metabolic process Constant 59 × 31 45

S9: Positive regulation of mitochondrial translation in response to stress Constant 50 × 20 89

Conclusions and future work
This work tackles the task of biclustering large-scale 
network data to discover modules with non-dense yet 
meaningful coherency and robustness to noise. In par-
ticular, we explore the relevance of mining non-trivial 
modules in homogeneous and heterogeneous networks 

with quantitative and qualitative interactions. We pro-
posed BicNET algorithm to extend state-of-the-art con-
tributions on pattern-based biclustering with efficient 
searches on networks, thus enabling the exhaustive dis-
covery of constant, symmetric and plaid models in bio-
logical networks. Additional strategies were further 
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incorporated to retrieve modules robust to noisy and 
missing interactions, thus addressing the limitations of 
the existing exhaustive searches on networks. Finally, we 
have shown that BicNET can be assisted in the presence 
of background knowledge and user expectations.

Empirical evidence confirms the superiority of Bic-
NET against peer biclustering algorithms able to discover 
non-dense regions. Contrasting with their efficiency bot-
tlenecks, BicNET enables the analysis of dense networks 
with up to 50,000 nodes. Results on biological networks 
reveal its critical relevance to discover non-trivial yet 
coherent and biologically significant modules.

Five major directions are identified for upcoming 
research: (1) to gather missing and noisy interactions 
within the discovered modules to predict unknown inter-
actions and to test the confidence (or adjust the score) 
of the weighted interactions within available biological 
networks; (2) to enlarge the conducted biological analy-
sis to further establish relationships between modules 

and functions to support the characterization of biologi-
cal molecules with yet unclear roles; (3) to explore the 
plaid model to identify and characterize hubs based on 
the overlapping interactions between modules, as well as 
the interactions within each of the two sets of interact-
ing nodes per bicluster to further assess the connectiv-
ity, coherence and significance of modules; (4) to study 
the relevance of alternative forms of coherency given by 
biclustering algorithms with distinct homogeneity/merit 
functions [15]; and (5) to extend BicNET for the integra-
tive analysis of GI and PPI networks and expression data 
in order to validate results and combine these comple-
mentary views either at the input, mining or output levels.

Availability
The BicNET software (graphical and programmatic inter-
faces) and datasets can be accessed at https://web.ist.utl.
pt/rmch/bicnet/.

Fig. 19 Taxonomy of enriched terms of BicNET’s modules discovered from human PPIs (see Table 4)

https://web.ist.utl.pt/rmch/bicnet/
https://web.ist.utl.pt/rmch/bicnet/


Page 26 of 30Henriques and Madeira  Algorithms Mol Biol  (2016) 11:14 

Authors’ contributions
RH designed and implemented the algorithms under close supervision by 
SCM. RH drafted the manuscript. Both authors revised and approved the final 
manuscript.

Acknowledgements
This work is an extension of previous work [41]. It was supported by national 
funds through Fundação para a Ciência e Tecnologia with reference UID/
CEC/50021/2013, the Ph.D. grant SFRH/BD/75924/2011 to RH and the 

sabbatical leave grant SFRH/BSAB/1427/2014 to SCM. SCM was also partially 
funded by the EURIAS Fellowship Programme and the European Commission 
(Marie-Sklodowska-Curie actions CoFUND Programme-FP7) through a grant for 
a junior fellowship position at Istituto di Studi Avanzati, University of Bologna, 
Italy.

Competing interests
The authors declare that they have no competing interests.

Appendix



Page 27 of 30Henriques and Madeira  Algorithms Mol Biol  (2016) 11:14 



Page 28 of 30Henriques and Madeira  Algorithms Mol Biol  (2016) 11:14 



Page 29 of 30Henriques and Madeira  Algorithms Mol Biol  (2016) 11:14 

Received: 11 December 2015   Accepted: 22 April 2016

References
 1. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s func-

tional organization. Nat Rev Genet. 2004;5(2):101–13.
 2. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein func-

tion. Mol Syst Biol. 2007;3(1):88.
 3. Mukhopadhyay A, Ray S, Maulik U. Incorporating the type and direction 

information in predicting novel regulatory interactions between HIV-1 
and human proteins using a biclustering approach. BMC Bioinform. 
2014;15:26.

 4. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and 
signalling circuits in molecular interaction networks. Bioinformatics. 
2002;18(suppl 1):S233–40.

 5. Segal E, Wang H, Koller D. Discovering molecular pathways from protein 
interaction and gene expression data. Bioinformatics. 2003;19(suppl 
1):i264–72.

 6. Dao P, Colak R, Salari R, Moser F, Davicioni E, Schönhuth A, Ester M. Infer-
ring cancer subnetwork markers using density-constrained biclustering. 
Bioinformatics. 2010;26(18):i625–31.

 7. Georgii E, Dietmann S, Uno T, Pagel P, Tsuda K. Enumeration of condition-
dependent dense modules in protein interaction networks. Bioinformat-
ics. 2009;25(7):933–40.

 8. Colak R, Moser F, Chu JSC, Schönhuth A, Chen N, Ester M. Module discov-
ery by exhaustive search for densely connected, co-expressed regions in 
biomolecular interaction networks. PLoS ONE. 2010;5(10):e13348.

 9. Ding C, Zhang Y, Li T, Holbrook S. Biclustering protein complex interac-
tions with a biclique finding algorithm. In: Sixth international conference 
on data mining, 2006. ICDM ’06; 2006: 178–87.

 10. Atluri G, Bellay J, Pandey G, Myers C, Kumar V. Discovering coherent value 
bicliques in genetic interaction data. In: IW on data mining in bioinfor-
matics (BIOKDD) 2010.

 11. Bellay J, Atluri G, Sing TL, Touftghi K, Costanzo M, Ribeiro PSM, Pan-
dey G, Baller J, VanderSluis B, Michaut M, Han S, Kim P, Brown GW, 
Andrews BJ, Boone C, Kumar V, Myers CL. Putting genetic interactions 
in context through a global modular decomposition. Genome Res. 
2011;21(8):1375–87.

 12. Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel biclustering 
approach to association rule mining for predicting HIV-1–human protein 
interactions. PLoS ONE. 2012;7(4):e32289.

 13. MacPherson JI, Dickerson JE, Pinney JW, Robertson DL. Patterns of HIV-1 
protein interaction identify perturbed host-cellular subsystems. PLoS 
Comput Biol. 2010;6(7):e1000863.

 14. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analy-
sis: a survey. IEEE/ACM Trans Comput Biol Bioinform. 2004;1:24–45.

 15. Henriques R, Madeira S. BicPAM: Pattern-based biclustering for biomedi-
cal data analysis. Algorit Mol Biol. 2014;9:27.

 16. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas 
J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein–
protein interaction networks, integrated over the tree of life. Nucleic 
Acids Res. 2014;43:1003.

 17. Xiong H, Heb XF, Ding C, Zhang Y, Kumar V, Holbrook SR. Identiftcation 
of functional modules in protein complexes via hyperclique pattern 
discovery. In: Pacific Symposium on Biocomputing. Pacific Symposium on 
Biocomputing. 2005; p. 221–32.

 18. Henriques R, Antunes C, Madeira SC. A structured view on pattern 
mining-based biclustering. Pattern Recognit. 2015;48(12):3941–58.

 19. Koh JLY, Ding H, Costanzo M, Baryshnikova A, Touftghi K, Bader GD, Myers 
CL, Andrews BJ, Boone C. DRYGIN: a database of quantitative genetic 
interaction networks in yeast. Nucleic Acids Res. 2010;38(suppl 1):D502–7.

 20. Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters 
in gene expression data. Bioinformatics. 2002;18:136–44.

 21. Henriques R, Madeira S. Biclustering with flexible plaid models to unravel 
interactions between biological processes. IEEE/ACM Trans Comput Biol 
Bioinform. 2015. doi:10.1109/TCBB.2014.2388206.

 22. Henriques R, Madeira S. BicSPAM: Flexible biclustering using sequential 
patterns. BMC Bioinform. 2014;15:130.

 23. Okada Y, Fujibuchi W, Horton P. A biclustering method for gene expres-
sion module discovery using closed item set enumeration algorithm. IPSJ 
Trans Bioinform. 2007;48(SIG5):39–48.

 24. Serin A, Vingron M. DeBi: Discovering differentially expressed biclusters 
using a frequent itemset approach. Algorit Mol Biol. 2011;6:1–12.

 25. Spirin V, Mirny LA. Protein complexes and functional modules in molecu-
lar networks. Proc Natl Acad Sci. 2003;100(21):12123–8.

 26. Berg J, Lässig M. Local graph alignment and motif search in biological 
networks. Proc Natl Acad Sci USA. 2004;101(41):14689–94.

 27. Chen J, Yuan B. Detecting functional modules in the yeast protein–pro-
tein interaction network. Bioinformatics. 2006;18:2283–90.

 28. Colak R. Towards finding the complete modulome: density constrained 
biclustering. PhD thesis, Simon Fraser University; 2008.

 29. Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules 
from protein interaction networks. Proteins Struct Func Bioinform. 
2004;54:49–57.

 30. Bo V, Curtis T, Lysenko A, Saqi M, Swift S, Tucker A. Discovering Study-
Speciftc Gene Regulatory Networks. PLoS ONE. 2014;9(9):e106524.

 31. Mitra S, Das R, Banka H, Mukhopadhyay S. Gene interaction—an evolu-
tionary biclustering approach. Informat Fusion. 2009;10(3):242–9 (Special 
Issue on Natural Computing Methods in Bioinformatics).

 32. Das R, Mitra S, Banka H, Mukhopadhyay S. Evolutionary Biclustering 
with Correlation for Gene Interaction Networks. In: Ghosh A, De R, Pal S, 
editors. Pattern recognition and machine intelligence, vol. 4815., lecture 
notes in computer science. Berlin: Springer; 2007. p. 416–24.

 33. Reiss DJ, Baliga NS, Bonneau R. Integrated biclustering of heterogeneous 
genome-wide datasets for the inference of global regulatory networks. 
BMC Bioinform. 2006;7:280.

 34. Maulik U, Mukhopadhyay A, Bhattacharyya M, Kaderali L, Brors B, Ban-
dyopadhyay S, Eils R. Mining quasi-bicliques from HIV-1-human protein 
interaction network: a multiobjective biclustering approach. IEEE/ACM 
Trans Comput Biol Bioinform. 2013;10(2):423–35.

 35. Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T. Network-based classifica-
tion of breast cancer metastasis. Mol Syst Biol. 2007;3:140. doi:10.1038/
msb4100180.

 36. Chowdhury SA, Koyuturk M. Identiftcation of coordinately dysregulated 
subnetworks in complex phenotypes In pacific symposium on biocom-
puting. World Scientific. 2010;15:133–44.

 37. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T. Identifying func-
tional modules in protein–protein interaction networks: an integrated 
exact approach. Bioinformatics. 2008;24(13):i223–31.

 38. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and 
signalling circuits in molecular interaction networks. Bioinformatics. 
2002;18(suppl 1):S233–40.

 39. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein func-
tion. Mol Syst Biol. 2007;3:88.

 40. Tomaino V, Guzzi PH, Cannataro M, Veltri P. Experimental comparison of 
biclustering algorithms for PPI networks. In: Proceedings of the first ACM 
international conference on bioinformatics and computational biology, 
BCB ’10, New York: ACM 2010: 671–76.

 41. Henriques R, Madeira SC. BicNET: Efficient biclustering of biological 
networks to unravel non-trivial modules. In algorithms in bioinformatics 
(WABI), lecture notes in computer science. Berlin: Springer; 2015.

 42. Henriques R, Madeira SC. Pattern-based biclustering with constraints for 
gene expression data analysis In: Computational methods in bioinformat-
ics and systems biology (EPIA-CMBSB), LNAI. Berlin: Springer; 2015.

 43. Liu J, Wang W. OP-Cluster: clustering by tendency in high dimensional 
space. In ICDM. Washington: IEEE Computer Society; 2003.

 44. Henriques R, Antunes C, Madeira S. Methods for the efficient discovery of 
large item-indexable sequential patterns. LNAI 2014, 7765.

 45. Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in 
Large Databases. In VLDB. San Francisco: Morgan Kaufmann; 1994. p. 
487–99.

 46. Zaki MJ, Gouda K. Fast vertical mining using diffsets. New York: ACM; 
2003. p. 326–35.

 47. Henriques R, Madeira SC, Antunes C. F2G: Efficient discovery of full-
patterns In: ECML/PKDD IW on new frontiers to mine complex patterns, 
prague, Czech Republic. Berlin: Springer; 2013.

 48. Martinez R, Pasquier C, Pasquier N. GenMiner: mining informative associa-
tion rules from genomic data. In BIBM. Washington: IEEE CS; 2007. p. 
15–22.

http://dx.doi.org/10.1109/TCBB.2014.2388206
http://dx.doi.org/10.1038/msb4100180
http://dx.doi.org/10.1038/msb4100180


Page 30 of 30Henriques and Madeira  Algorithms Mol Biol  (2016) 11:14 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 49. Chen D, Lai C, Hu W, Chen W, Zhang Y, Zheng W. Tree partition based 
parallel frequent pattern mining on shared memory systems. In 20th 
International Parallel and Distributed Processing Symposium, 2006. IPDPS 
2006. IEEE. 2006; p. 1–8.

 50. Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and 
future directions. Data Min Knowl Discov. 2007;15:55–86.

 51. Javed A, Khokhar A. Frequent pattern mining on message passing multi-
processor systems. Distributed Parallel Databases. 2004;16(3):321–34.

 52. Pei J, Han J. Can we push more constraints into frequent pattern mining? 
In KDD. New York: ACM; 2000. p. 350–4.

 53. Bonchi F, Lucchese C. Extending the state-of-the-art of constraint-based 
pattern discovery. Data Knowl Eng. 2007;2:377–99.

 54. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: func-
tional analysis of gene datasets based on Gene Ontology. Genome Biol. 
2004;12:101.

 55. Fang G, Kuang R, Pandey G, Steinbach M, Myers CL, Kumar V. Subspace 
differential coexpression analysis: problem deftnition and a general 
approach. In: Pacific symposium on biocomputing. Singapore: World 
Scientiftc Publishing; 2010. p. 145–56.

 56. Odibat O, Reddy C. Efficient mining of discriminative co-clusters from 
gene expression data. Knowl Informat Syst. 2013;41(3):667–96.

 57. Kirsch A, Mitzenmacher M, Pietracaprina A, Pucci G, Upfal E, Vandin F. An 
efficient rigorous approach for identifying statistically signiftcant frequent 
itemsets. In PODS. New York: ACM; 2009. p. 117–26.

 58. DuMouchel W, Pregibon D. Empirical bayes screening for multi-item 
associations. In KDD. New York: ACM; 2001. p. 67–76.

 59. DuMouchel W. Bayesian data mining in large frequency tables, with 
an application to the fda spontaneous reporting system. Am Statist. 
1999;53(3):177–90.

 60. Ramesh G, Maniatty WA, Zaki MJ. Feasible itemset distributions in data 
mining: theory and application. In Symposium on Princ. of data sys. New 
York: ACM Press; 2003.

 61. Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W, 
Hennig L, Thiele L, Zitzler E. A systematic comparison and evaluation 
of biclustering methods for gene expression data. Bioinformatics. 
2006;22(9):1122–9.

 62. Bozdag D, Kumar AS, Catalyurek UV. Comparative analysis of biclustering 
algorithms In BCB. New York: ACM; 2010.

 63. Aggarwal CC, Reddy CK. Data clustering: algorithms and applications. 
Boca Raton: CRC Press; 2013.

 64. Pavlopoulos GA, Hooper SD, Sifrim A, Schneider R, Aerts J. Medusa: a 
tool for exploring and clustering biological networks. BMC Res Notes. 
2011;4:1–6.

 65. Farkas I, Abel D, Palla G, Vicsek T. Weighted network modules. New J Phys. 
2007;9(6):180.

 66. Henriques R. Learning from high-dimensional data using local descriptive 
models. PhD thesis, Instituto Superior Tecnico, Lisboa: Universidade de 
Lisboa; 2016.

 67. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, 
Khamiakova T, Van Sanden S, Lin D, Talloen W, Bijnens L, Gohlmann HWH, 
Shkedy Z, Clevert DA. FABIA: factor analysis for bicluster acquisition. 
Bioinformatics. 2010;26(12):1520–7.

 68. Barkow S, Bleuler S, Prelic A, Zimmermann P, Zitzler E. BicAT: a biclustering 
analysis toolbox. Bioinformatics. 2006;10:1282–3.

 69. Ihmels J, Bergmann S, Barkai N. Deftning transcription modules using 
large-scale gene expression data. Bioinformatics. 2004;20(13):1993–2003.

 70. Murali TM, Kasif S. Extracting conserved gene expression motifs from 
gene expression data. Pacific Symp Biocomput. 2003;8:77–88.

 71. Cheng Y, Church GM. Biclustering of expression data. In intelligent sys-
tems for molecular biology. Menlo Park: AAAI Press; 2000. p. 93–103.

 72. Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene 
expression data: the order-preserving submatrix problem. In RECOMB. 
New York: ACM; 2002. p. 49–57.

 73. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for dis-
covery and visualization of enriched GO terms in ranked gene lists. BMC 
Bioinformatics. 2009;10:48.

 74. Teixeira M, Monteiro P, Guerreiro J, Goncalves J, Mira N, dos Santos S, 
Cabrito T, Palma M, Costa C, Francisco A, Madeira S, Oliveira A, Freitas A, 
Sa-Correia I. The yeastract database an upgraded information system for 
the analysis of gene and genomic transcription regulation in Saccharo-
myces cerevisiae. Nucleic Acids Res. 2014;42(Database issue):D161–6.

 75. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, 
Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk D, Hirschman J, Hitz 
B, Karra K, Krieger C, Miyasato S, Nash R, Park J, Skrzypek M, Simison 
M, Weng S, Wong E. Saccharomyces genome database: the genomics 
resource of budding yeast. Nucleic Acids Res. 2012;40:D700–5.


	BicNET: Flexible module discovery in large-scale biological networks using biclustering
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Background
	Biological networks
	Biclustering network data
	Pattern-based biclustering
	Related work
	Research questions

	BicNET: solution
	Biclustering network data
	Modules with non-dense forms of coherency using pattern-based biclustering
	Constant model
	Symmetric model
	Plaid model
	Order-preserving model

	Handling noisy and missing interactions
	BicNET: efficient biclustering of biological networks
	Scalability

	BicNET: incorporating available domain knowledge
	Constraint-guided biclustering
	Integration of external knowledge

	Benefits of BicNET against its peers

	BicNET: algorithmic aspects
	Computational complexity
	Default and dynamic parameterizations
	Software

	Results and discussion
	Experimental settings
	Synthetic data
	Real data
	Performance metrics
	Introductory notes on tools for network data analysis
	Algorithms for comparisons

	Results on synthetic data
	Results on real data
	Modules with varying coherency
	Non-trivial modules
	Concluding note


	Conclusions and future work
	Availability
	Authors’ contributions
	References




