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Background: A deep characterization of neurological patients is a crucial step for a 
detailed knowledge of the pathology and maximal exploitation and customization of the 
rehabilitation therapy. The muscle synergies analysis was designed to investigate how 
muscles coactivate and how their eliciting commands change in time during movement 
production. Few studies investigated the value of muscle synergies for the characteri-
zation of neurological patients before rehabilitation therapies. In this article, the synergy 
analysis was used to characterize a group of chronic poststroke hemiplegic patients.

Methods: Twenty-two poststroke patients performed a session composed of a 
sequence of 3D reaching movements. They were assessed through an instrumental 
assessment, by recording kinematics and electromyography to extract muscle synergies 
and their activation commands. Patients’ motor synergies were grouped by the means 
of cluster analysis. Consistency and characterization of each cluster was assessed and 
clinically profiled by comparison with standard motor assessments.

results: Motor synergies were successfully extracted on all 22 patients. Five basic 
clusters were identified as a trade-off between clustering precision and synthesis power, 
representing: healthy-like activations, two shoulder compensatory strategies, two elbow 
predominance patterns. Each cluster was provided with a deep characterization and 
correlation with clinical scales, range of motion, and smoothness.

conclusion: The clustering of muscle synergies enabled a pretherapy characterization 
of patients. Such technique may affect several aspects of the therapy: prediction of 
outcomes, evaluation of the treatments, customization of doses, and therapies.

Keywords: muscle synergies, centroids, synergies clustering, reaching performance scale, Fugl-Meyer 
assessment

inTrODUcTiOn

Neurological diseases are one of the main sources of disability, especially in Western countries.  
A wide variety of pathologies and symptoms can lead to partial or complete disability, which influ-
ences people life up to preventing self-autonomy. A recent state-of-the-art review on rehabilitation 
(Krebs and Volpe, 2015) concludes with the following sentence: “Ultimately the goal should be 
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determining how best to customize the treatment protocol to 
meet each individual patient’s needs.” In order to maximize 
the gains inducted by rehabilitation, patients should undergo 
a customized treatment protocol tailored on specific criteria 
that would assure the highest probability of success, depend-
ing on their clinical status. For this reason, patients should be 
evaluated and categorized when possible before the therapy to 
ensure the clinician with a wide, detailed and deep characteriza-
tion of the motor capabilities of the patient to be treated. The 
need of assessing patients’ clustering based on impairment is 
discussed in the literature (Baldassarre et al., 2016). Such issue 
is of great interest and still far from being successfully exploited. 
Many criteria have been proposed to address the subjects to the 
most suitable approach. Recently Wolf et  al. (2016) proposed 
an algorithm to decide the techniques and tools the physical 
therapist should choose to provide a high quality treatment 
to acute stroke patients. The algorithm is based on some key 
items of the Action Research Arm Test (ARAT) and, based on 
the scores acquired, the algorithm suggest to the clinician a list 
of techniques to provide (i.e., passive range of motion [ROM], 
strength training, motor imagery, mirror therapy). The key 
items provide a synthetic portrait of patient’s capabilities and 
a consequent clustering according to its functioning. The deci-
sional method proposed in Wolf et al. (2016) focuses on active 
movement capacity as predictor of a given outcome. Many other 
works rely on active movements of clinical scales assessment to 
estimate patients’ behavioral cluster (Baldassarre et  al., 2016) 
and consequent therapy functional prediction (Kwakkel et al., 
2003). For example, patients who are not able to maintain 90° of 
shoulder flexion can either gain no function to normal function 
assessed with ARAT (Puig et al., 2011). These approaches gener-
ally have good correlation with actual upper limb recovery but 
suffer of interindividual variability and do not take into account 
others crucial factors that can be evinced only with instrumental 
evaluation.

Relatively new branches of rehabilitation, such as robot-
aided mobilization, are becoming standard practice in clinical 
environment. However, even in refined, state-of-the-art studies 
assessing the effect of rehabilitation (Lo et  al., 2010), patients 
are administered therapies with deep regard related to their 
characterization before the therapy, which is usually confined to 
clinical scales scores. Consequently, patients’ characterization is 
often demanded to clustering related to the severity of impair-
ment (severe, moderate, and mild) depending on clinical scales 
[such as the Fugl-Meyer Assessment (FMA)]. Such points are 
assessed in Krebs and Volpe (2015), where many questions are 
moved about how machines and robots should intervene to help 
the motor recovery. The answer is implicitly that, so far, no precise 
answer can be given due to the lack of data and knowledge about 
patients’ status.

Such observations coming from recent literature suggest that 
multi-domain approaches, related not only to clinical scales but 
also to other domains, such as instrumental evaluations, might 
instead be useful for at least two reasons. First, they might provide 
deeper assessment; secondly, they might suggest different group-
ing and, consistently, different characterization. The coupling 
with instrumental evaluation should become a more detailed 

procedure that helps in orienting therapies for neurological 
patients, providing deeper characterization.

Surface electromyography (EMG) has been widely studied on 
stroke subjects and many alterations have been found compared 
to healthy individuals. EMG is an interesting assessment since, 
despite its limitations in terms of cross-talking, electrode place-
ment, repeatability (De Luca et  al., 2010), represents measures 
that are taken “directly on patients.” Relevant results were found 
in stroke patients EMG patterns, like abnormal coactivation of 
shoulder and elbow muscles, altered activation pattern, or global 
decrease of muscle activation (Dewald et  al., 1995). s-EMG is 
used as a technique for clustering patients and healthy people 
depending on their muscular activations in lower limbs tasks 
(Miljković et al., 2011).

Moreover, in the past two decades, the concept of muscle 
synergies was introduced (Flanders and Herrmann, 1992). 
Muscle synergies are groups of coactivating muscles that, being 
controlled as a synergic group, allow simplifying the problem of 
motor control. In fact, the muscle synergies analysis investigates 
the hypothesis that the central nervous system (CNS) simplifies 
the problem of motor control by exploiting motor abundance, 
i.e., the redundancy of actuators in respect to the actuated joints. 
While the human neuromusculoskeletal system can provide infi-
nite solutions to the motor control problem, the synergies-based 
approach implies that abundance is not a source of computational 
burden (Latash, 2012). In fact, neural encoded coactivating 
synergies drastically reduce the number of requested motor 
commands. Consequently, a restricted number of synergies is 
the “basic set of vectors” that represent the invariant element that 
is shared by a group of motor programs. Furthermore, invariant 
synergies are modulated by an activation command that speci-
fies the contribution of each synergy to voluntary movement at 
each time sample. Thus, the synergy approach decomposes the 
problem of motor control into two less expensive and reusable 
domains (synergies and their activation commands), to whom 
the CNS can draw to ease its control over movement. Several 
approaches and algorithms have been proposed for synergies 
extraction (Tresch et al., 2006).

A review study analyzed the most exploited methods for 
synergies extraction, such as principal components analysis 
(PCA), factor analysis (FA), independent component analysis 
(ICA), and non-negative matrix factorization (NMF) (Tresch 
et  al., 2006). PCA has been widely adopted (Saltiel et  al., 
2001; Todorov and Ghahramani, 2004; Tagliabue et al., 2015). 
However, due to its intrinsic feature of requiring orthogonality 
between the data set, PCA can lead to negative muscle activa-
tion. For these reasons, PCA-based studies may rely on additive 
methods to constrain coefficients to be positive. FA and ICA are 
less used and suffer from extraction and rotation issues (Merkle 
et  al., 1998). NMF instead returns always positive synergies 
compositions and activations, being non-negative by nature. 
Furthermore, it is a reliable method that reflects the features of 
EMG signals (d’Avella et al., 2008; Razavian et al., 2015).

Synergies dataset composition is usually compared by 
matching them according to the similarity of their dot product. 
Another common method to compare synergies after their 
extraction is clustering. Clustering was usually conducted with 
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k-means (Steele et al., 2015) or hierarchical clustering (García-
Cossio et al., 2014). Such procedures are needed in attempts to 
provide physiological interpretation of the results (i.e., coupling 
each synergy with a physiological function within the examined 
motor task). However, clustering often leads to uneasy clinical 
interpretation.

Synergies analysis has a twofold applicability. On healthy 
people, it can be used to investigate motor control, and provide 
a solid characterization of physiological movement and of the 
mechanisms that underlie motor production. In particular, 
the modular organization of our CNS for motor production 
is tested, suggesting that a reduced number of modules (syn-
ergies and their activation profiles) account for the majority 
of the EMG activity related to specific tasks. Previous stud-
ies investigated specific aspects of functional movements, 
with deep analysis on frontal reaching (d’Avella et  al., 2006, 
2008), and provided characterization of healthy physiological 
performance; in Coscia et al. (2014), repeatability and solidity 
of extracted synergies of healthy people in interaction with 
devices for rehabilitation during reaching movements was 
demonstrated.

On neurological patients, synergy analysis may provide further 
insights and assessment of patients’ clinical condition, providing 
further characterization related to activation patterns. Previous 
studies investigated neurological patients’ motor performances 
in the framework of muscle synergies, with respect to control 
subjects or to the same patient’s less affected limb. Lunardini 
et al. (2017) applied synergy analysis on upper limb muscles of 
children with dystonia and age-matched healthy controls during 
the performance of different writing tasks. The results suggest 
that dystonic children should have access to an intact set of 
synergies with normal structure and that the aberrant muscle 
activity may result from abnormal recruitment of intact motor 
modules (Safavynia et al., 2011). Other studies identify altera-
tion of muscle synergies according to three different patterns: 
preservation, merging and fractionation (Cheung et al., 2012). 
Preservation is the similarity of muscular synergies between 
impaired and less impaired arm but with different muscular 
activation patterns. Merging consists in a reduction of synergies 
on the more affected limb. Merging was found also in other 
studies (Clark et al., 2010). Last pattern is fractionation, which 
consists in the splitting of a synergy in two (or more) syner-
gies. Even fractionation was found on chronic stroke patients.  
In Cheung et al. (2012), a large number of synergies are required 
to successfully explain the more affected arm EMG, in respect 
to healthy people. Further studies did not observe merging nor 
fractionation patterns in severe patients’ synergies during robot-
assisted motion, as the total number of synergies reconstructed 
was the same of healthy control subjects, but with some altered 
muscle activation (Roh et al., 2013). A study on patients’ affected 
by multiple sclerosis, revealed that the number of synergies that 
underlying gait is comparable to healthy controls, and alterations 
are observed mainly on activation timing rather than synergies 
composition (Lencioni et al., 2016).

Such results from the literature can be summarized by 
underlying that pathological subjects present a wide variety of 
synergies alteration that are not easily classified. However, their 

comprehension is of primary importance for better knowledge 
of the pathology and to provide the best therapy and assistance.

Few studies in the literature tested muscle synergies in the 
domain of neurological patients (Cheung et  al., 2009, 2012; 
Clark et al., 2010; Roh et al., 2013, 2015; Mcmorland et al., 2015). 
While on healthy people (d’Avella et al., 2003, 2008; Coscia et al., 
2014) usually comparable synergies are extracted (related to low 
variability in movement execution), neurological patients differ 
consistently in terms of activations and motor production. The 
ROM might be altered, as well as smoothness, repeatability, 
and muscle recruitment timing. These features introduce high 
variability that lead to: (1) alteration in synergies composition, 
(2) alteration in timing of synergies elicitation, (3) merging and 
fractionation issues, and (4) difficulties in determining metrics 
for synergies comparison.

The analysis conducted in the literature usually focuses on 
clustering of patients and/or healthy subjects depending on 
the number of extracted modules (Clark et al., 2010; Roh et al., 
2013). However, correspondence among synergies is not easily 
detectable, especially when neurological patients are involved, 
since they show a wide variety of motor impairments. For these 
reasons, in this article, a solid method for clinical interpretation 
of clustering, in the framework of muscle synergies, is proposed 
to provide characterization on a cohort of poststroke patients.

Objective
The aim of the study was to use muscular synergies for a deep 
characterization of poststroke patients prior to rehabilitation 
therapies.

MaTerials anD MeThODs

setting
The study took place at Presidio di Riabilitazione dell’Ospedale 
Valduce Villa Beretta, Costa Masnaga (LC), Italy, during the 
period ranging from years 2014 to 2016. The study was reviewed 
and approved by the local Ethics Committee at Lecco Manzoni 
Hospital and was conducted in compliance with the Declaration 
of Helsinki. Written informed consent was obtained from each 
subject before inclusion in the study.

Participants
Twenty-two poststroke patients in the chronic phase (more than 
six months from the stroke event) were recruited for the study. 
All patients had motor deficits in one upper limb. No require-
ment on motor functionality was requested, even if patients were 
selected, with different levels of impairment. Eligibility criteria 
also included comprehension of the tasks to be performed. The 
demographic characteristic of the patients are listed in Table 1. 
Clinical characteristic of the patients are listed in Table 1, includ-
ing reaching performance scale (RPS) and FMA scores.

study Outline
A Flowchart illustrating the outline of the study is shown in 
Figure  1. Twenty-two patients were recruited and asked to 
perform several repetitions of reaching movements (Figure 2). 
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TaBle 1 | Patients’ demographic and clinical data.

Patient gender age Months from stroke impaired hand Type of stroke reaching performance scale Fugl-Meyer assessment 
(sections a–D)

Pt1 Male 67 6 Right Ischemic 17 61
Pt2 Male 65 6 Right Ischemic 15 56
Pt3 Female 46 168 Right Ischemic 17 61
Pt4 Male 62 76 Right Ischemic 12 50
Pt5 Male 49 19 Right Hemorrhagic 12 36
Pt6 Male 82 8 Right Ischemic 7 39
Pt7 Male 80 27 Left Ischemic 9 40
Pt8 Male 74 10 Left Ischemic 11 56
Pt9 Female 35 44 Right Hemorrhagic 16 48
Pt10 Male 56 151 Right Ischemic 9 46
Pt11 Male 66 66 Left Hemorrhagic 10 48
Pt12 Female 24 32 Right Ischemic 10 41
Pt13 Male 73 8 Left Ischemic 10 40
Pt14 Male 30 10 Left Ischemic 9 33
Pt15 Female 68 51 Right Ischemic 12 45
Pt16 Female 65 6 Left Ischemic 6 29
Pt17 Female 26 6 Right Hemorrhagic 7 22
Pt18 Female 76 27 Right Ischemic 5 18
Pt19 Male 55 32 Left Ischemic 1 24
Pt20 Male 65 11 Left Ischemic 4 22
Pt21 Male 31 44 Left Ischemic 1 17
Pt22 Male 51 118 Left Ischemic 1 11
Means 15M-7F 56.6 ± 17.9 42.1 ± 47.3 12R-10L 18I-4H 9.1 ± 4.9 38.3 ± 14.7
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None of them was excluded from the study. s-EMG of 8 involved 
muscles were recorded and used to extract muscle synergies pat-
terns. Synergies were clustered and patients grouped according 
to their EMG patterns. Each group was provided with a clinical 
profiling. Clinical scales were used as reference to comment and 
discuss muscle synergies groups. Main results underlined the 
emergency of five distinct clusters, which distinguish between 
shoulder and elbow prevalence patterns. Shoulder patterns split 
into healthy-like activations, and two compensatory shoulder 
patterns. Distal patterns distinguish between flexor or extensor 
predominance. The comparison with clinical scales underlined 
that synergies clustering does not univocally correlate with 
standard clinical assessments.

equipment
The following equipment was used in this study:

•	 BTS Smart-D system for kinematics (recorded at 140 Hz) and 
EMG (recorded at 1,000 Hz);

Kinematics was recorded for D5 and C7 vertebras, acromion, 
elbow epicondyle, styloid process of the ulna.

s-EMG was recorded on the following Selected Muscles: upper 
trapezius (Tr), pectoralis major (Pm), deltoid anterior (Da), 
deltoid middle (Dm), deltoid posterior, triceps brachii caput 
medialis, biceps brachii caput longus, and brachioradialis (Br).

Patients clinical evaluation: clinical 
scales
Clinical evaluations were performed by a physical therapist using 
the FMA (Potter et al., 2011) and the RPS (Levin et al., 2004). 
The FMA is a stroke-specific, performance-based impairment 

scale, belonging to the body function domain of the ICF model, 
designed to assess motor functioning, balance, sensation, 
and joint functioning in patients with poststroke hemiplegia. 
Specifically, in this study, we used only the upper extremity 
motor section of the FMA (scale 0–66, 66 = no motor deficits).

As a second assessment scale, The RPS (Levin et  al., 2004, 
2012) was used. It is a clinical scale that monitors the execution 
of 3D reaching gestures. It is composed of six sections, monitor-
ing the following characteristics of movement execution: trunk, 
smoothness, shoulder, elbow, prehension, and global impression. 
Each section is given a score ranging from 0 to 3 depending on 
the quality of the performances. In this study, which evaluates 
the synergies elicited in frontal reaching movements, the RPS 
is used as comparison to discuss muscular synergies cluster 
composition.

synergies extraction
First of all, kinematic recordings were used to separate movement 
phases. Data from retroreflective markers were filtered with a 
low-pass, third order Butterworth Filter, with cutoff frequency 
set at 6  Hz. An algorithm for automatic phase-detection was 
implemented, using wrist vertical coordinate. In this study, only 
forward phases were considered (involving shoulder flexion 
in the sagittal plane and elbow extension, simulating a frontal 
reaching up to shoulder height). Data from eight s-EMG channels 
were recorded. Data were filtered with a Hilbert transform filter 
that allows the loss of the minimal amount of signal. EMG data 
from each subject and each trial were pooled together in a single 
aggregated matrix and synergies were extracted using the NMF 
algorithm (Cheung et al., 2005). The NMF decomposes the EMG 
matrix into the product of two matrices, the first one representing 
time-invariant, neural coded synergies (wi), and the second one 
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FigUre 1 | Study flowchart (includes main results).

FigUre 2 | The 3D frontal reaching movement executed by patient 1.
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representing time-variant activation commands for each synergy 
(ci) (d’Avella et al., 2006), as in Eq. 1:

 EMG( ) ,t c wi ii

N
=

=∑ 1  (1)

where for each of the recorded muscles, EMG(t) represents the 
EMG data at time t and N is the total number of extracted synergies.

The order of the factorization r was chosen increasingly from 
1 to 8 (maximum number of muscles that characterizes the 
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dimensionality of the problem). For each r, the NMF algorithm 
was applied 1,000 times in order to avoid local minima and the 
repetition accounting for the higher variance of the signal was 
chosen as the representative of order r. The number of synergies 
was chosen as the minimum r explaining at least 0.80 of the vari-
ance of the signal (Coscia et al., 2014).

Muscle synergies in reaching Movements 
in the literature
In a previous study on healthy people (Scano et al., 2017.), the 
pattern portrayed in Figure  3 was found. Two basic syner-
gies are extracted on healthy people free movements. The 
first one (S1) is the “elevation—extension synergy” that is 
elicited during the whole movement, increasing its intensity 
up to about 75% of the movement and partially decreasing in 
the last part when approaching maximum shoulder flexion.  
S1 involves mainly Da and Dm (muscles responsible for the 
elevation of the limb), slightly supported by Tr and pectoralis; a 
coordinated activation is spotted on the triceps that extends the 
forearm toward the target. Such finding is supported by Kisiel-
sajewicz et al. (2011) that states that Da and triceps are the main 
agonist muscles in reaching movements. A second synergy (S2) 
involves mainly the Tr and, less consistently, the Da, pectoralis, 
and biceps. S2 is active especially at the beginning of the move-
ment and is slightly evoked even at the end. Its role is to stabilize 
the shoulder, by stiffening it to prepare the elevation of the limb. 
In the end, S2 slightly intervenes to stabilize the limb at the end 
of the movement and to keep the arm elevated at about 90°, over 
which the Tr becomes a shoulder elevator.

It is very interesting to compare the synergies extracted on 
healthy people with the ones found in the literature by other 
authors. In d’Avella et  al. (2006, 2008) motor synergies are 
extracted while investigating the spatiotemporal features of 
physiological frontal reaching movements. Five synergies were 
extracted, starting from 17 muscles EMG. Synergies are ordered 
by temporal criteria, in chronological elicitation order. The first 
synergy is dominated by flexors muscles of the elbow and by 
the Tr. Such a synergy is a stabilizing synergy that prepares 
the shoulder to the elevation. It resembles clearly the second 
synergy that was found in Scano et al. (2017). The second, third, 
and fourth synergies found in d’Avella et al. (2006) are instead 
related, respectively, to elbow extension, shoulder flexion, and 
a complement to the previous two functions, respectively. In 
the presented study, a merging effect was observed, indicating 
clearly the coupling of shoulder flexion and elbow extension. 
The coupling was probably observed due to the fact that shoul-
der and elbow move with similar timing and the algorithm, 
applied to fewer muscles in the present study, coupled them 
naturally. S1 in Scano et  al. (2017) is thus correspondent to 
the second and third synergies found in d’Avella et al. (2006). 
The fourth and fifth synergies found in d’Avella et  al. (2006) 
include muscles that were not included in the present study and 
of minor relevance in reaching production. Authors conclude 
previous studies in the literature find that the basic elements of 
the 3D reaching movements are three: a stabilizing initial effect, 
followed by a coupled action of shoulder flexion and elbow 

extension. Authors will hereby refer to the shoulder flexion/
elbow extension synergy by “S1.”

Patients clustering
Some state-of-the-art articles worked on the effect of therapies 
on muscular synergies, or in the differentiation between the more 
affected limb and the less affected one (Cheung et al., 2009; Roh 
et  al., 2015), defining clusters to group synergies according to 
their composition. All the dataset of the extracted synergies are 
clustered into a limited number of groups, and changes in cluster 
numbers and composition are metrics to evaluate the difference 
between limbs performance, or between groups of patients with 
different level of impairment.

However, for the purpose of this work, including all the 
extracted synergies into a single cluster analysis might lead to hard 
clinical interpretation of the clusters (and patients’ classification)  
for at least two reasons. First, many studies (Roh et  al., 2013) 
report how synergies related to the same motor function  
(e.g., shoulder flexion) “split into two or more clusters” (Roh et al., 
2015). Such cluster composition makes correspondence between 
clusters and motor functions not easy interpretable.

Furthermore, muscular synergies are often grouped in the 
literature regardless of their activation timing. Such procedure 
might be risky in terms of interpretation since similar activa-
tion patterns, related to different functions, might be grouped 
together. While this issue is less likely to happen on healthy 
people, the variability in patients is high and might lead to 
misinterpretation.

Such considerations lead the authors to the choice of con-
ducting the cluster analysis considering only S1, since it strongly 
characterizes frontal reaching movements, as deeply explained 
in the previous paragraph. Consequently, only synergies sharing 
similar activation timing (first row for synergies and fifth row for 
activations in Figure 4) are considered for cluster analysis. Such 
a procedure is limited to a restricted part of the dataset (the most 
important one for performing frontal reaching movements) but 
guarantees that the clustering refers to synergies that perform (or 
attempt to perform) the same “motor function.”

It should be noted that, in the majority of the cases, the syn-
ergy that prevails in terms of entity of activation is also active in 
the moment of maximum limb elevation, increasing in the last 
part of the reaching movement. For such cases, the identifica-
tion of S1 is trivial. However, a very limited number of patients, 
typically the severely impaired ones, or patients that present a 
“sparse” group of synergies, may show patterns of more complex 
identification. This may happen because S1 is partially absent 
(due to limited ROM) or because it fractionates into two or more 
synergies. In such cases, the choice of S1 was qualitatively driven 
by the following criteria: (1) entity of the activation (preferred 
on severely impaired patients who have limited ROM) and  
(2) timing of elicitation of the synergy (preferred for patients 
who present fractionation issues). To authors’ opinion, while still 
being improvable, this procedure allows a coherent method for 
the profiling of the clinical status of patients in the framework of 
muscle synergies.

The cluster analysis was conducted by the means of the 
k-means Matlab cluster algorithm. The algorithm was applied 
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FigUre 3 | Patients’ extracted synergies. Rows 1–4 show synergies composition. Rows 5–8 show synergies activation profiles corresponding to synergies.
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FigUre 4 | Clusters composition: the S1 of each patient is displayed, grouped in its corresponding centroid.
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to an aggregated matrix containing the flexion synergy of 
each patient, selected according to the criteria discussed 
in the previous paragraph. Each possible clustering order, 
ranging from 2 (minimum) to 22 (maximum), was tested, 
by repeating 200 times the algorithm and selecting, for each 
order, the solution with higher Silhouette Score (García-
Cossio et al., 2014).

Then, the selection of the appropriate number of clusters 
was made by pondering the following metrics:

 (1) Parsimonious number of clusters for synthesis power (lowest 
possible number of clusters, given reasonable descriptive 
precision).

 (2) Silhouette Score, indicating the goodness of the clustering, 
as a synthetic index for each clustering order. The higher the 
Silhouette, the better elements fit to their cluster.

 (3) Mean scalar product among all the clusters for each cluster 
order. The lowest the mean dot product, the more cluster 
are differentiated. Too similar clusters might be grouped 
together decreasing the order of the clustering.

 (4) If possible, single-patient cluster solutions are avoided or at 
least limited.

Being metrics (1), (2), and (3) not directly comparable, 
authors decided to select the lowest number of clusters accord-
ing to whom both the Silhouette Score and the Mean Scalar 
Product would increase and decrease, respectively. If both con-
ditions are met, increasing the number of clusters has certainly 
lead to better clustering. Otherwise, increasing the number of 
clusters may not be needed.

Matching clustering with standard clinical 
assessments and Kinematics
Lastly, extracted clusters are compared to FMA and RPS 
assessment for detecting correlations between the EMG-based 

analysis and standard assessments for discussion and further 
characterization of patients. Furthermore, a comparison with 
basic ROM assessment was performed. Shoulder flexion angle in 
the sagittal plane and the elbow extension angle, both measured 
at maximum shoulder flexion—end of the reaching movement 
(Scano et  al., 2014), were computed. A shoulder flexion of 0° 
indicates that the arm is leaning along the body; 90° indicates 
that the arm is fully frontally elevated. An elbow extension of 
0° indicates a virtually completely extended elbow. However, 
due to anatomical differences and marker positioning, a fully 
extended elbow ranges around the performance of Pt1 (who has 
maximum elbow scores in both FMA and RPS). As a secondary 
kinematic-related assessment, authors computed movement 
smoothness, measured with the Normalized Jerk (Teulings et al., 
1997).

resUlTs

extracted synergies
Extracted synergies and activation profiles are reported in 
Figure 3. Synergies were ordered, by matching at best activation 
profiles timing.

clustering
Table  2 shows details of Patients clustering for optimal solu-
tions for number of clusters ranging from 2 to 11, according to 
the criteria explained in the Section “Materials and Methods.” 
Number of extracted clusters is reported accompanied by 
Silhouette score, mean dot product between Centroids, and 
presence of single-patients clusters.

Following criterion (1) proposed in the paragraph 2.7, a 
maximum of 11 clusters was considered, corresponding to 1/2 
of the sample. This way, there is the possibility that every cen-
troid is populated by at least two patients. Increasing further the 
number of clusters would prevent any kind of generalization, and 
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TaBle 2 | Clustering details.

clustering 
order

silhouette 
score

Mean dot product single-patient 
clusters

2 0.50 0.74 ± 0.086 No
3 0.44 0.74 ± 0.081 No
4 0.49 0.73 ± 0.080 No
5 0.54 0.68 ± 0.067 1
6 0.52 0.68 ± 0.065 2
7 0.55 0.67 ± 0.062 3
8 0.61 0.68 ± 0.063 3
9 0.63 0.67 ± 0.065 4

10 0.67 0.68 ± 0.059 4
11 0.71 0.69 ± 0.063 5

For each clustering order, the optimal solution found with Matlab k-means function is 
reported, with the Silhouette score, the mean dot product with other clusters, and the 
number of single-patient clusters.

FigUre 5 | Cluster Centroids extracted with Matlab k-means. Five clusters were identified: healthy-like activations, two shoulder compensatory strategies (based 
on trapezius and pectoralis), and two distal patterns (one with prevalence of elbow flexors, one with prevalence of elbow extensors).

TaBle 3 | Clusters composition.

cluster Patients’ iD

1 Pt1, Pt3, Pt6, Pt7, Pt9, Pt10, Pt11, Pt17, Pt16
2 Pt4, Pt5, Pt8, Pt12, Pt13, Pt15
3 Pt2, Pt14, Pt18, Pt20
4 Pt19
5 Pt21, Pt22 

Each cluster is reported with the patients who belong to it.

TaBle 4 | Clusters similarity.

cluster iD 1 2 3 4 5

1 1 0.84 0.70 0.63 0.70
2 0.84 1 0.64 0.54 0.75
3 0.70 0.64 1 0.63 0.71
4 0.63 0.54 0.63 1 0.66
5 0.70 0.75 0.71 0.66 1
Mean 0.72 ± 0.08 0.70 ± 0.13 0.67 ± 0.04 0.62 ± 0.05 0.71 ± 0.04

Pairwise dot products among clusters are reported along with the “average similarity” 
of each cluster to the others. Mean dot products do not include the diagonal unitary 
elements of the matrix in Table 4.
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consistently, were a priori discarded. In respect to the clustering 
solution of order 4, the clustering solution of order 5 shows 
improving of both Silhouette Score and decrease of Mean Dot 
Product. Consequently, the choice of five clusters was done as a 
trade-off between parsimony and adequateness of precision in 
patients’ description. Solutions with 6 or more clusters were all 
characterized by more than one centroid dedicated to a single 
subject. Solution with number of clusters = 5 instead had only 
one single-patient cluster.

Clustering Composition for clustering order = 5 is reported 
in Figure 4 along with the correspondent centroids. Clusters 
centroids for five clusters grouping are reported in detail in 
Figure  5 and patients composing each clusters are listed in 
Table 3.

Table 4 reports mean dot product between clusters, to assess 
in detail their similarity.

clustering vs. clinical scales
Detailed FMA scores for each of the five clusters is reported 
in Figure  6, along with mean and standard deviation of each 
cluster.

Detailed RPS scores for each of the five clusters is reported in 
Figure 7, along with mean and standard deviation of each cluster.

clustering vs. Kinematics
Table  5 reports mean shoulder flexion angles, elbow exten-
sion angles, and normalized jerk for each patient. Detailed 
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FigUre 7 | Reaching performance scale scores, grouped by cluster.

TaBle 5 | Kinematics.

Patient iD shoulder elevation elbow extension normalized Jerk

Pt1 81.0° ± 1.4° 36.1° ± 5.9° 36.3 ± 11.0
Pt2 69°0.0 ± 2.7° 42.8° ± 2.8° 21.6 ± 7.6
Pt3 86.3° ± 8.0° 33.2° ± 15.9° 60.2 ± 25.5
Pt4 78.9° ± 2.7° 45.1° ± 2.9° 22.2 ± 9.8
Pt5 77.7° ± 1.2° 31.2° ± 1.1° 41.7 ± 8.6
Pt6 90.2° ± 3.5° 50.7° ± 2.7° 59.1 ± 21.0
Pt7 83.9° ± 45.0° 52.3° ± 31.1° 66.2 ± 24.2
Pt8 55.6° ± 5.6° 58.6° ± 4.0° 25.7 ± 9.4
Pt9 75.6° ± 2.3° 44.4° ± 3.0° 32.2 ± 8.5
Pt10 52.6° ± 35.5° 76.4° ± 41.8° 19 ± 5.6
Pt11 70.4° ± 2.6° 66.9° ± 5.6° 49.4 ± 16.6
Pt12 88.2° ± 2.0° 45.9° ± 1.9° 27.4 ± 12.7
Pt13 62.5° ± 24.1° 61.2° ± 9.5° 33.6 ± 31.9
Pt14 83.3° ± 1.4° 23.4° ± 4.0° 30.8 ± 11.7
Pt15 80.2° ± 5.4° 51.9° ± 7.4° 114.9 ± 53.1
Pt16 85.5° ± 4.6° 65.7° ± 4.7° 30.0 ± 32.1
Pt17 62.2° ± 9.1° 61.3° ± 11.4° 49.2 ± 28.9
Pt18 55.3° ± 10.8° 59.0° ± 4.5° 27.8 ± 12.5
Pt19 17.4° ± 11.3° 99.3° ± 2.3° 66.2 ± 44.4
Pt20 27.2° ± 35.7° 67.5° ± 12.2° 81.4 ± 41.0
Pt21 13.0° ± 9.2° 69.6° ± 7.7° 99.6 ± 91.4
Pt22 23.8° ± 11.0° 75.7° ± 12.3° 103.2 ± 59.9

Each patient is characterized in terms of ROM (shoulder elevation angle and elbow 
extension, both measured at the moment of maximum elevation of the limb at the end 
of the forward phase) and smoothness (Normalized Jerk).

FigUre 6 | Fugl-Meyer assessment scores, grouped by cluster.
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shoulder flexion angle (computed in the sagittal plane) and 
elbow extension angle, for each of the five clusters is reported 
in Figure 8, along with mean and standard deviation of each 
cluster.

Detailed Normalized Jerk scores for each of the five clusters 
is reported in Figure 9, along with mean and standard deviation 
of each cluster.

DiscUssiOn

In this article, muscle synergies were extracted and then clustered 
from a cohort of chronic stroke patients to identify motor pat-
terns for the execution of 3D reaching movements. The muscle 
synergies method was selected to understand how to characterize 
the pathological movement and link it, if possible, to the clinical 
status expressed by clinical scales and kinematics. Compared 
to less sophisticated EMG analysis, muscle synergies method 
provides more information about the relationship existing 
between the muscles, either for what concerns the amplitude and 

cocontractions, either for the timing of activation that can lead 
to different interpretation about the role of the muscle during the 
movement execution (e.g., agonist, antagonist, and stabilizer). All 
these features are considered in coupling by synergies extraction, 
adding valuable analysis in respect to single EMG stream analy-
sis. Furthermore, the synergies analysis provides an analytical 
framework which is coherent with the theories of motor learning 
and production related to the modular organization of the brain 
(Schmidt, 1975), and to the vision of motor abundance (muscle 
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FigUre 8 | Shoulder flexion angle in the sagittal plane and elbow extension angle, measured at maximum shoulder flexion, grouped by cluster.

FigUre 9 | Normalized Jerk, as measure of movement smoothness, grouped by cluster.
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redundancy) as a source of simplification of motor control, rather 
than the opposite (Latash, 2012).

consistency of the extracted synergies
As for other matrix factorization methods reported in the 
literature (Tresch et  al., 2006; Lin and Scott, 2012; Naik and 
Nguyen, 2015), the NMF algorithm finds the best decomposi-
tion for explaining the major amount of the variance of the 
original EMG envelope. It means that the method is applied to 
EMG decomposition without specific knowledge of the nature 

of the EMG signal itself; the procedure is purely mathematical, 
and the results reflect such characteristic. It is indeed relevant to 
investigate not only patterns of coactivating muscles (synergies) 
but also how repeatable the activation commands are. Such 
issue is sometimes ignored in the literature. However, if syner-
gies are not stable, their extraction is nothing but the result of a 
mathematical optimization, without representing real repeatable 
patterns. This is a fundamental feature of skilled and purposeful 
motor control, and a requisite to consider synergies extraction as 
a valuable procedure, rather than just a mathematical procedure. 
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For these reasons, authors considered of crucial importance to 
apply qualitative selection of the modules to be matched on the 
basis of the composition of the synergies and of the timing of 
their activation, introducing critical clinical interpretation of the 
data. Such point is crucial for a correct synergies matching, even 
though it is partially limiting since algorithms are applied only 
to the most relevant synergy for each patient.

cluster extraction
A discussion about the choice of analyzing only elevation syn-
ergy is presented. As shown by previous studies found in the 
literature, it is the main coactivation pattern characterizing 
the execution of frontal reaching movements. Furthermore, in 
respect to healthy people, high variability is detected in patients’ 
patterns (Figure  4), especially considering that in the present 
study the sample is not homogenous in terms of motor func-
tionality (RPS ranging from 1/18 to 17/18 and FMA ranging 
from 11/66 to 61/66). Furthermore, as depicted in Figure  4, 
Synergy 1 not only characterizes the execution of 3D reaching 
movements, but also includes a major part of the EMG activity. 
A global clustering, involving all synergies, would equally weight 
Synergies 2–4 that are less relevant. Extending the analysis to all 
the extracted synergies, would likely lead to complete impossibil-
ity of detecting reliable patterns into the data, due to the absence 
of matching temporal activation profiles. Matching elevation 
synergies according to activation profile during the elevation 
phase was considered as the best way for patients clustering and 
characterization.

cluster Description
Clusters are hereby described according to their clinical profiling.

Cluster 1: Physiological Flexion Pattern (Deltoids)
Cluster 1 includes patients that show coactivation patterns that 
are similar to the ones of healthy subjects (d’Avella et al., 2006; 
Scano et  al., 2017). Overall, Cluster 1 shows the highest mean 
scores both in RPS and FMA. However, it should be noted that, 
while high functioning patients are, as expected, grouped in 
Cluster 1, this group appears as less homogeneous than Cluster 2.  
In fact, Cluster 1 includes also low-functioning patients such as 
Pt17. The phenomenon of the joining of high and low functioning 
patients can be described by the fact that, while motor control 
features indicate correct activation patterns, low functioning 
patients are characterized by global weakness that prevents them 
from compensating with other muscles. It should be noted that, 
presenting a healthy-like activation pattern, and not being syner-
gies amplitude of activation comparable in terms of magnitude 
from patient to patient, even higher order clustering would lead to 
common grouping. Consequently, healthy-like activation pattern 
(Da dominance, with contribution of Dm) is not a guarantee of 
high functioning. However, patients belonging to Cluster 1 have 
intact, selective motor control capabilities and are candidate to 
motor improvement (low-functioning patients) or motor refine-
ment (high-functioning patients). Kinematics confirm previous 
considerations. All patients belonging to Cluster 1 have full or 
nearly full ROM at the shoulder, while some of them do not extend 

correctly the elbow. The mean Normalized Jerk within the cluster 
is quite low, indicating a quite smooth movement execution.

Cluster 2: Compensatory Strategy 1—(Tr)
Cluster 2 is characterized by a remarkable activation of the 
Tr muscle, helped by the deltoids. Such patients are in general 
capable of performing the movement and present complete or 
quasicomplete ROM at shoulder and elbow. Their pathological 
condition is explained by a motor control deficit related to the 
capability of selecting the main agonist muscle (Da), which is 
replaced by the Tr. Such a pattern, found in chronic patients, 
might be addressed to the capability of compensating the lack of 
Da activation to perform the movement. Typical effect of such 
group is scapular elevation. Cluster 2 groups moderate impaired 
patients that rely on compensatory strategies. With the excep-
tion of Patient 16, this cluster appears to be quite homogeneous 
both with respect to the RPS and the FMA. The majority of the 
patients belonging to Cluster 2 have full or nearly full ROM at 
the shoulder, even if two of them do not complete the elevation 
of the arm. All of them do not extend completely the elbow. The 
mean Normalized Jerk within the cluster is low, indicating a 
quite smooth movement execution, probably to due simplified 
control related to the uncontrolled, fast elevation relying mainly 
on Tr. Pt15, suffering of dystonia, represents an expected excep-
tion. Cluster 2 appears to have high similarity to Cluster 1 (as 
reported in Table 4). This result confirms that Cluster 1 and 
Cluster 2 gather the majority of patients that have better motor 
performance.

Cluster 3: Compensatory Strategy 2—(Pm)
Cluster 3 shows patients who strongly compensate by activating 
the Pm muscle. Their ROM is often not complete (with the excep-
tion of Patient 4) and the compensation may lead to shoulder 
adduction and intrarotation. Contrarily to previous clusters, the 
functional level presents high variability but, overall, is consist-
ently lower than the one of previous clusters, as shown by clinical 
scales. Prognostic indications coming from the belonging to this 
cluster might be worse if compared to Clusters 1 and 2; main 
elevator agonists in the sagittal plane play less relevant role than 
the pectoralis that is not an elevator. However, it should be noted 
that the composition of this cluster is not homogeneous in terms 
of clinical scales. Such finding is confirmed by kinematic param-
eters that range from very good ROM and smoothness (Pt14) 
to very low performances (Pt20). Cluster 3 is probably the less 
uniform one.

Cluster 4: Distal Prevalence—(Extensors)
Cluster 4 is a single-patient cluster having low proximal 
functionality, characterized by the prevalence of elbow/distal 
muscles in the elevation phase. The patient present very low 
RPS and FMA scores, and have very limited/null ROM in 
respect to rest/equilibrium poses. The patient belonging to this 
cluster shows prevalence of triceps activity and lacks muscular 
tone needed to perform the movement. He is likely to show 
reduced recovery; kinematics indexes indicate very low ROM 
and smoothness.
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Cluster 5: Distal Prevalence—(Flexors)
Cluster 5 is a two-patient cluster. Patients belonging to Cluster 5 
show low proximal functionality, characterized by the prevalence 
of elbow/distal muscles in the elevation phase. Such patient pre-
sent extremely low RPS and FMA scores and have very limited/
null ROM in respect to rest/equilibrium poses. Patients belonging 
to this cluster show prevalence of elbow flexors muscles (biceps 
and Br) activity and lacks muscular tone needed to perform the 
movement. They are likely to show poor prognostic outcomes, 
since kinematics shows extremely reduced ROM and low 
smoothness.

Do these cluster represent Poststroke 
Population?
It might be claimed that the sample of patients in this study 
splits into two main groups: patients with shoulder prevalence 
and elbow prevalence. Each group further splits depending on 
the compensatory strategy used for shoulder flexion (no pattern 
compensation; Tr compensation; pectoralis compensation) and 
elbow prevalence (flexors and extensors). This data clustering 
might be a valuable starting point for interpreting patients’ per-
formance and motor recovery.

Abnormal shoulder abduction and internal rotation during 
forward (sagittal plane) reaching movements performed by 
stroke survivors (McCrea et al., 2005) have been interpreted as 
compensatory responses to saturation of anterior deltoid activa-
tion, shifting antigravity support of the arm to other muscles 
(e.g., medial deltoid). The severity of motor impairment was 
correlated with the compensatory response (Roh et  al., 2013). 
Compensatory movements can occur via the recruitment of 
additional agonist muscles, thereby distributing the muscle force 
on other agonists (McCrea et al., 2005). Previous studies showed 
that in patients lacking the activity of the Pm muscle, have an 
increased activation of Tr as compensation (Bastlová et al., 2014). 
The findings of the present study seem to integrate this statement 
suggesting that patients lacking Da and/or Tr activity might 
partially compensate with pectoralis, as in Cluster 3, even if with 
lower motor outcome. Such features are in this study represented 
by healthy-like flexors (Cluster 1, which does not show pattern 
alterations in respect to physiological movement), and by two 
main shoulder compensatory strategies, assigned mainly to Tr 
(Cluster 2) and Pm (Cluster 3).

Even if very low in number, this study shows two clusters for 
patients who present mainly EMG activity on the elbow. Cluster 
4 is represented by a patient who shows mainly elbow extensor 
activity, while Cluster 5 groups prevalence on elbow flexion 
activity. While individuating such difference, both the groups 
are characterized by global shoulder weakness and poor motor 
outcomes in 3D reaching movement (null or very low shoulder 
flexion, low clinical scales scores).

As a global remark, and main result of the study, authors 
observed that muscular synergies profiling does not match 
precisely the evaluation provided by clinical scales, suggesting 
that the evaluation provided by standard tools should be inte-
grated for complete assessment and patients characterization. 

Consequently, clinical scales might be insufficient for correct and 
deep patients’ profiling and therapy customization.

The Trade-Off between clustering 
accuracy and synthesis
Authors observed that, starting from quite low-order clusters (5) 
algorithms for clustering extraction tend to create single-patient 
centroids (at least in the group of patients examined in this study). 
Order 7 clustering individuates three single-patient-based cen-
troids. Such findings denote the difficultness in grouping patients 
that are in general characterized by their own peculiar muscular 
patterns. Consequently, cluster analysis suggests that patients 
tend to show individual patterns. However, order 5 clustering 
was considered as a reasonable grouping order to provide deep 
enough characterization. It detects a centroid characterized by 
healthy-like activations, two major compensatory strategies, and 
two severely impaired groups.

Muscle synergies clustering as Part of 
Multidomain Predictors for Pretherapy 
characterization and Therapy selection
Few studies in the literature investigated the usefulness of 
a detailed knowledge of patients’ motor capabilities for a 
pretherapy detailed assessment. Such a feature would give the 
clinician the capability of selecting a sequence of interventions 
that proved in the past to be effective on that specific group of 
patients. Muscular synergies have relevant potential under this 
point of view. They are extracted directly from the stimulation 
given by the nerves to the muscles on the patient and are not 
the result of tests, clinical scales or kinematic outcome variables. 
Furthermore, synergies approach can be tuned by selecting, 
either (1) synthetic approaches, trying to reduce the number of 
clusters and classifications to synthetize groups and interven-
tions (especially useful on a limited sample, like in this study); 
(2) analytic approaches, detailing many more clusters for captur-
ing even minor motor differences (which, on a wide statistical 
sample, may be the preferable approach). Interestingly, the 
synthetic approach could be useful to identify macrodivisions, 
such as deciding if a patient is more suitable for a specific therapy 
approach in a restricted range of choices. On the contrary, the 
analytic approach might be chosen to specify the more suitable 
detail on refined customization.

To authors’ knowledge, no studies, either in acute or in chronic  
stage stroke patients, have explored the possibility to character-
ize the patient and the therapy merging two or more methods. 
Especially in the upper limb rehabilitation field, where less 
results are usually obtained in comparison to the lower limb, an 
integrated approach which combines more variables and differ-
ent levels of evaluation, from anatomical to functional, could 
be the solution for a real therapy customization according to 
the predicted outcomes. Muscle synergy characterization could 
play a valuable role in prediction of prognostic outcomes, also in 
association with previous techniques. In frontal reaching move-
ments, patients with prevalence of shoulder synergies, dominated 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


14

Scano et al. Muscle Synergies Clustering of Poststroke Patients

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2017 | Volume 5 | Article 62

by elevator muscles (such as Da, middle, and Tr), might be 
candidates for motor recovery. Prevalence of elbow activity is 
instead a bad prognostic index, indicating the impossibility to 
perform the gesture. Such patients would need antigravitary sup-
port to perform reaching movements. For the reasons explained, 
synergies could be integrated in a multifactorial assessment to 
better estimate the residual potential of the patient and conse-
quently suggest the best rehabilitation path available. Moreover, 
synergies extraction could be useful for a real-time EMG-based 
robot interaction for an improved compliance during a robotic 
rehabilitation protocol. Potential application includes pathology-
specific synergy characterization can be useful also for an efficient 
EMG-based robotic control: the real-time patient’s EMGs could 
be mapped in the synergy space, with real time estimation of 
the time-varying activation coefficients (Lunardini et al., 2016). 
Further investigations on muscle synergies measured before and 
after a training period could demonstrate if, beyond synergy 
modification which has been already established, there could 
also be a cluster modification or cluster transfer between patients, 
defining the validity of the approach for prediction of outcome 
variations.

To choose the most suitable approach of rehabilitation links to 
the concept of predicting the therapy outcome. In fact, selecting 
a therapy implicitly assumes that the clinician specifies motor 
functions to be trained and expected results.

A class of predictors includes imaging assessment like tran-
scranial magnetic stimulation or magnetic resonance imaging 
to verify the integrity of the corticospinal tract and brain (Puig 
et al., 2011). Both instruments can give more reliable informa-
tion about the general condition of the patient are far more 
expensive, time-consuming and have some contraindications. 
Muscle synergies demonstrate good reliability in describing the 
EMG pattern organization but they have never been exploited as 
outcome predictors.

The cited techniques mostly focus on acute stroke to 
understand the residual potential of recovery and consequently 
quickly address to specific rehabilitation paths. Less methods 
take into account the chronic phase of the pathology, despite 
some improvements can be achieved. Some experiments have 
been conducted with EEG signals that show differences on 
potential recovery of chronic subjects. These results can be 
exploited to understand who needs further exercise therapy 
(Trujillo et al., 2017). Also the corticospinal tract status seemed 
to correlate with motor skill even in the chronic stage (Schaechter  
et al., 2009).

cOnclUsiOn

In this article, the problem of patients’ characterization before 
therapy is addressed and discussed in the framework of muscular 
synergies. A clustering technique is proposed, along with clini-
cal profiling, for patients’ characterization, based on muscular 
coactivation patterns. Such procedure identified a trade-off 
solution of five clusters on a population sample of 22 poststroke 
subjects. Each cluster was characterized by specific compensatory 
strategies due to impairment. Interestingly, the muscular syner-
gies profiling does not match precisely the evaluation provided 

by clinical scales, suggesting that the evaluation provided by 
standard tools should be integrated for complete assessment and 
patients’ characterization. Further studies will investigate the 
generalizing power of the method and of the identified groups, 
in a pre–post rehabilitation trial.

Furthermore, muscle synergies extraction and clustering 
might be used also to describe critically the effects of a therapy. 
Results could be observed by groups as a whole, or observing 
single patients. The first result that can be observed is related 
to the number of clustered needed to “explain” patients’ motor 
behavior in respect to the beginning of the therapy. A change 
in the number of clusters might indicate convergence toward 
specific patterns (which may be promoted by the rehabilitation 
approach) or vice versa. Even dispersion inside clusters may be 
indicators of the goodness of the clustering and its evolution in 
time. Single patients may present transitions from a cluster region 
to another. Such a result can be of great interest in evaluating 
the modifications of patients’ motor behavior and to understand 
which patients may achieve higher benefits due to the therapy.

Further studies will test the method proposed in this article 
for the assessment of the effect of robotic therapy approach to 
upper-limb rehabilitation. Modifications of clusters and shift-
ing from one clusters to another will be considered as valuable 
insights for assessing the efficacy of the therapy.
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