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Abstract: In this paper, an autonomous exercise generation system based of fuzzy logic approach
is presented. This work attempts to close a gap in the design of a completely autonomous robotic
rehabilitation system that can recommend exercises to patients based on their data, such as shoulder
range of motion (ROM) and muscle strength, from a pre-set library of exercises. The input parameters
are fed into a system that uses Mamdani-style fuzzy logic rules to process them. In medical applica-
tions, the rationale behind decision making is a sophisticated process that involves a certain amount
of uncertainty and ambiguity. In this instance, a fuzzy-logic-based system emerges as a viable option
for dealing with the uncertainty. The system’s rules have been reviewed by a therapist to ensure that
it adheres to the relevant healthcare standards. Moreover, the system has been tested with a series of
test data and the results obtained ensures the proposed idea’s feasibility.

Keywords: rehabilitation; decision-making system; fuzzy logic; range of motion; stroke

1. Introduction

Stroke is the second or third leading cause of mortality in most countries around the
world and is one of the major reasons for adult disability, affecting patients’ motor abilities
and contributing to long-term neurological disabilities [1–3]. While mortality due to stroke
has significantly decreased over the years, the long-term implications due to a stroke poses
a great amount of impact on individuals and their family’s quality of life [4]. Loss of
function on one side of the body, known as hemiparesis, is the most predominant disability
caused by a stroke. This ultimately results in post-stroke patients being dependent on the
people around them. This dependency is on the rise due to the imminent rise in the aging
population. Although significant progress has been achieved in the medical management of
stroke, most post-stroke care will continue to rely on rehabilitative therapies in the absence
of a universally applicable or effective medical treatment [5]. Therefore, occupational and
physical therapists have long been the foundation of post-stroke treatment. Unfortunately,
due to financial constraints, the absence of adequate professional staff, and the labor-
intensive nature of stroke rehabilitation, extensive therapy sessions for stroke patients are
difficult to achieve [6].

While the term rehabilitation has a wide range of applications and is associated
with various connotations around the world, the process can be broken down into a
few key elements that are consistent across the board [7]. The process entails identifying
a person’s problems and needs, linking the problems to relevant factors, formulating
rehabilitation goals, planning and implementing measures, and finally evaluating the
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results. In short, the rehabilitation cycle consists of four steps: assessment, assignment,
intervention, and evaluation [8].

Robot-assisted rehabilitation has been an active field of research providing therapeu-
tic interventions through two prominent robotic structures, namely, end-effector-based
robots and exoskeleton robots. End-effector-based robots are the ones where the upper
or lower extremity is solely linked to the robotic device’s end-effector with a moveable
distal handle [9]. As the rehabilitation process necessitates, this type of robot is defined
by its adaptability to diverse sizes and types of movements [10]; however, the force gen-
erated at the distal contact affects the locations of other joints at the same time, making
isolated joint movement challenging [11]. End-effectors have been in the scene for quite
some time [12–16] showing promising results in the field of rehabilitation for the past two
decades. Furthermore, new technologies continue to be adapted to these robots to improve
their performance in replicating real-life therapy sessions [17–21]. Exoskeleton-type robots
are the ones where the limb is attached to the end-effector in addition to multiple points
along the robot. They are designed by encapsulating the limb with a splint or a bionic
structure [9]. To control the movement of the limbs, the required torque for each joint
is calculated. In contrast with end-effector robots, exoskeleton robots can be used in a
more compact working environment. Exoskeleton robots have had similar success where
multiple developments have shown great potential [22–28] and technological advancement
only facilitates the improvement in the performance of these robots [29–35]. These robotic
systems can easily give consistent training and monitor performance with great accuracy
and reliability, and hence can provide crucial components for rehabilitation independently
such as intensive movement therapy, just-right challenge, task-specific movement, and feed-
back on performance. Since intervention consists of specific repetitive methods, it is easier
to automate the process, reducing the physical strain on therapists and effectively reducing
the cost of therapy. Other elements of rehabilitation actively being made autonomous is the
assessment and evaluation of the patient’s progress through various advanced biomechani-
cal sensors. The use of Red Green Blue-Depth sensors, such as the Microsoft Kinect camera,
inertial measurement sensors, and other sensors, have enabled the automated scoring of
a portion of the Fugl–Meyer Assessment Scale [36]. The wide range of assessment scales
and methodologies (sensor-based, tracking systems, computer-based, and so on) make
automating assessment a particularly promising avenue of research [37].

Evidently, the only step of rehabilitation that is yet to be automated and is still fully
reliant on therapists is the assignment of treatment. Few works have been performed in this
area, such as a traditional computerized exercise expert system [38], which was designed
to create personalized exercise prescriptions for elderly individuals with the help of a
panel of experts in medicine, exercise physiology, health promotion, exercise psychology,
and gerontology. More recently, an autonomous system [39] was created for pediatric
rehabilitation where the system provides a user interface through which the expert can
configure the session execution parameters. Depending on the parameters, the Java-based
Simple Hierarchical Order Planner completes the planning process to produce a valid plan
with exercises for each session. To the best of the authors’ knowledge, no commercial
systems exist that can automatically generate a complete rehabilitation strategy from the
initial functional assessment data for stroke patients, so therapists must still properly
identify the patient’s problems through a reliable diagnosis and the appropriate clinical
measures to assess the treatment’s effectiveness.

There have been a substantial amount of databases with information on each patient
since the introduction of Electrical Medical Records (EMRs). These databases store informa-
tion from previous hospital visits, diagnoses and interventions, lab results, medical scans,
and clinical narratives that can be used to assist clinicians with diagnoses and treatment
decision-making [40]. The rationale behind the decision-making process in medical ap-
plications is a complicated process that encompasses a certain amount of uncertainty and
ambiguity [41]. Fuzzy logic systems excel in dealing with ambiguous and imprecise data,
which make them a common application for medical diagnosis systems. Intelligent systems
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employ various technologies including expert systems, artificial neural networks [42], fuzzy
systems [43], and evolutionary computation. Each technique has its perks depending on
the application, while the combination of two or more techniques inevitably improves
systems’ adaptability, robustness, fault tolerance, as well as speed [44].

In this paper, an exercise generation system for Upper Extremity (UE) stroke reha-
bilitation is developed using a fuzzy-logic-based model. The main contribution of the
paper is to develop an autonomous system that generates a treatment plan in the form
of rehabilitative exercises depending on some input parameters. These input parameters
consist of the different physical characteristics of the patients concerned with stroke, which
in our case are the joint range of motion (ROM) and the muscle strength. A library of active
range of motion (AROM) exercises was used and divided into three subsequent progress
levels. Exercise levels were chosen for the patient, along with the amount of stretching
and strengthening exercises they require based on rules that were defined with the help
of a therapist. The system was broken down into a simple fuzzy tree structure with two
fuzzy inference system (FIS) blocks utilizing the Mamdani approach [45]. The input to
the first FIS was the shoulder ROM data, i.e., the shoulder flexion, abduction, and ex-
ternal and internal rotation. While the input to the second FIS was the strength data of
the muscle of interest, and the output from the first FIS, which was the level of exercise.
There are three outputs in the system, the level of ROM exercises, which is the output
of the first system, determined based on ROM data. The intensity of the strengthening
exercises based on the previous input and strength data is an output of the second FIS,
and finally, the intensity of the stretching exercises depending on both the aforementioned
parameters is also an output of the second FIS. These outputs can help in selecting the
exercise plan that is appropriate for the patient. We also defined a strength scale that was
employed in the system. It was designed to make the system more compatible with other
autonomous systems, providing sessions without the need for a therapist’s supervision.
The best reference to compare to in physiological recovery is usually to oneself. Since stroke
affects patients by reducing function only on one side of their body while often leaving the
other side unharmed, we can assume that the maximum strength that a patient’s muscle
should have is as high as their healthy side’s muscle; therefore, we proposed to collect the
maximum voluntary contraction (MVC) data of the patients’ deficit muscles and define it as
a percentage of the MVC on the healthy side. The scale was defined with six levels with the
aforementioned therapist.

The outline of this paper is as follows: Section 2 discusses the technical background of
the paper, which includes a brief explanation of the medical knowledge that needs to be
considered. Section 3 covers the structure of the proposed decision-making system and
its working principle, while Section 4 discusses the results obtained. Finally, concluding
remarks as well as future works appear in Section 5.

2. Design Requirements and Background

While building a system that deals with decision making, it is crucial to understand
the parameters going into said system to ensure that they are utilized in an efficient as well
as safe manner throughout the procedure. In this section, common patient parameters that
are examined in stroke cases will be explored.

2.1. Range of Motion

The term range of motion refers to the measurement of how far a person can move
a specific joint or muscle. How far a joint can be moved may be limited due to several
factors, such as the presence of spasticity, weakness of the muscle, etc. By measuring the
ROM of joints, the effect or requirement of therapeutic measures may be determined. The
functional ROM [46] of the UE was divided into three ranges with the help of a therapist;
low range, medium range, and advanced range—this can be seen in Tables 1–3.
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Table 1. Shoulder Range Division.

Low Range Medium Range Advanced Range
(Degrees) (Degrees) (Degrees)

S. Extension ROM < 30 30 < ROM < 38 38 < ROM < 50
S. Flexion ROM < 70 70 < ROM < 92 92 < ROM < 110
S. Abduction ROM < 45 45 < ROM < 90 90 < ROM < 110
S. Medial Rotation ROM < 45 45 < ROM < 64 64 < ROM < 70
S. Lateral Rotation ROM < 20 20 < ROM < 40 40 < ROM < 60

Table 2. Elbow Range Division.

Low Range Medium Range Advanced Range
(Degrees) (Degrees) (Degrees)

E. Flexion ROM < 110 110 < ROM < 124 124 < ROM < 135
E. Extension ROM > 10 10 > ROM > 5 5 > ROM > 0
Supination ROM < 18 18 < ROM < 30 30 < ROM < 50
Pronation ROM < 13 13 < ROM < 30 30 < ROM < 50

Table 3. Wrist Range Division.

Low Range Medium Range Advanced Range
(Degrees) (Degrees) (Degrees)

W. Flexion ROM < 20 20 < ROM < 30 30 < ROM < 50
W. Extension ROM < 30 30 < ROM < 40 40 < ROM < 60
U. deviation ROM < 15 15 < ROM < 19 19 < ROM < 25
R. deviation ROM < 10 10 < ROM < 18 18 < ROM < 20

2.2. Muscle Strength

Maximum voluntary isometric contraction (MVIC) is an essential method for measur-
ing and evaluating muscular strength, which has high levels of reliability. Furthermore,
in many experiments, MVIC may be utilized to replace the normalization of electromyo-
graphy (EMG) data, which are used to assess muscle conditions. As a result, MVIC has
established a gold standard in patient evaluation and muscle activity research [47]. For the
purpose of this paper, we have designed a muscle strength evaluation criterion with the
help of an expert therapist. The strength of the muscle is defined as a percentage of the
healthy side, i.e., the MVC or MVIC of both sides are collected, and the paretic side’s
strength is calculated as a percentage of the unaffected side. This is then divided into
subsequent ranges to be used in our inference system as can be seen in Table 4. Studies
show that practicing at a minimum intensity of 60% 1-Rep Maximum and a maximum
of 12 repetitions per set can help hemiparetic people develop their strength [48]. So we
propose to give patients resistive loads weighing at 60% of their maximum strength to
increase their strength and reduce muscle atrophy.

Table 4. The defined strength scale.

Linguistic Range Strength Range in Percentage

Very Weak 0–25%
Weak 25–50%
Moderately Weak 50–70%
Moderate Strength 70–80%
Good Strength 80–90%
Full Strength 90–100%
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2.3. Spasticity

Spasticity can be defined as the velocity-dependent hyper-excitability of stretching
muscles, characterized by enhanced tendon reflexes, increased resistance to passive move-
ment, and neuronal inhibition in control. UE spasticity is one of the most serious effects of
stroke, which can cause considerable functional disability by limiting the ROM or slowing
the pace of limb movement [49,50]. Studies suggest that stretching exercises contribute
to reducing spasticity in post-stroke patients; therefore, we have proposed to include
stretching exercises of two levels depending on the patients’ ROM as well as their strength.

3. Methods and Materials of the Fuzzy-Based Decision-Making Scheme

Rule evaluation is one of the most critical aspects of designing a functional fuzzy-
logic-based system. The number of rules in the system is determined depending on the
number of input parameters and their corresponding membership functions. While it
is possible to create a FIS with a large number of inputs, this often leads to a very high
number of rules, which may become difficult to keep track of; therefore, we have broken
the system down into a fuzzy tree structure with two FIS blocks as shown in Figure 1.
The first system determines the level of ROM exercises the patient can be assigned. This is
determined using the different ROMs of the shoulder. The second system determines the
intensity of stretching and strengthening exercises the patient will be capable of carrying
out. The output of the first system is fed into the second system as one of the inputs
(indicated by the black arrow in the figure). The strength input and output both have the
same membership functions, however, the output strength is applied depending on both the
input strength as well as the patient’s shoulder ROM indicated by the “Level_of_Exercise”
output from the shoulder ROM fuzzy system. This is discussed further in Section 3.2.2.

Strength

Stretch

Shoulder_Flexion

Shoulder_Abduction

S._Internal_Rotation

S._External_Rotation

Strength

Level_of_Exercise

Level_of_Exercise

Shoulder_ROM Stretch_Strength

Free inputs

Free or intermediate outputs

Connections

Figure 1. Block diagram for overall FIS illustrating the fuzzy tree structure where the output of the
Shoulder_ROM FIS block (Level_of_Exercise) is input into the Stretch_Strength system.

The decision-making process that was used is as follows: If the patient’s ROM is in
the advanced stage, give them strengthening exercises and advanced level ROM exercises.
If not, give the corresponding level of exercise with no strengthening exercises. If strength
is above moderate, give hard stretching exercises, otherwise, give easy stretching exercises.
The process can be seen more clearly in Figure 2.

The system was designed based on fuzzy input and output triangular and trapezoidal
membership functions. The triangular membership functions are given in Equations (1) and (2),
where x corresponds to the input value of the system, and a, b, and c, corresponding to the
start point, midpoint, and endpoint of each triangle, respectively. Equation (2) is a compact
version of Equation (1), which gives a clearer explanation of the function parameters.
The other type of membership function that was used was the trapezoidal type shown in
Equation (3). The same principle applies here, except the midpoint is now represented
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by two points instead of one, which is useful in cases where the membership plateaus at
a point instead of peaking. Parameters b and c define the shoulders of the membership
function, and a and d define its feet. This case can be seen in both the “L” and “ADV”
memberships of the level of exercise input seen in Figure 3. The values of the parameters
are set by the designer of the system according to their understanding of the applicable
memberships. All the rules used the AND function, which used the minimum method,
and the defuzzification method that was chosen was centroid. This paper takes as an
example the shoulder, however, the FIS for the elbow and wrist can easily be defined
following the same framework that was applied to the shoulder to produce a complete UE
personalized exercise generation system.

f (x; a, b, c) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, c ≤ x

 (1)

f (x; a, b, c) = max(min(
x − a
b − a

,
c − x
c − b

), 0) (2)

f (x; a, b, c, d) = max(min(
x − a
b − a

, 1,
d − x
d − c

), 0) (3)

Patient ROM &
Strength

Yes

NoROM in
Advanced

stage?

ROM in
Medium
stage?

Give Easy Stretch &
Medium ROM

Exercises

Give Easy Stretch &
Beginner ROM

Exercises

No

Do they
have

Moderate
Strength?

Yes

Give Hard Stretch,
Advanced ROM &

Strengthening Exercises

Give Easy Stretch,
Advanced ROM &

Strengthening Exercises

No

Yes

Figure 2. Decision Flowchart for Rule Evaluation.

3.1. Shoulder ROM FIS

This system can be defined in terms of three main subcategories, the input variables,
the output variables, and the rule evaluation performed. It consists of 4 input variables
that make up the ROM of the shoulder region and an output variable that determines the
overall level of ROM exercises to be assigned to the patient. The output is later fed into the
second subsystem that deals with strength and stretch variables.

3.1.1. System Variables

The input of this FIS consisted of 5 input variables with 3 membership functions
each: shoulder flexion, shoulder extension, shoulder abduction, shoulder internal rotation,
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and shoulder external rotation. While evaluating the rules, it was found that none of the
exercises in the composed exercise library directly affected or were affected by the shoulder
extension range; therefore, we were able to ignore that input, decreasing the number of
inputs from 5 to 4. Given that each input has 3 membership functions, the product of each
of the input membership functions resulted in a total of 81 rules. With the inclusion of
the shoulder extension input, the system would then have 243 rules, which is significantly
higher. The fuzzified inputs with their membership functions are shown in Figure 3.
The medium range was defined with a triangular type membership function while the low
and advanced ranges were defined with a membership function of the trapezoidal type.
The dashed plot colored in blue classifies the patient’s input ROM as “Low”, the dotted
red-colored plot classifies the input ROM as “Medium”, and the solid green-colored plot
classifies it as “Advanced”. These membership plots were defined by closely following the
ranges discussed in Table 1.
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Figure 3. The membership function plot for level of exercise input, where L represents low ROM,
M represents medium ROM, and ADV represents advanced ROM.

This FIS was designed to determine the level of ROM exercise that must be given to
the patient where the levels are defined as beginner, medium, and advanced. The output
variable with its membership functions can be seen in Figure 4. The universe of discourse
for the output of this FIS is defined over a range of 0 to 1; where an output of 0.5 translates
to a medium level of exercise, less than 0.5 translates to a beginner-level exercise, while
more than 0.5 translates to an advanced level of exercise. The therapist may assign the
exercises according to the aforementioned rules.
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Figure 4. The membership function plot for level of exercise output.
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3.1.2. Rule Evaluation and Overall Setup for Shoulder ROM FIS

The total number of rule definitions in this system added up to a total of 81. A com-
prehensive library of exercises retrieved from [51] was divided into three main levels: “Be-
ginner”, “Medium”, and “Advanced”, matching the output of the FIS as seen in Figure 5b.
The corresponding movements can be seen in Figure 5a to obtain a clear idea of the mo-
tions. Beginner exercises included the general single joint motions such as the shoulder
vertical and horizontal flexion/extension, abduction/adduction, and internal/external
rotation. The medium levels were comprised of multi-joint exercises that required a higher
ROM, followed by the advanced level exercises which replicated everyday functional
tasks. The rules were evaluated specific to this exercise library in order to achieve the most
accurate outcomes. They were evaluated such that, the flexion and abduction ranges of
the shoulder holds the highest weight in determining whether the patient can progress to
medium level exercises. This is performed because all medium-level exercises require a
good range in the flexion and abduction motion; however, when moving to the advanced
level exercises, all types of motions are thoroughly utilized and therefore all inputs hold
quite a high weight, resulting in very few combinations where the advanced level exercises
were assigned. This ensures a more critical evaluation and assignment of exercises; ideal
for cases with stroke patients as they are weak, and recovery is often more challenging as
compared with other cases.

Shoulder_Flexion (3)

Shoulder_Abduction (3)

S._Internal_Rotation (3)

S._External_Rotation (3)

Level_of_Exercise (3)

Shoulder_ROM

(

mamdani

)

81 rules

(a) (b)

Figure 5. Shoulder ROM FIS and its respective motions: (a) Schematic of shoulder joint motions;
(b) the FIS for determining the level of exercise.

3.2. Stretch and Strength FIS

This subsystem deals with the patient’s strength and level of ROM exercise as inputs,
and assigns the correct capacity of strengthening and stretching exercises. The rule eval-
uation performed in this part is analogous to the decision-making scheme presented in
Figure 2.

3.2.1. System Variables

The input variables in this fuzzy system include the level of exercises determined from
the previous FIS- with the same three membership functions, and the percentage of the
strength of a muscle as compared with its unaffected counterpart. The second input was
divided into 6 membership functions following the previously defined ranges in Table 4.
The membership function for the input strength variable can be seen in Figure 6.
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Figure 6. The input membership functions for strength/stretch FIS.

This FIS consisted of two output variables. One was the amount of strength of the
exercise to be assigned, which was designed exactly like the input strength and the level of
stretch. The level of stretch was divided into two trapezoidal membership functions: easy
and hard as shown in Figure 7.

Figure 7. The output membership functions for strength/stretch FIS.

3.2.2. Rule Evaluation and Overall Setup for Stretch and Strength FIS

After determining the level of ROM exercise, we designed the second FIS to determine
whether the patient should be given strengthening exercises, and if so, at what capacity.
Along with that, stretching exercises were included as it is one of the commonly used meth-
ods of intervention used to tackle spasticity challenges in post-stroke patients. The two
inputs, level of exercise and percentage of strength, have three and six membership func-
tions, respectively, the product of each of the input membership functions resulted in a total
of 18 rules; therefore, the system consisted of a total of 18 rules. They were designed so that
strengthening exercises are only assigned when the patient has regained a considerable
amount of their ROM (i.e., the level of exercises assigned was in the advanced range).
When the range was at the advanced level, strengthening exercises were a direct mapping
of the input strength. As for stretching exercises, easy stretching is assigned for patients
with beginner and medium ROM as well as for a few of the advanced ROM. When pa-
tients reach moderate to full strength, hard stretching exercises are prescribed. It is worth
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noting that most ROM exercises are transformed into strengthening exercises by adding a
resistive element to them. To build strength and reduce muscular atrophy, the therapist
can assign strengthening exercises to the patients with resistive loads weighing 60% of
the strengthening capacity assigned by the system as discussed in Section 2.2 and can be
seen more clearly in Equation (4). For example, if a patient were to have a strength of 70%,
and their 1-Rep maximum on the healthy side was 2 pounds, then the therapist should
assign strengthening exercises with the resistive load weighing 0.84 pounds to improve
their strength. For a patient that has 90% strength in their teres minor and infraspinatus
muscles, with their 1-Rep maximum at 2 pounds, they would be assigned strengthening
exercises with a resistive load of 1.08 pounds, i.e., advanced level ROM exercises with
resistive loads. At the same time, hard stretching exercises must be assigned such as the
teres minor stretch. If the patient has low strength, then light stretching exercises such as
sleeper stretch can be assigned [48].

Resisitive Load = 1RM × Percentage Strength × 60% (4)

where 1RM is the 1-Rep maximum and the percentage strength is the strength of the
impaired muscle.

4. Results and Discussion

The proposed fuzzy-logic-based exercise generation system was tested with a set
of input variables that included typical patient biomechanical data, including shoulder
joint ROM and strength (represented by the percentage of MVC). The shoulder ROM data,
which included shoulder flexion, abduction, and external and internal rotation, were fed
into the first FIS. The strength data of the muscle of interest were the input to the second
FIS, while the output from the first FIS was the level of exercise. The system has three
outputs, the first of which is the level of ROM exercises, which is decided based on ROM
data. The second FIS outputs the intensity of the strengthening exercises based on the prior
input and strength data, and finally, the intensity of the stretching exercises are determined
based on both of the aforementioned parameters. The tested input data and results of
the first and second FISs are shown in Tables 5 and 6, respectively. For the first system
(shoulder ROM FIS), in cases 1 through 4, since shoulder flexion and abduction are in low
ranges alternatively, a beginner exercise level (<0.5) is assigned by the system. In case 2,
although both shoulder internal and external rotations are in the medium range, as can be
seen in Table 1, the exercise level does not advance much, i.e., the level of exercise increases
from 0.1326 to a mere 0.1529. In case 3, all angles are in the medium range except for
abduction, despite this fact, the resulting output (0.1503) does not increase. Meanwhile, we
can see in case 4 that all input ranges except shoulder flexion are in medium range with
the resulting output level of exercise (0.3255) higher than the earlier cases i.e., less than
0.16. This brings us to the conclusion that the exercise level can advance from beginner to
medium only when both flexion and abduction are in the medium range, and abduction
has a higher weight in this decision than flexion. This matches the rules defined for the
system, as medium-level exercises in our chosen exercise library require a higher abduction
range compared to the rest. This is further confirmed in case 6 where low ROMs for
internal/external rotation still resulted in a medium exercise level (0.5) assignment since
the other two ROMs were in the medium range. In case 7, however, shoulder external
rotation being in the medium range caused the output (0.5) to remain in the medium range
despite having advanced ROM in other motions. This too is analogous to the rules defined
in the system, as advanced-level exercises required advanced range in the external rotation
for the exercise library used. The following three cases have an advanced range in most
motions and therefore output a value higher than 0.5, which represents an advanced level
of exercise. In the eleventh run, the shoulder internal rotation value is set to be 100 degrees,
but the range for that input is defined over 0 to 90 degrees; therefore, no rules are fired
for this combination, and the default value of the medium range is set although all input
angles are in the advanced range. For cases 12 to 14, the ROMs are mostly in advanced
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range with the exception of one of the motions in each case, which is set to a low ROM.
This results in the assignment of beginner-level exercises (<0.5). In the final case, all the
motions are in advanced range except for flexion, set with a medium ROM, the resulting
output remains at the medium level of exercise.

Table 5. Presents the results of the first system, shoulder ROM FIS with shoulder joint motions as
inputs and the resulting level of exercise as output.

Shoulder Flexion
ROM

Shoulder
Abduction ROM

Shoulder Internal
Rotation ROM

Shoulder External
Rotation ROM

Level of Exercise
(Output)

Case 1 38◦ 29◦ 35◦ 10◦ 0.1326
Case 2 55◦ 40◦ 47◦ 22◦ 0.1529
Case 3 71◦ 34◦ 50◦ 25◦ 0.1503
Case 4 55◦ 47◦ 51◦ 23◦ 0.3255
Case 5 88◦ 59◦ 62◦ 37◦ 0.5000
Case 6 73◦ 46◦ 40◦ 15◦ 0.5000
Case 7 93◦ 78◦ 70◦ 41◦ 0.5000
Case 8 95◦ 88◦ 81◦ 58◦ 0.6920
Case 9 97◦ 91◦ 85◦ 61◦ 0.8443

Case 10 108◦ 108◦ 90◦ 75◦ 0.8722
Case 11 130◦ 180◦ 100◦ 80◦ 0.5000
Case 12 100◦ 95◦ 40◦ 15◦ 0.1498
Case 13 60◦ 100◦ 65◦ 50◦ 0.1518
Case 14 105◦ 40◦ 68◦ 53◦ 0.1518
Case 15 85◦ 105◦ 70◦ 55◦ 0.5000

S. Flexion ROM: Low < 70◦, Medium: 70–92◦, and Advanced: 92–110◦; S. Abduction ROM: Low < 45◦, Medium:
45–90◦, and Advanced: 90–110◦; S. Medial Rotation ROM: Low < 45◦, Medium: 45–64◦, and Advanced: 64–70◦;
S. Lateral Rotation ROM: Low < 20◦, Medium: 20–40◦, and Advanced: 40–60◦; Level of Exercise: Beginner < 0.5;
Medium = 0.5; Advanced > 0.5.

For the second system (stretch and strength FIS), the resulting outputs are shown in
Table 6. Since the level of exercise determined by the system from cases 1 through 6 all
fall under the “low” and “medium” level, we see that the prescribed strength intensity
is zero. This is because the system must not assign strengthening exercises if the patient
cannot perform advanced level ROM exercises. The type of stretch assigned is ”Easy” for
all the cases where a low or medium level of exercises are assigned, apart from the case
with medium range with 90% strength, where “Hard” stretching exercises are prescribed.
This is consistent with the desired outcome since, if a patient has a substantial amount of
strength, tightness of their muscle would be the other viable reason for restricted ROM.
The following four testing values all fall under advanced ROM and therefore we start seeing
the assignment of strengthening exercises. For the 11th case, the ROM is set to the medium
range instead of advanced due to incorrect range input for the internal rotation ROM,
therefore, strengthening exercises are not assigned. In the cases from 12 to 15, the level of
exercises assigned are in the beginner and medium range, so strengthening exercises are
not assigned.

The surface viewer plot depicts the output surface for a system output against one
or two system inputs. Against one input, a 2D plot is produced, while against two inputs,
a 3D plot is produced; however, the number of variable inputs cannot exceed two. In the
case of four inputs and one output, as computer monitors are not designed to display
five-dimensional structures, the Surface Viewer creates a three-dimensional output surface
with any two of the inputs varying, while the other two are kept constant. In Figure 8a,
the output is displayed on the z-axis as a percentage of strengthening exercise assigned,
the inputs are displayed on the x and y-axes where the shoulder ROM ranging from 0 to
1 signifying the levels is displayed on the x-axis and the percentage of input strength is
displayed on the y-axis. It is evident that the strengthening exercises are only assigned
when the input shoulder ROM is higher than 0.5, which implies an advanced range, while
the intensity of strengthening exercise (output) rises steadily with increased input strength.
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For Figure 8b, the inputs remain the same, but the output is the intensity of the stretching
exercises, i.e., Easy (<0.5) and Hard (>0.5). This surface viewer plot is a little more difficult
to decipher, but in general, when the input ROM is in the medium stage, a higher input
strength value (good strength) is required to move from easy stretch to hard stretch. While,
when the input ROM is in the advanced range, moderate input strength is sufficient to
move from easy stretch to hard stretch. The system was tested with a series of test data
and the results obtained ensures the proposed idea’s feasibility. From the results presented
in Table 5 and 6, and Figure 8, we can conclude that the proposed FIS can determine the
appropriate therapeutic intervention in terms of exercises, based on patients ROM and
strength data. The proposed method will help therapists to input patient data, and receive
the appropriate levels of exercises that they must assign to the patient. Currently, there
exists no such system for stroke rehabilitation, leaving manual therapy assignments by
therapists as the only other option. By automating the assignment of exercises, this system
can easily be integrated with another robot-assisted system to provide increased autonomy
and less dependency on therapists; however, the system is highly dependent on the chosen
exercise library and its consequent level divisions. Additionally, it is known that therapeutic
interventions are also influenced by the type of stroke (ischemic or hemorrhagic) and the
anatomical location of the afflicted area of the brain. These were not considered as input
variables of the system due to the complex relations between these input variables and the
corresponding therapeutic intervention.

Table 6. Presents the results of the complete system, with shoulder joint motions and muscle strength
as inputs and intensity of stretching and strengthening exercise as outputs.

Shoulder
Flexion
ROM

Shoulder
Abduction

ROM

Shoulder
Internal
Rotation

ROM

Shoulder
External
Rotation

ROM

Strength
(Percentage)

Output
Strength

(Percentage)

Output
Stretch

Case 1 38◦ 29◦ 35◦ 10◦ 30 0 0.2781
Case 2 55◦ 40◦ 47◦ 22◦ 85 0 0.2454
Case 3 71◦ 34◦ 50◦ 25◦ 60 0 0.2474
Case 4 55◦ 47◦ 51◦ 23◦ 70 0 0.2928
Case 5 88◦ 59◦ 62◦ 37◦ 50 0 0.2781
Case 6 73◦ 46◦ 40◦ 15◦ 25 0 0.2781
Case 7 93◦ 78◦ 70◦ 41◦ 70 0 0.2735
Case 8 95◦ 88◦ 81◦ 58◦ 42 40 0.2905
Case 9 97◦ 91◦ 85◦ 61◦ 88 84 0.7163
Case 10 108◦ 108◦ 90◦ 75◦ 92 95.1905 0.7328
Case 11 130◦ 180◦ 100◦ 80◦ 100 0 0.7595
Case 12 100◦ 95◦ 40◦ 15◦ 60 0 0.2474
Case 13 60◦ 100◦ 65◦ 50◦ 75 0 0.2356
Case 14 105◦ 40◦ 68◦ 53◦ 90 0 0.2814
Case 15 85◦ 105◦ 70◦ 55◦ 30 0 0.2781

Input Strength —measures the strength of the patient’s impaired side with respect to their healthy side, repre-
sented by the percentage of MVC. 0–50% : Weak Strength, 50–80%: Moderate Strength, 80–100%: Substantial
Strength. Output Strength—same range definition as input, only assigned when appropriate. Output Stretch—
represents the intensity of stretching exercises to be assigned, defined over 0 to 1. Easy Stretch: 0–0.3, Hard Stretch:
0.6–1.0.
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(a) Strength Output (b) Stretch Output

Figure 8. Surface Viewer plot of the second FIS. (a) Strength output plot shows that the strengthening
exercises are only assigned when the input shoulder ROM (level of exercise) is higher than 0.5, which
implies an advanced range, while the intensity of strengthening exercise (output) rises steadily with
increased input strength. (b) Stretch output plot shows that a high shoulder ROM, i.e., level of
exercise > 0.5, with high input strength results in “Hard Stretching” output, represented by a value
greater than 0.5, and for lower ROM and strength, “Easy Stretching” output, represented by a value
less than 0.5.

5. Conclusions

This paper details the design and structure of a fuzzy-logic-based system that deter-
mines the correct exercise prescription based on patient data, i.e., joint ROM and muscle
strength. First, the correct reference ROM was defined for a joint with the help of a therapist.
The ranges were later divided into three levels: low, medium, and advanced. Our goal was
to create a system that can work in conjunction with other autonomous systems without
therapists’ supervision, so we needed to define a scale that could be used without evalua-
tion by a therapist. We can assume that the maximum strength that a patient’s muscle has
is comparable to their healthy side; therefore, the MVC data of the patient’s deficit side
are defined as a percentage of the MVC on the unaffected side. To reduce the number of
input variables going into the FIS, we broke the system down into two parts of a fuzzy
tree. The first part determines the level of AROM exercise assigned, while depending on
that value, along with the strength data, a decision is made about whether strengthening
exercises and stretching exercises will be given or not, and at what capacity. Moreover,
to generate a more personalized treatment plan, a neuro-fuzzy approach can be followed.
As previously discussed, a combination of AI techniques greatly increases the performance
of decision-making systems and therefore our next goal is to build a system employing
these techniques.
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