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Autoimmune diseases are conditions that emerge from abnormal immune responses

to natural parts of the body. Extracellular vesicles (EVs) are membranous structures

found in almost all types of cells. Because EVs often transport “cargo” between cells,

their ability to crosstalk may be an important communication pathway within the body.

The pathophysiological role of EVs is increasingly recognized in autoimmune diseases,

including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus,

Sjogren’s syndrome, Type 1 diabetes, and autoimmune thyroid disease. EVs are

considered as biomarkers of these diseases. This article outlines existing knowledge on

the biogenesis of EVs, their role as messegers in cellular communication and the function

in T/B cell differentiation and maturation, and focusing on their potential application in

autoimmune diseases.
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INTRODUCTION

Autoimmune diseases are the result of interactions between genetic and environmental factors that
cause an immune response to self-produced antigens in the body. This then leads to self-damage
of tissues or organs. In normally functioning immune systems, there are various tolerance
mechanisms that play a protective role in preventing an autoreactive lymphocyte response (1).
In autoimmune diseases, immune cell tolerance mechanisms become problematic, leading to the
stimulation of autoreactive T and B lymphocytes (Figure 1) (2–5). Additionally, the interaction
of various inflammatory cytokines and chemokines can lead to an imbalance between regulatory
(e.g., Tregs) and inflammatory cells (e.g., Th17 cells), as well as abnormal autoantigen clearance
mechanisms and antigen presentation, all of which can result in the development of autoimmune
diseases (6, 7).

EXTRACELLULAR VESICLES

Definition and Classification
Extracellular vesicles (EVs) are a collective term for phospholipid bilayer structures secreted
by cells, which typically contain proteins, mRNA, miRNA, and/or other substances. EVs are
normally present in body fluids, and can be released by nearly all cell types (8, 9). EVs
are categorized according to their morphology, size, and biogenesis. EVs with a diameter of
50–2000 nm and produced by the process of apoptosis are called apoptotic bodies (10); EVs with
a diameter of approximately 100–1000 nm and produced by budding or fission of the plasma
membrane are called microvesicles; and EVs with a diameter of 50–150 nm, which are produced
by exocytosis of multivesicular endosomes (MVEs) are called exosomes (11). MVE biogenesis
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FIGURE 1 | Extracellular vesicles (EVs) and autoimmune disease. It is worth noting, on the one hand, autoantigens can be captured by antigen-presenting cells and

transmitted to extracellular vesicles to activate T cells; on the other hand, autoantigens can be directly transmitted to extracellular vesicles to activate T cells in the

presence of dendritic cells.

may involve several parallel pathways, specifically, the endosomal
sorting complex required for transport (ESCRT) dependent
process requiring sphingolipids, and the ESCRT-independent
manner, involving tetraspanins (12). EV morphology is also
very diverse, with various exosomes observed within and on the
surface of cells. These exosomes include various proteins, such
as TSG101, ALIX, Integrin-1, CD9, CD63, CD81, and CD82
(13, 14).

Biological Functions
Although almost all cell types generate EVs and deliver them into
the extracellular space, the biological activities of EVs derived
from different cells can vary greatly. Specifically, exosomes can be
involved in various disorders, such as cancer, neurodegeneration,
and inflammatory disease (15, 16). In the central nervous
system (CNS), EVs participate in the communication process
among neurons, glia, and microglia (8). In certain pathological
situations, EVs are viewed as mediators of disease. Microglia-
derived EVs have been found to be actively involved in
neuroinflammation and neurodegenerative diseases (17). There
is evidence that EVs play a role in cell-cell communication
by carrying multiple pieces of information in the form of
membrane proteins, carbohydrates, and lipids, as well as other
molecules that require protection from extracellular enzyme
degradation, such as RNA, proteins, and metabolites (18).
EVs also facilitate communication between infected cells and

interactions between host cells and bacteria. Accumulating
evidence suggests that EVs bearing damage-associated molecular
patterns (DAMPs) secreted from stressed or injured tissues
play an important role in inflammation (19, 20). Recent
studies have shown that EVs possess the ability to stimulate
immune responses, play a critical role in the pathogenesis of
autoimmune diseases, and have great potential as biomarkers
for the detection of autoimmune diseases and as therapeutic
agents. For example, IFN-α and TNF-α encapsulated in EVs
from patients with systemic lupus erythematosus (SLE) are
significantly higher than in healthy individuals, which means
that detection IFN-α and TNF-α levels in EVs of patients can
be used as novel diagnostic markers of SLE (21). Long non-
coding RNA (lncRNA) in EVs can take the lead in immune
cell development and activation through interactions with
the nucleotide or proteins. However, lncRNA dysregulation is
found in many autoimmune diseases (22). Indeed, EVs may
be involved in the presentation of intracellular self-antigens
to the immune system. Antigen-presenting cells (APCs) can
undergo intracellular transfer and effective antigen delivery to
autoantigen-specific T cells through EVs, which represents a
highly efficient mechanism of antigen presentation (23–25).
Additionally, many types of tissue- or humoral-derived EVs have
been discovered to possess immunomodulatory or tolerogenic
activities. For instance, Robins et al. found that EVs derived
from plasma or serum in vivo can alleviate chronic inflammation
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development (6). This suggests that EVs have the potential to
treat autoimmune diseases.

EVs AND CELLULAR COMMUNICATION

The crosstalk between cells through EVs may be an important
communication pathway, particularly in autoimmune diseases.
In rheumatoid arthritis (RA), synovial fibroblast-derived EVs can
induce inflammatory changes in chondrocytes (26). Conversely,
in synovial fluid cells (including monocytes and granulocytes),
EVs can regulate synovial fibroblast cytokine secretion by
increasing the release of monocyte chemokines and cytokines,
which, in turn, leads to worsening inflammation (27). EVs
play an active role in the pathogenesis of multiple sclerosis
(MS). Specifically, it has been shown that EVs released from
blood-brain barrier (BBB) endothelial cells are able to stimulate
CD4+ and CD8+ T cell activation with no stimulatory signal,
which indicates that EVs may enhance T cell activation and
subsequent antigen presentation (28). Moreover, EVs also play
a key role in communication between immune cells. Despite
the fact that EVs can regulate the biological activity of many
types of immune cells, including T cells and natural killer
cells (NK cells), the most effective regulatory activity of EVs is
granted by APCs (6). APCs primarily control immune function
through membrane proteins—specifically, MHC class I and II
molecules; costimulatory molecules, such as CD80, CD86; and
adhesion molecules (29–31). Similarly, EVs derived from APCs
are involved in this process (25). In contrast, endogenous EVs
are the source of autoantigens and can activate autoreactive T
cells. Further, they are involved in the formation of immune
complexes to stimulate autoimmunity and therefore mediate
autoimmune diseases (6, 32). It has been reported that miRNAs
can be functionally delivered to recipient cells, so the role of
intracellular miRNAs is also considered an important modulator
of gene expression in immune cells (33). In EVs, miRNAs have
also been shown to possess immune functions. It has been
demonstrated that EVs will fuse with target dendritic cells (DCs)
and subsequently release their contents into the DC cytosol.
Furthermore, transfer of miRNAs by EVs were shown to inhibit
target mRNAs of recipient DCs. These findings suggest a role
for EVs in communication and post-transcriptional regulation
between DCs (34).

EXTRACELLULAR VESICLES INVOLVED IN
THE DIFFERENTIATION AND MATURATION
OF T/B CELLS

As mentioned earlier, EVs are closely related to the immune
system. In the immune system, NK cells are important to the
function of innate immunity, whereas B cells, as well as T cells,
are essential part of adaptive immunity. B cells distinguish foreign
antigens, but T cells require APCs to recognize antigens. After
antigen recognition, MHC-I and MHC-II present it to CD8+

and CD4+ T cells, thereby activating the immune response
(35). Many researches have demonstrated that immune cells
release immunocompetent EVs, which exert a critical function

in innate and adaptive immune process, including antigen
presentation, NK/T cell activation, T cell polarization, and
immunosuppression (36). EVs released by APCs or B cells
express MHC-I, MHC-II, and T cell costimulatory molecules
that act as antigen presentation platforms to activate CD8+

and CD4+ T cells (25, 37). In addition, antigens transported
by EVs can form complexes with MHC through APCs, and
antigen-carrying EVs can directly promote T cell activation in the
presence of naive DCs (38). There is evidence that macrophages
with neutrophil-derived EVs have the capacity to inhibit Th1 and
Th2 cell differentiation, as well as the ability to induce Treg cells.
In addition, under certain circumstances, it can also promote
Th17 cell polarization, restrict CD8+ T cell and B cell function,
and affect DC migration, resulting in effectively attenuating T
cell responses (39). In fact, EVs derived from innate immune
cells mostly mediate the development of effector T cells by
targeting DCs and subsequent delivery of antigen or affecting
DC activation/migration (40). Immune cell-derived EVs not only
promote immunity but can also reduce immune activity. For
example, EVs released by T cells can target many other types
of cells and induce various immune reactions that range from
immune activation to inhibition (41).

EVs AND AUTOIMMUNE DISEASES

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease affecting
the CNS and characterized by inflammatory demyelination.
Its pathogenesis primarily involves genetic, environmental, and
immune components (42). MS is an inflammatory cascade
triggered by autoreactive effector T cells and is associated
with immune cells such as B cells, macrophages, and natural
killer cells (43–46). It has been found that medullary EVs
present in the cerebrospinal fluid are derived from microglia,
and microglia will generate and release IL1-β and MHC-II,
indicating that EVs secreted by reactive myeloid cells may
trigger neuroinflammation and contribute to the rapid spread
and presentation of antigens (47). Conversely, EVs can cross
the BBB to affect the migration of immune cells, which,
in turn, promotes disease progression in MS. For example,
microglia, astrocytes, and platelets shed exosomes containing
metalloproteinases and caspase-1 in response to stimulation by
proinflammatory cytokines, such as TNF. It is well-known that
these enzymes are able to induce BBB disruption and promote
lymphocyte and myeloid cell migration into the CNS (48, 49).
Meanwhile, in MS patients, Barry et al., found that EVs released
from activated T cells can promote monocyte recruitment
and upregulate intercellular cell adhesion molecule-1 (ICAM-
1) in endothelial cells as well as macrophage-1 antigen (Mac-
1) expression in monocytes. Activated monocyte expression of
Mac-1 integrin and its binding to ICAM-1 is an essential step
in the transendothelial migration of inflammatory cells (50).
Brain endothelium-derived microvesicles have been shown to be
involved in the activation of CD4+ and CD8+ T lymphocytes
through the expression of MHCII and CD40 molecules (51),
suggesting that EVs are involved in the pathogenesis of MS.
Azimi et al., found that miR-326a to be overexpressed in T
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cell-derived exosomes from MS patients (52). Furthermore, it
is well-known that miR-326 is upregulated in MS and affects
the CD47 molecule, which, in turn, suppresses the activity of
macrophages and decreases their expression, thereby increasing
the phagocytosis of myelin (48). Further, miR-326 can promote
naïve T cell differentiation into Th17 cells by targeting negative
regulators of Th17 polarization, thus increasing the severity of
MS (53).

RA
RA is a chronic inflammatory autoimmune disease characterized
by swelling, tenderness, and destruction of synovial joints. It
has been shown that EVs are associated with immune complex
formation, antigen presentation, miRNA delivery, activation of
fibroblast-like synoviocytes (FLS), intercellular communication,
and degradation of the extracellular matrix in the pathogenesis
of RA (54). EVs derived from FLS have been found to load
citrullinated proteins in their membranes, such as macrophage
apoptosis inhibitory factor (AIM), which can stimulate the
formation of immune complexes (55, 56). These EVs contain
antigens, antibodies, and complement immune complexes, it has
been shown that complement may exert an important function
in the pathogenesis of RA. Synovial fluid (SF)-derived EVs
can activate complement and, in fact, many proinflammatory
products are released once the complement cascade is activated,
thereby inducing joint inflammation in rheumatic diseases (57).
EVs encapsulating DNA-binding proteins-DEK are known to
present this antigen to CD8+ T cells and NK cells. This can lead
to more efficient antigen presentation and enhanced immune
system activation (55). TNF-α is contained in FLS-derived EVs
isolated from RA patients, and results in NF-κB activation, which
can promote inflammation (58). In addition, monocyte or T-cell
derived EVs enhance the release of matrix metalloproteinases
(MMPs; MMP-1, MMP-3, MMP-9, and MMP-13) from FLS
through an NF-κB-dependent pathway. MMPs break down
proteoglycans in the extracellular matrix and is a principal
mechanism of cartilage destruction in RA (59, 60). It is
well-known that miRNAs in EVs play an important role in
mediating cell-to-cell communication. MiR-155 and miR-146a
have been the most studied in the current pathology of RA.
Studies have demonstrated that miR-155 and miR-146a in
DC-derived exosomes can be taken up by immune cells and
then affect intercellular communication, in which miR-155 can
upregulate the expression of TNF-α and IL-6 inflammatory
genes, whereas miR-146a inhibits the expression of TNF-α and
IL-6 inflammatory genes. Further studies have indicated that
exosome-derived miR-155 and miR-146a secreted by immune
cells can mediate information and substance exchange between
FLS and other immune cells, thereby regulating the disease
process of RA (61). In addition, some studies have shown that
RA patients are positively correlated with the prevalence of
cardiovascular disease. At present, the well-known pathogenesis
hypothesis of atherosclerosis in RA is the chronic inflammation
which proposed by Ross (62). Since their discovery, several
studies have been evidenced micropaticles (MPs) exert important
function in atherosclerosis including endothelial derived MPs
(EMPs), and Tang cells derived MPs (Tang-MPs) (62). EMPs

released after endothelial cell dysfunction can make the
endothelial permanent damage, leading to the activation of
various pathways, such as matrix metalloproteinase-2 (MMP-
2) (63) and inducible NO synthase (iNOS) activation (64);
expression of E-selectin, ICAM-1, and VCAM-1; and reactive
oxygen spices (ROS) formation (65). Moreover, the newly
discovered found an association between TNF-α and Tang
MPs levels (66). TNF-α is the main cytokine involved in the
pathogenesis of RA, which can lead to atherosclerosis and
endothelial dysfunction (67, 68). It has been demonstrated that
MPs in RA patients express TNF-α on their surface (69), Barbati
et al., showed that MPs can induce the activation of asparaginase
3 and TNF-related apoptosis-inducing ligand (TRAIL) and TNF
receptor, three independent signals that promote endothelial cell
apoptosis, which can lead to the formation of atherosclerosis
(62, 70). All the above literatures indicate that extracellular
vesicles in RA are not only involved in its pathogenesis, but also
mainly related to inflammation, atherosclerosis, and impaired
endothelial function.

SLE
SLE is a chronic autoimmune disease that is clinically
heterogeneous and affects different organs. Like many
autoimmune diseases, SLE is associated with genetic factors,
and environmental factors. The main mechanism is due to
the production of antibodies against self-antigens, which form
the deposition of immune complexes (71, 72). Epigenetic
dysregulation, such as DNA methylation (73) and histone
acetylation (74), is found in many SLE patients, and is
therefore considered crucial in the development of the
disease. Additionally, environmental factors may also trigger
autoimmune responses that can lead to disease (75). Because
EVs contain self-antigens, they can participate in the formation
of immune complexes. In SLE patients, higher numbers of
immunoglobulin-carrying plasma-EVs were found than in
healthy individuals and, interestingly, platelet-derived EVs have
been found to be a major contributor to autoimmune responses
in SLE (76). Furthermore, carriage of immunoglobulins in EVs
is associated with autoantibodies and complement activation,
and their number correlates with anti-DNA levels (77). Lee
et al. showed that serum-derived exosomes isolated from SLE
patients were able to provoke a high level of cytokine generation
in healthy peripheral blood mononuclear cells causing a
proinflammatory response (21). Others have also shown
increased expression of costimulatory surface molecules and
proinflammatory cytokines, such as MHC-I IL-6, TNF-α, and
IFN-α in blood-derived plasmacytoid dendritic cells and myeloid
dendritic cells, when apoptotic endothelial microparticles are
extracted from the plasma of SLE patients (78). The increased
expression of these factors suggest a role for apoptotic endothelial
microparticles in the autoimmune response of SLE patients,
as well as in other inflammatory diseases. The main cause of
morbidity and mortality in SLE is lupus nephritis (LN) (79). In
some studies, EV-associated miRNAs are proposed as biomarkers
of renal damage in SLE (80). For example, miR-29c levels have
been reported to be decreased in LN patients, when compared
with controls. These levels correlate with renal function and the
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degree of renal fibrosis (81). Moreover, miR-146a has been found
to be an important substance leading to changes in the type 1
interferon (IFN) pathway in SLE patients (82). Taken together,
these studies reveal the possibility of miRNAs in EVs as markers
of SLE and playing an important role in SLE pathogenesis.

Sjogren’s Syndrome
Sjogren’s syndrome (SS) is a chronic inflammatory autoimmune
disease involving exocrine glands, such as salivary and lacrimal
glands, which has a high incidence in women and can be divided
into two categories: primary and secondary (83). There are many
antibodies against self-antigens in patients with SS, which in turn
cause autoimmune reactions, leading tomorbidity. Recently, EVs
have been found to contain autoantigens, including Ro/SSA,
La/SSB, and Sm RNPs in exosomes, and that these antigens
are significantly expressed in the exosomes of SS patients (84).
Studies have also demonstrated that the autoimmune response to
RNP in SS is an important feature, although the exact mechanism
by which these intracellular antigens enter and stimulate the
immune system is unknown. However, apoptosis through the
capture of apoptotic vesicles containing autoantigens by APCs
to generate an autoimmune response was shown to be the main
pathway (85). Kapsogeorgou et al. found that exosomes isolated
from salivary glands could reflect the physiological status and
regulatory level of the gland (84). Therefore, salivary gland-
derived exosomes could be used as a diagnostic marker for SS
disease. Michael et al., confirmed that there have significant
differential expression of miRNA in salivary gland-derived
exosomes from SS patients vs. healthy controls (86). These studies
suggest the potential of miRNAs in the salivary glands as a
diagnostic marker of SS and requires further investigation.

Type 1 Diabetes
Type 1 diabetes (T1D) is a specific autoimmune disease of the
islets of Langerhans, which is characterized by infiltration of T

cells into the islets, which, in turn, leads to destruction of insulin-
producing β cells (87). Activation of IFN-γ-producing Th1 cells
has been found to be a key factor in the autoimmune devastation
of the islets in T1D patients. In addition, it has also been shown
that islet mesenchymal stem cells (MSC)-derived exosomes from
non-obese diabetic (NOD) mice activate autoreactive T cells
to release IFN-γ more than B6 mouse-derived exosomes (88).
This suggests that MSC-derived exosomes play a key role in the
autoimmune destruction of T1D disease. The paracrine action in
islets can promote hormone secretion and islet survival. Recently,
it has been reported that exosomes have similarly important
functions in the islet (89, 90). When β-cells are exposed to
proinflammatory factors, exosomes are released, which results in
apoptosis of surrounding cells, and exacerbates the development
of inflammation (91). There is evidence that exosomes exert a
function in the initiation of autoimmune responses in pancreatic
islets. For example, autoantigens (e.g., GAD65, proinsulin) are
found in exosomes released from rat and human pancreatic
β-cells, and are subsequently taken up by activated DCs,
thereby activating autoreactive T and B cells (92). In summary,
exosomes not only participate in the development of the
disease but also emerge as probable diagnostic markers of T1D
disease (93).

Autoimmune Thyroid Disease
Autoimmune thyroid disease (AITD) is a common autoimmune
disease with two main clinical manifestations: autoimmune
thyroiditis (AT) and Graves’ disease (GD) (94). In AITD,
its immune-regulatory function is impaired, which leads to
lymphocytic infiltration of the thyroid gland, which in turn
produces antibodies against thyroid antigens, leading to thyroid
dysfunction (95). An association between AITD and other organ-
specific autoimmune diseases has been reported, especially in
rheumatoid arthritis, systemic lupus erythematosus, systemic
sclerosis, type 1 diabetes, and other diseases with a relatively
high prevalence, suggesting that patients can regularly examine

FIGURE 2 | The role of extracellular vesicles in autoimmune diseases. As we all know, extracellular vesicles can be divided into exosomes, microvesicles, apoptotic

bodies, and tumor vesicles. And they have different roles in the pathogenesis of autoimmune diseases, especially in immune response, inflammation.
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TABLE 1 | EVs involved in autoimmune diseases.

Triggered behavior Source of EV MicroRNA Disease References

Neuroinflammation Microglia None MS (104)

Inflammatory cell migration T cell None MS (105)

Increased myelin

phagocytosis

T cell miR-326a MS (53)

Stimulates formation of

immune complexes

FLS None RA (55, 56)

Joint inflammation SF None RA (106)

Antigen presentation DEK None RA (55)

Affects cell communication DC miR-155/

miR-146a

RA (61)

Inflammatory response Serum None SLE (21)

Expression of

proinflammatory factors

Plasma None SLE (78)

Altered IFN pathway None miR-146a SLE (107)

Reflect physiological status Salivary gland None SS (84)

Release of IFN-γ MSC None T1D (88)

Activation of autoreactive

T/B cells

Islet β cells None T1D (92)

Suppression of Treg

differentiation

None miR146a/

miR-155

AITD (100, 101)

the thyroid gland and reduce the risk of the disease (96,
97). AITD causes immune activation which leads to partial
cell activation or apoptosis. In this process, small vesicles are
released from the cell membrane and are called microvesicles
(MVs). MVs circulate in the bloodstream, which in turn triggers
thrombosis and inflammation (98). There is evidence that the
cell number of Treg and Th17 plays an important role in
the pathogenesis of autoimmune diseases (99). In one study,
it was found that MVs from AITD patients were able to
inhibit Treg cell differentiation, and that only MVs from AITD
could induce IFN-γ expression as well as differentiation of IL-
17+IFN-γ+ double-positive lymphocytes (100). MiR-146a and
miR-155 are important regulators of immune responses, are
essential for the function and development of Treg cells, and
contribute to Th17 cell function (101, 102). Only experiments
have demonstrated a significant rise in miR-146a, miR-200a, and
miR-155 in CD4+ T cells from GD patients (103). In summary,
the extracellular vesicles represented by MVs have a crucial role

in AITD pathogenesis, and are expected to be diagnostic markers
for AITD.

In short, all types of EVs participate in the pathogenesis of
autoimmune diseases, as shown in Figure 2. Additionally, the
role of EVs in these diseases varies, as shown in Table 1.

CONCLUSIONS AND PROSPECTS

In general, EVs are involved in the occurrence and development
of the above autoimmune diseases. As EVs are released by
almost all cells, they participate in many important physiological
activities in the body, especially in cell-to-cell communication
and activation of immune cells. Most of the causes of
autoimmune diseases are due to abnormal activation of the
autoimmune system, and most of the EVs involved in the
pathogenesis of autoimmune diseases do so through the
presentation of antigens to activate autoreactive T cells, which,
in turn, mediates development of the disease. Moreover, EVs
contain specific miRNAs, which are involved in the development
of diseases by targeted delivery of miRNAs to the recipient cells.
The important role of EVs in the process of disease development
suggests to us the possibility of EVs as biomarkers. Many patients
with autoimmune diseases exhibit EVs that are different from
EVs released by healthy individuals. Additionally, EVs are easily
isolated, stable, and contain specific molecular markers. The role
EVs in autoimmune diseases should be the subject of future
study, so as to enhance the prospects for the treatment and
diagnosis of autoimmune diseases.
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