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Abstract With the public availability of large data sources

such as ChEMBLdb and the Open PHACTS Discovery

Platform, retrieval of data sets for certain protein targets of

interest with consistent assay conditions is no longer a time

consuming process. Especially the use of workflow engines

such as KNIME or Pipeline Pilot allows complex queries

and enables to simultaneously search for several targets.

Data can then directly be used as input to various ligand-

and structure-based studies. In this contribution, using in-

house projects on P-gp inhibition, transporter selectivity,

and TRPV1 modulation we outline how the incorporation

of linked life science data in the daily execution of projects

allowed to expand our approaches from conventional

Hansch analysis to complex, integrated multilayer models.

Keywords Data extraction � Data curation � Data
integration � QSAR � Computer-aided drug discovery �
TRPV1 � Pharmacophore modeling

Introduction

The methodology of 3D quantitative structure–activity

relationships (3D-QSAR) established in 1988 by Richard

Cramer could be referred to as one of the first Computer-

Aided Drug Design (CADD) strategies to facilitate drug

discovery [1]. Since then, the introduction of pharmacophore

modeling, molecular docking, molecular dynamics simula-

tions, and free energy calculations helped to identify and to

analyze the molecular basis of protein–ligand interactions.

Recent progress in experimental methods, such as X-ray

crystallography, NMR spectroscopy, and Cryo electron

microscopy, increases the number and quality of the protein

structures available, and thus fosters structure-based design

strategies. Lately, the Worldwide PDB (wwPDB) organi-

zation hosts multiple depositories for 3D protein and nucleic

acid structures: the ProteinDataBank (http://www.rcsb.org/;

RCSB PDB [2]), the Protein Data Bank in Europe (PDBe),

Protein Data Bank Japan (PDBj), the Biological Magnetic

Resonance Data Bank (http://www.bmrb.wisc.edu/; BMRB

[3]), and the Electron Microscopy Data Bank (http://www.

emdatabank.org; EMDataBank [4]). In addition to those,

small-molecule organic andmetal–organic crystal structures

are deposited in the Cambridge Structural Database (http://

www.ccdc.cam.ac.uk/; CSD [5, 6]) to be exploited by the

scientific community.

With respect to small molecule pharmacological (and

related) data, numerous open data sources and platforms

are now facilitating their access, integration and re-use.

Pre-competitive alliances aid in the development of proper

ontologies, and the mapping to existing ontologies and

vocabulary, which are needed for seamless data integra-

tion. Such initiatives alleviate data access by removing

some of the main hurdles in the Life Sciences domain: data

heterogeneity in all its aspects (even concerning legality
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and licensing issues). By providing the data via a

stable infrastructure, the Open PHACTS Discovery Plat-

form (https://www.openphacts.org/open-phacts-discovery-

platform) facilitates the processing of even more complex

research questions, going beyond the concepts ‘‘target-li-

gand-bioactivity’’. Postprocessing by a modular pipelining

tool (e.g. KNIME [7] https://www.knime.org or Pipeline

Pilot [8] http://accelrys.com/products/pipeline-pilot/) com-

plements the workflow of data curation and analysis. Using

open source software tools such as WEKA [9], RDKit

(http://www.rdkit.org), and SCIKIT [10], predictive mod-

els can be built conveniently right inside the data curation

workflows or as a separate instance.

Looking 10 years back, academic research groups

focused their research on small data sets of compounds

originating from collaborators within their closest research

environment: either within the academic institution, a close

academic collaborator, or a single pharma company (in the

latter case without disclosing the compounds’ chemical

structures). Computational chemists primarily applied 2D or

3D QSAR analysis to propose chemical modifications to

guide synthesis. Currently the pharmacological, biological,

and structural data are shared internationally within large

EU-projects encouraging a dialog between specialists of

different fields. Additionally, public–private initiatives

facilitate close collaborations between academia and

industry, giving access to proprietary data in order to develop

and test novel computational methods on them. Thus, aca-

demic CADD is increasingly looking into topics which

benefit from the unprecedented access to data, such as phe-

notypic annotations, in silico tools to facilitate drug repur-

posing, translational and precision medicine and provides

computational solutions there, such as tailored workflows

[11–13]. In this contribution we seek to demonstrate how all

these developments influenced our (the Pharmacoinformat-

ics Research Group at the Department of Pharmaceutical

Chemistry, University of Vienna) way of approaching

challenging research questions (Fig. 1).

From synthesis of small in-house libraries to first
computational approaches

With the ground breaking contributions of Hansch, Fujita,

and Seydel, correlations of differences in chemical struc-

tures with differences in respective biological activities for

small, congeneric compound series became a widely used

tool for lead optimisation. As this classical quantitative

structure–activity relationship (QSAR)—often referred to

as Hansch analysis—not necessarily requires expensive

hard- and software, it was free to everyone. Ideally, based

on hypotheses such as ‘‘the para-substituent on this aro-

matic ring influences biological activity mainly via electron

donating properties’’, small, focused sets of compounds

were synthesized, tested, and the correlation between

electron donating property and pIC50 values were seen as

proof of hypothesis. Numerous medicinal chemistry groups

started to include these approaches into their daily routine

in order to rationalise their compound design. Also our

work on propafenone-type inhibitors of the drug efflux

pump P-glycoprotein (P-gp) started with very simple

Hansch analyses, mainly based on logP as descriptor [14].

Expanding this to descriptors for e.g. hydrogen bond (H-

bond) acceptor strength enabled to derive a hypothesis

whether or not this type of compounds interact in charged

or uncharged form [15]. Including size and distance finally

allowed us to draw a picture as provided in Fig. 2, which

summarizes the result of synthesizing and testing of more

than 200 propafenone analogs [16]. This not only led to

P-gp inhibitors which show three orders of magnitude

higher activity than the parent compound propafenone

(IC50 propafenone = 3 lM, IC50 GPV0576 = 5 nM), it

also laid the ground for application of more complex

Fig. 1 Evolution of the applied computer-aided drug design methods

and data access practices in the Pharmacoinformatics Research group

of Vienna

Fig. 2 Summary of the results of structure–activity relationship

studies on propafenon-type inhibitors of P-gp Adapted from [64]
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CADD methods. These comprise, among others, the

development of CoMFA and Hologram QSAR models

[17], the development of pharmacophore models [18], as

well as the application of self organising maps [19]. Both

the pharmacophore model and the self organising map

were further used for virtual screening, thereby identifying

new, structurally unrelated P-gp inhibitors. This already

marked a further step in the development of the group, the

proof of hypothesis by prospective in silico screening fol-

lowed by experimental testing, rather than by retrospective

correlation analysis.

With the first X-ray structures of ABC-transporters pub-

lished, also structure-based design strategies were pursued.

However, it should be noted that we still lack the structure of

human P-gp, and that basically all structure-based studies are

conducted with homology models based on the mouse P-gp

structure [20] and its refined version [21]. Also in this case

the propafenone data set served as valuable basis for docking

experiments. As transporters generally show high plasticity,

and in case of ABC-transporters the ligand binding area is

huge (estimates go up to 8000 Å3), conventional protocols,

which rely on scoring functions for detecting the ‘‘right’’

binding mode, are likely to fail. Thus, we established what

we call ‘‘experimental data guided docking’’. Briefly, a small

set of compounds which show a distinct SAR pattern are

docked, and the poses retrieved are clustered according to the

common scaffold of the compound series. Subsequently, the

clusters obtained are analysed with respect to their ability to

explain the SAR pattern. This approach has been success-

fully applied for propafenones and P-gp [22], tricyclic

antidepressants and the serotonin transporter (SERT) [23],

benzodiazepines and the c-aminobutyric acid receptor type

A (GABAA) [24], and tiagabine analogs and c-aminobutyric

acid transporter type 1 (GAT1) [25]. Experimental support

for the docking poses is retrieved by transforming the pose to

a structure-based pharmacophore model using LigandScout

[26], followed by in silico screening of a vendor library and

buying and testing the top ranked hits. This workflow is now

routinely applied in all structure-based studies conducted in

our group (see also TRPV1 use case below). It exemplifies

how simple Hansch analyses progressed towards a complex

workflow integrating ligand- and structure-based design

methods in order to target transmembrane transport proteins.

From manual extraction and curation of literature
data to (semi-) automatic data retrieval, curation,
and processing within the framework of pre-
competitive alliances

Since more than a decade, the biomedical and healthcare

sectors are experiencing the consequences of the digital

revolution. As more and more data becomes openly

available, we are facing challenges regarding data man-

agement, harmonization (standardization), integration, and

storage. Guidelines and initiatives trying to overcome some

of these challenges are under active development by many

consortia across Europe (e.g. Open PHACTS [27]) and US

(e.g. OBO foundry [28]). However, from the perspective of

an individual data scientist, the daily challenge lies in

finding the most suitable data retrieval, curation and pro-

cessing strategy in order to answer the underlying research

question(s) and to draw meaningful conclusions from it.

These decisions are influenced by many factors, such as the

nature and size of the primary data to be retrieved, the

number of layers and complexity of information/data to be

integrated, the level of detail to be achieved, as well as the

common scientific culture within the lab or research entity.

Being embedded within an academic research environ-

ment, we have to deal with the fact that pre-clinical

research data coming from the open domain is generally

less well structured and curated than clinical data [29].

Thus, for the purpose of generating predictive models, it

will in many cases appear inevitable to manually extract

the pharmacological and other biomedical data directly

from its primary source, i.e. from its scholarly publication.

In that way, the detailed descriptions of underlying bioas-

says as well as recommendations regarding the cutoffs for

separation of actives and inactives by the original authors

of the data sets can be collected.

In the (recent) past, we have applied this modus oper-

andi on various use cases, however with minor differences

regarding the exact data extraction and curation protocols.

Klepsch et al. [32] used two publications [30, 31] in order

to collate their data set for P-gp inhibitor classification

models. However, for one of these papers [30], sixty pri-

mary data sources originally served the authors for its

compilation. Thus, we could make use of the curation

efforts of other scientists with respect to data gathering as

well as considerations regarding a reasonable cutoff (nee-

ded for active/inactive class assignment). Although dif-

ferent bioassay protocols were used for measuring the

compounds’ pharmacological activities, by incorporating

multiple individual criteria for class assignment (the IC50,

percent inhibition values, and the multidrug-resistance

ratio), the data points could be joined to one big data set

composed of approx. 1600 unique molecules.

While the inter- and intra-comparability of bioassays is a

well known challenge in data-driven science, still there is

no general agreement or guideline on how to accurately

compile a data set from pharmacological data that has been

produced under different assay conditions. For smaller data

sets, an isolated target or a target family, one might take the

effort to manually map bioassays according to their pro-

tocols (narrative descriptions) in databases (e.g.

ChEMBLdb) or in the primary literature. Earlier, we have
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reported our annotation effort for human P-gp inhibitors

[33] and proposed strategies to make use of existing

ontologies for mapping identical and combinable assays

[34] via nanopublications [35, 36].

Going a step further, a data compilation exercise for

breast cancer resistance protein (BCRP) inhibitors [37] led

us to generate tailored cutoffs. These cutoffs were adjusted

to the specific sources and bioassays by performing an in-

depth analysis of pharmacological bioactivities for a set of

reference compounds across different papers and assays. In

addition to peer-reviewed articles, high-throughput

screening (HTS) data from Pubchem was included making

use of inherent labels (‘‘Active’’, ‘‘Inactive’’, ‘‘Inconclu-

sive’’, ‘‘Unspecified’’) for assigning the classes.

However, such extensive curation efforts might often

appear unfeasible for large data sets. There we sometimes

have to deal with a certain degree of uncertainty of

bioactivity data if we want to fully exploit all available

data. Kalliokoski et al. [38] have shown that the error

introduced by mixing IC50 data from different assays only

adds a moderate amount of noise when comparing different

measurements of the same compound-target pairs. More-

over, such intravariabilities (same compound target pair,

same bioactivity endpoint, different assays) seem to be in

the same range as intervariabilities (same compound target

pair, different bioactivity endpoints, different assays) as we

have successfully demonstrated for IC50 and Ki measure-

ments of human serotonin and dopamine transporter

ligands [11]. Thus, even when mixing IC50 with Ki data,

the error introduced might be tolerable, depending on the

final granularity that shall be achieved and the usage of the

dataset (i.e. for retrieving selectivity tendencies).

Regarding data cleaning and curation, protocols differ

between research groups and also between different pro-

jects. The choice of software tools to use for these cleaning

and standardization steps is very much dependent on their

availability. Open source tools, such as the Chemical

Validation and Standardization Platform (CVSP) [39],

developed by the Royal Society of Chemistry (RSC), will

hopefully facilitate validation and standardization of

chemical structure data sets from various sources. More-

over, providing a platform for performing all curation steps

within the same environment might diminish mistakes

occurring by incompatibilities between data formats of

different platforms.

While it might be worth the effort to manually curate a

data set for one or two selected targets of interest, there is a

need for a (semi-) automatic procedure for the simultane-

ous extraction and curation of many targets or for inves-

tigation of relationships between data of those targets. By

managing and scientifically participating in the Open

PHACTS project [27] from 2011 until 2016, and being a

partner in its successor organization the Open PHACTS

Foundation (http://www.openphactsfoundation.org/), our

group got increasingly engaged in big data management,

integration, curation, and mining. Retrospectively, these

activities influenced tremendously the way we are per-

forming data compilation, but also the kind of scientific

questions we are targeting. Since one of the very first

activities of the project was the collection of exemplary

scientific research questions [40], commonly tackled within

the research entities both in academia and in pharma

companies, we got an immediate feeling of the actual

requirements driving a collaborative research environment.

By making use of the expertise of a large multidisciplinary

consortium, we could harness research strategies from both

worlds (academia vs. pharma, or IT specialist vs. applica-

tion scientist). In addition, such pre-competitive alliances

are providing a framework that facilitates data sharing in a

way that the extent of shared data and especially its

metadata (data about data; the underlying description of the

data) will be larger. Thus, any spurious findings (like data

inconsistencies, outliers, etc.) would also be detected ear-

lier, [29] which has an impact on the quality of the results.

With the emergence of specialized Open PHACTS

Pipeline Pilot components and KNIME nodes (https://dev.

openphacts.org/resources) it became feasible to simulta-

neously query for multiple targets or even pathways of

interest within a single data pipelining environment, which

as well provides nodes for data curation and analysis. We

successfully demonstrated the usability of the Open

PHACTS Discovery Platform in conjunction with

pipelining tools for solving drug discovery relevant

research questions by performing data compilation for

whole regulatory pathways of interest [41].

Applying these methods, we integrated open data with

manually retrieved literature data [37], and were able to

determine compound overlap for human P-gp and BCRP

inhibitors within a semiautomatic data curation workflow.

This allowed us to generate data sets for studying their

selectivity profiles [42]. Subsequently, the data sets of

P-gp-selective inhibitors, BCRP-selective inhibitors, and

P-gp/BCRP dual inhibitors served to establish different

multi-label classification models, which in turn revealed

important molecular features driving selective or

polyspecific inhibitory activity. Elaborating this idea fur-

ther, a workflow of this kind could be used for building

multi-label data sets of any set of pharmacological targets

for which there is data available either in the open domain

or in-house (even for a whole protein family).

With the idea that certain molecular features might

trigger selectivity, two other phylogenetically related

transporters of interest to our group, the human serotonin

(hSERT) and dopamine transporters (hDAT), served for a

combined data mining/in silico modeling study [11]. Data

was extracted solely from the public domain for this case
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study, but cutoffs for the separation of actives and inactives

were tailored according to targets and bioactivity endpoints

(Ki and IC50). The aim was to investigate the ability to

retrieve consistent SAR series by the clustering of com-

pounds according to their common scaffolds in an auto-

matic fashion. These compound series further served for

SAR and modeling studies. In addition, we were interested

in the potential of such clustering methods to extract

scaffold series with a pronounced selectivity trend towards

hSERT/hDAT. Concludingly, automatic scaffold clustering

might serve as useful tool to get first hints on privileged

scaffolds. Still, as our study showed, it is always advisable

to combine scaffold clustering methods with similarity

searches (such as a common substructure search).

In summary, the combined use of open and literature

data with workflow tools most probably represents the best

option to generate data sets of suitable size and quality to

be analyzed further by machine learning and other in silico

modeling methods. It will be necessary to elaborate some

standard operating procedures within the data mining

community, describing best practice for data curation (such

as the mapping of bioactivities for different bioassay and

accurate cutoff setting).

From large data extraction to the pharmacological
action on the molecular level—a recent use case

Combine, curate, exploit, abstract, test, project, and vali-

date are the seven pillars to guide a computer-aided drug

design project in our group. In the paragraphs below, we

are using TRPV1 as an example to demonstrate common

pitfalls that we face, as well as the methods and tools we

are using for (1) collecting relevant pharmacological data,

(2) filtering them from artifacts, (3) building computational

models for prediction of novel compounds, (4) selecting

the best model, (5) prioritizing virtual hits for experimental

testing, (6) using experimental ligand-based data to guide

molecular docking studies, and (7) identifying plausible

binding modes of novel therapeutically relevant

compounds.

The molecular target of interest was the Transient

Receptor Potential Vanilloid Type 1 (TRPV1)—an ion

channel that senses potentially harmful chemical,

mechanical, and thermal stimuli in the peripheral nervous

system (PNS) and causes pain perception. Therefore, its

antagonists could provide an alternative for the treatment

of chronic and neuropathic pain as non-opioid analgesics

[43, 44]. Since the structure of the TRPV1 channel was not

yet resolved when the project started, we relied on

numerous mutagenicity reports [45] and a few homology

modeling studies [46, 47] to locate a putative binding site.

Additionally, extensive pharmacological reports from

PubMed [48, 49] provided insights into the structure–ac-

tivity relationships (SAR) of diverse subsets of agonists

and antagonists of the receptor.

To collect a data set of TRPV1 ligands published until

2011 we used ChEMBLdb v.13 [50] and extracted phar-

macological data for over 2300 chemicals. Since

ChEMBLdb excerpts chemical structures and bioassay

descriptions directly from the underlying publication, assay

descriptions are heterogeneous and we therefore carefully

filtered the data from artifacts [51]. We manually compared

those descriptions provided in the underlying publications

and prioritized 408 antagonists (reference data set) mea-

sured as competitive inhibitors of the capsaicin activation

of the human TRPV1 receptor expressed in HEK293 cell

lines (A detailed description of the filtering protocol is

available in [51]). This way we ensured that compounds in

the data set are occupying the same binding site as the

reference agonist, capsaicin, and could be used in future

structure-based studies. At present, an automatic extraction

of pharmacological data using ChEMBLdb REST nodes in

KNIME returns over 4700 ligands of human TRPV1, from

which 2019 ligands have reported IC50 values. Stepwise

automatic curation (following the protocol from 2011)

yields 403 unique compound structures, a slightly lower

number than we extracted by manual comparison of assay

protocols. These data contain 240 novel compounds, pub-

lished between 2011 and 2015. However, 244 compounds,

which we included in our reference data set in 2011 by

manual comparison of assay protocols, were missed since

their assay descriptions in ChEMBLdb are scarce, i.e. they

lack reference terms like ‘capsaicin’ or ‘HEK293’. The

KNIME workflow used for extraction and curation of

pharmacological data for TRPV1 is provided under http://

www.myexperiment.org/workflows/4915.html. Although

the databases encourage the users to deposit their data

using defined ontologies, this use case confirms that auto-

matic data extraction and curation is imperfect due to

existing scarce data descriptions. However, the protocol for

the automatic data extraction is much more efficient and

provides access to high quality, though limited, data within

about one hour depending on the speed of your internet

connection.

While building computational models on the data sets

collected from open data sources, one has to pay attention

to the following aspects: chemical diversity, data comple-

tion, size of the data set, distribution of the activity values,

and the threshold for defining activity classes. The TRPV1

antagonists in our data set originated from structure–ac-

tivity relationship (SAR) studies and represented several

populated islands in the ocean of the possible chemical

space [52]. The bioactivity values (IC50) in the data set

ranged from low nM to high lM, and we chose a threshold

of 100 nM to separate actives from inactives based on the
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IC50 value of the reference antagonist capsazepine, which

was determined in the same experimental protocol.

The growing popularity of machine learning algorithms

in the chemoinformatics community motivated us to build

classification models on our TRPV1 data set along with

other in-house data sets [32, 37, 53, 54]. While probing our

data set with several machine learning algorithms and

descriptors, we noticed that the models were not ideal for

virtual screening, i.e. the search for novel compounds

(accuracy between 60 and 70%). Furthermore, we detected

several compounds that were constantly misclassified.

They originated from the same chemical series and pos-

sessed only small differences in the substitution patterns of

their scaffolds and hence showed similar descriptor values.

Therefore, these minor differences could not be distin-

guished by classification algorithms. However, 3D GRID

independent QSAR (GRIND) modeling [55] allowed to

capture the properties of the specific substituents according

to their influence on activity and to build satisfactory

models for distinct chemical compound series.

The breakthrough for the TRPV1 use case was achieved

with the application of ligand-based pharmacophore clus-

tering, which allowed to abstract common features of the

antagonists into several ensembles of pharmacophore

models [56]. To select the models for virtual screening, we

performed thorough computational validation with data

sets of inactive TRPV1 antagonists, customized decoy sets,

and active compounds in clinical trials. Virtual screening

of a vendor database through the five best models led to a

hit list of 1909 compounds selected from more than

300000. Since the vendor database consisted of numerous

compound series, in which individual series share the same

core and vary in the substituents, we hypothesized, that if

the pharmacophore of the core matches our pharmacophore

models, then at least a fraction of compounds sharing this

core should appear in the hit list. The exception would be

when the substituents of the core scaffold are bulky and

clash with the exclusion volume spheres, which represent

borders of a hypothetical binding pocket in a pharma-

cophore model. However, the cores of several compounds

occurred only once in the hit list, while having numerous

representatives in the vendor database. Those compounds

alerted us by being singletons in the hit list while having

non-bulky neighbors in the database and we considered

them as potential outliers. Finally, we picked 12 top-scored

compounds from the series that were enriched in the hit list

and performed in vitro testing for them. Two of the com-

pounds showed antagonistic activity against capsaicin

activation of the TRPV1 channel and thus allowed us to

confirm two of five pharmacophore models.

We are convinced, that experimental testing should serve

as a proof of concept and ultimate validation of the selected

computational approach. Currently, each of our

computational projects, be it on ion channels, such as TRPV1

[56] and GABAA [24], or transporters, such as P-gp [un-

published], BSEP [37], BCRP [57], and GAT3 [unpub-

lished], is validated in vitro either in-house or outsourced.

Coming back to the TRPV1 use case, wewere intrigued to

explore, whether we could use the two experimentally con-

firmed ligand-based pharmacophore models to guide vali-

dation of molecular docking and, ultimately, identify

possible binding modes of the TRPV1 antagonists. In this

waywe usedmolecular docking as a structure-based in silico

method for identification of important protein–ligand inter-

actions. Exact parameters and specific settings used in the

study are provided in the Electronic SupplementaryMaterial

(ESM). For our computational experiments highly active

representatives of those two pharmacophoric clusters were

used, which led to the experimentally confirmed models

(Table ESM1). These compounds incorporated either iso-

quinoline or quinazoline substructure as a common scaffold

and we further refer to them as class 1 (isoquinolines) and

class 2 (quinazolines) TRPV1 antagonists, respectively

(Figure ESM2 and ESM3). To be able to distinguish

important protein–ligand interactions, we also performed

molecular docking of the lower active compounds sharing

the same common substructures, which did not fit our ligand-

based pharmacophore models.

Since a high resolution structure of the TRPV1 bound with

its ligands was not available at the time (structures of the

TRPV1 bound with capsaicin, RTX and capsazepine were

determined in June 2016), we used a recently released struc-

ture of the rat ortholog of TRPV1 in the apo state as a template

for the homology modeling of the human TRPV1 [58] (Fig-

ures ESM4–ESM7). Competitive antagonists replace agonists

in their binding pocket, which allows strict definition of the

binding site in the transmembrane region on the interface of

two adjacent subunits, which is also supported by numerous

mutational studies [45] (Figure ESM8). Furthermore, those

antagonists stabilize the receptor in the closed state, and thus

information from the ligand-receptor complexes would pro-

vide a binding hypothesis for high affinity antagonists.

For identification of probable binding modes we used the

experimental data guided docking approach outlined above.

Analysis of the protein–ligand interaction fingerprints sug-

gested, that the most active TRPV1 antagonists form a

H-bond with the hydroxyl of the Thr550 and show van der

Waals interactions with the residues Glu570 and Ile573

(Figure ESM9). Other residues of the binding pocket showed

different patterns in the interaction with the two classes of

antagonists, which suggests that isoquinolines and quinazo-

lines adopt different binding modes while bound to TRPV1.

Subsequently, we applied the common scaffold clustering

protocol for each set of ligands separately. According to the

hypothesis of a common binding mode, structurally related

compounds with high affinity should display similar
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orientation in the binding pocket and allow identical ligand-

receptor interactions. Therefore, it is only worth to consider

those clusters that include the majority of the poses of higher

active compounds (Figure ESM10 and ESM11). In case of

TRPV1, in addition to our standard protocol, for each com-

mon scaffold cluster we compared a structure-based phar-

macophore generated from its centroid pose with the

validated ligand-based pharmacophore models described

previously (Fig. 3). This adds an additional layer in com-

putational validation of the binding modes and allows to

check whether the binding modes, i.e. structure-based

pharmacophores, allowed discriminating between ligands

with higher and lower activity.

For the TRPV1 antagonists of class 1 we predicted two

possible orientations of the ligands in the binding pocket,

i.e. two possible binding modes. In both cases the iso-

quinoline moiety was located in the lower part of the

pocket. In the first mode, the molecule of the ligand was

stretched in the binding pocket along trans-membrane helix

4 (TM4) of one of the receptor subunits and its urea linker

was forming a H-bond with Thr550; the hydrophobic tail of

the molecule was pointing towards the upper hydrophobic

pocket (Fig. 4a). In the second mode, the linker and the

hydrophobic tail of the ligand were pointing towards the

subunit–subunit interface, thus forming a H-bond with

Glu570 and van der Waals interaction with the residues of

the adjacent subunit (Fig. 4b). In addition, we saw that the

isoquinoline moiety was forming a H-bond with Arg557.

For the class 2 TRPV1 antagonists we observed that

highly active antagonists were also stretched along the

TM4 showing strong van der Waals contacts with the

residues in the upper lower parts of the pocket. Addition-

ally, quinazolines showed the same H-bond interaction

with Thr550, which we observed for isoquinolines. Finally,

bulky substituents of several quinazoline antagonist formed

strong hydrophobic interactions with the residues of the

adjacent subunit (Fig. 4c).

Summarizing, for both classes of TRPV1 antagonists we

observed a H-bond with Thr550 and strong van der Waals

interactions with hydrophobic residues in the lower and upper

parts of the pocket. Our predictions are supported by two

consecutive publications from independent groups in the last

year [59, 60]. Yang et al. showed that interaction with Thr550

is essential for binding of an agonist capsaicin, however, a

H-bondwith Glu570 translates into gating of the channel. This

finding allowed us to confirm our hypothesis of a common

binding mode and to discard one of the binding mode

hypotheses of the isoquinolines. Very recently, in May 2016,

Gao et al. [60]. determined several structures of the rat ortholog

of TRPV1 boundwith an agonist, capsaicin, and an antagonist,

capsazepine, and released them to the community. Cap-

sazepine, when bound to the TRPV1, is stretched along TM4

and formsaH-bondwithThr550, reaffirmingour hypothesis of

the bindingmode of competitiveTRPV1antagonists (Fig. 4d).

This use case convincingly demonstrates that multilayer,

integrated approaches allow challenging targets such as

transmembrane ion channels or transporters to be investi-

gated via in silico modeling. This methodology of enrich-

ing structure-based analysis with ligand-based modeling,

whereby the latter may be based on carefully curated public

data, is now considered as standard operating procedure in

our group when approaching new targets, such as human

L-type amino acid transporter (LAT1).

Outlook

The participation of our group in projects funded by the

Innovative Medicines Initative, such as Open PHACTS,

eTOX, and K4DD, increased the awareness of topics

Fig. 3 Protocol for evaluation

of docking poses with structure-

based and ligand-based

pharmacophore models; CSC

stands for common scaffold

cluster
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relevant to the pharmaceutical industry. Our focus thus

gradually shifted from QSAR studies on small data sets and

one target to integrated models applying several concep-

tionally different approaches to derive validated hypotheses

for in silico screening, ending up at multilayer in silico

models for prediction of in vivo toxicity [54]. This requires

tools to automatically create high quality data sets out of the

large amount of data available. However, making use of data

sets available on the world wide web also introduces new

challenges. For data users, it is important to give credit to the

original data providers. Especially if different data sources

are linked, it is important to make sure to always preserve its

Fig. 4 Binding mode hypothesis for TRPV1 antagonists; spheres

represent hydrophobic interaction and arrows denote H-bonds (a) the
first proposed binding mode of isoquinolines (b) the second proposed

(but later rejected) binding mode of isoquinolines (c) proposed

binding mode of quinazolines (d) binding mode of capsazepine in the

structure with PDB ID 5IS0
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full provenance. For the data provider, it is important to

specify what can be done with the data by providing an

appropriate license. Basic guidelineswhich should aid the re-

use of scholarly data were recently introduced as the FAIR

data principles (Findability, Accessibility, Interoperability

and Reusability) [61]. Nevertheless, licenses are not only

important for the data, but also for the software used. While

previously only the results of computational models were

shared (together with a description of the methods), the

tendency to share workflows to perform the calculations sets

a new focus on open software. For example, a model created

with descriptors calculated by proprietary software will only

be of use for those who have the software license as well.

The availability of an increasing number of different life

science data sets, and methods to link the entities in the data as

well as new methods to mine the data, poses new challenges,

but also offers many new opportunities to solve complex

research questions, such as personalized medicine. A typical

example might be the Open PHACTS project. A basic set of

typical questions prioritized by the consortium members was

the basis for the initial life science data sets integrated in the

Open PHACTS Discovery Platform, focusing heavily on

bioactivity data for protein targets [40].With the availability of

phenotypic screening data [62], this focus changed to include

more complex biological read-outs. Here, linked life science

data canhelp to interpret theoutcomes of phenotypic screening

runs and annotate possible targets [12]. Very recently, the

platform was also used by our group for a repurposing

approach [63], demonstrating the almost unlimited possibili-

ties of linked life science data combined with workflow tools.
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