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Fluoroscopic images suffer from multiple modes of image distortion. Therefore, 
the purpose of this study was to compare the effects of correction using a range 
of two-dimensional polynomials and a global approach. The primary measure of 
interest was the average error in the distances between four beads of an accuracy 
phantom, as measured using RSA. Secondary measures of interest were the root 
mean squared errors of the fit of the chosen polynomial to the grid of beads used for 
correction, and the errors in the corrected distances between the points of the grid 
in a second position. Based upon the two-dimensional measures, a polynomial of 
order three in the axis of correction and two in the perpendicular axis was preferred. 
However, based upon the RSA reconstruction, a polynomial of order three in the axis 
of correction and one in the perpendicular axis was preferred. The use of a calibra-
tion frame for these three-dimensional applications most likely tempers the effects 
of distortion. This study suggests that distortion correction should be validated for 
each of its applications with an independent “gold standard” phantom.

PACS numbers: 87.59.C, 87.57.cp, 87.57.nf
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I.	 Introduction

Fluoroscopic images, which are obtained using electron lenses, may suffer from all of the primary 
aberrations that affect images obtained through classical light optics,(1) and correction of these 
aberrations has been the subject of many previous investigations.(2-13) Distortion of the image 
is present in three distinct modes. “Pincushion” distortion is primarily caused by the process by 
which the electrons are focused onto a curved surface within the image intensifier, from which 
an image is then transferred to a flat plane image intensifier (II).(3,14) It may be corrected to some 
extent within the II; although, due to the proprietary nature of such technology, it is difficult to 
know by how much it is corrected.  S-shaped, spiral, or pocket handkerchief distortion occurs 
primarily as a result of Earth’s or other electronic devices’ homogeneous magnetic fields,(15) 
which are variable, and such distortion is dependent upon the orientation of the II. However, 
correction may be accomplished using shielding or a coil that creates a magnetic field in op-
position to that created by Earth or other objects.(3) Again, it is difficult to know the extent to 
which this has been corrected by the manufacturer. Localized distortions may also occur due 
to strong, inhomogeneous magnetic fields.
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Distortion correction is most often performed with the help of a grid of wires or beads that 
is temporarily placed in front of the II to quantify the amount of distortion present. Either a 
local or a global approach to postprocessing distortion correction may be taken or, as reported 
in one case, local and global approaches have been combined.(10) Local distortion correction 
algorithms use the coordinates of three or four grid points surrounding a small area of an image 
to correct for distortion within that area. This method is more susceptible to the influence of 
image noise or errors in digitization.(5,7,10) In addition, a local correction scheme will produce 
discontinuities between each “cell” in the image.(6,8) Global distortion correction algorithms 
use the coordinates of as many grid points as are visible in an image and calculate the distor-
tion vector at each point. These data are then used to determine an overall expression for the 
distortion across the entire image. This may be calculated according to Cartesian(2,5,6,7,10,12) or 
radial(3) coordinates of the image. The positions of the beads in the image are generally related 
to the known positions of the beads according to a polynomial; however, in one reported case, 
thin-plate splines were used.(10) Cartesian polynomial fits are preferred, as distortion is usually 
nonradial, due to the effects of s-shaped distortion.(6) In a direct comparison of global and local 
techniques, the global technique was found to be superior.(6)

Most distortion correction in the literature is performed with diagnostic imaging applications 
in mind; that is, quantitative coronary angiography, three-dimensional (3D) reconstructions, 
stereotaxic angiography, and radiotherapy treatment.(7) To determine the optimal polyno-
mial formulation to correct for distortion, a range of polynomial functions has been tested.  
The residuals and root mean squared (RMS) errors of the fit of the polynomial have been 
examined,(3,8,11) and corrections have been tested on the same grid in a different position, 
or on a second grid.(4,5,7,6,9,10,12) One study used a phantom in addition to other evaluation 
methods to quantify correction for digital tomosynthesis.(11) However, no studies have de-
termined the efficacy of distortion correction for radiostereometric analysis (RSA) using an  
independent phantom.

RSA is a technique by which the 3D positions of objects in space are reconstructed from 
information obtained by X-ray imaging. A biplane fluoroscopy-based RSA system(16) was used 
for this study. Several studies have examined the overall accuracy of RSA systems, and it appears 
that accuracies are steadily improving with time.(17-21) High accuracies mean smaller numbers 
of subjects are required in clinical studies, since significance may be reached more quickly.

The aim of this study was to compare the effects of a range of polynomials for distortion 
correction using a global approach by examining the fit of the chosen polynomial to the points 
on the distortion grid, the distances between the points of the grid in a second position, and 
the overall accuracy of the RSA reconstruction. It was hypothesized that the three outcome 
measures would lead to the same, most suitable, polynomial.

 
II.	 Materials and Methods

Two X-ray fluoroscopes with 9-inch image intensifiers (SIREMOBIL Compact-L mobile  
C-arms, Siemens Medical Solutions Canada Inc., Mississauga, Canada) were used in this study. 
These fluoroscopes are commonly used in concert to perform fluoroscopic RSA. The average 
pixel size of the IIs was quantified using a purpose-made grid of 0.2 mm holes placed at the 
center of the IIs, and was found to be 0.3833 mm. In order to perform the distortion correction, 
a grid of 131 2 mm diameter stainless steel beads, with a spacing of 15 mm × 15 mm, was cre-
ated on a 9.5 mm thick Delrin sheet. The positions of these beads on the grid were precisely 
determined with the use of a coordinate measuring machine (CMM, DEA Swift, Hexagon 
Metrology Services Ltd., London, UK). The grid was rigidly attached to a ring that fit into a 
ridge in the housing of the IIs. Following each RSA testing session, the grid was placed over 
each II and an image was obtained of the distorted positions of the grid beads.
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The positions of the beads in each fluoroscopic image were manually located using a mouse 
and custom-written software (MATLAB, The MathWorks Inc., Natick, USA), which applied a 
pixel-weighting algorithm similar to those described in the literature.(6,9,12) Distortion correction 
was performed using a global approach with a range of polynomial fits, from first degree in each 
direction (a second order polynomial) through to third degree in each direction (a sixth order 
polynomial). Polynomial coefficients were determined based on a least squares minimization. 
Two polynomials were defined for each correction, one for correction in the x-axis of the image 
(horizontal within the image) and one for correction in the y-axis of the image (vertical within 
the image). Polynomials were paired for correction such that the order in x for the x-axis was 
the same as the order in y for the y-axis and vice versa, as this yielded the best results. There-
fore, for example, if a polynomial of third order in x and first order in y was used to correct the 
x-coordinate, then a polynomial of first order in x and third order in y was used to correct the 
y-coordinate. The number of coefficients in the polynomial dictated the minimum number of 
beads that were required for a solution. For instance, a polynomial with a maximum degree of 
one in each of x and y has four coefficients. It has been demonstrated that for good distortion 
correction results, the number of beads in the distortion grid needs to be at least a factor of 
three more than the number of coefficients in the correction scheme.(5)  Therefore, in this simple 
case, the grid would need to have at least twelve beads. With 131 beads, the grid was more than 
sufficient to correct for our highest order polynomial, which had 16 coefficients.

To evaluate the correction of the polynomials in isolation, the distortion grid was oriented 
on each II as it would be done following an RSA session. The polynomial coefficients and the 
RMS errors of the fits were determined for each polynomial. The grid was then replaced on 
the II in a second location, such that the beads were translated to an intermediate, staggered 
location between the original positions. Distances between the beads were calculated and com-
pared to those measured with the CMM, following correction with the various polynomials. 
This was done with each of the two IIs in six different positions and orientations, covering the 
full range of their motion.

A previously described fluoroscopy-based RSA system was used.(16) Images from the 
fluoroscopy units were 720 pixels by 540 pixels. Image processing and RSA reconstruction 
were performed with software custom-written in MATLAB.(16) A custom-designed calibration 
frame was employed.(22) The two fluoroscopes were positioned approximately orthogonal to 
one another. An accuracy phantom consisting of four 1 mm stainless steel beads mounted on 
carbon fiber rods fixed securely to a wooden base(16) was placed in the capture volume. The 
distances between each pair of beads ranged from 25.11 mm to 41.95 mm, as determined using a 
coordinate measuring machine (CMM, Model MDX-20, Roland DG Corporation, Hamamatsu-
shi, Japan; scanning pitch: 0.05 mm in x and y and 0.025 mm in z). Forty pairs of images were 
obtained without moving the phantom. This was followed by 16 pairs of images where the 
phantom was reoriented in position and rotated within the field of view in a randomly selected 
manner between each set. These poses ranged across the full area of both of the IIs. The X-ray 
tube voltage and current were set automatically by the fluoroscopy units and were 51 kVp and 
0.4 mA for the calibration frame and 49 kVp and 0.3 mA for the phantoms.

The primary measures of interest were the distances between the four beads of the phantom 
as measured using RSA, with image distortion correction provided by the range of polynomial 
fits. These distances were measured and compared with the distances obtained using the CMM. 
An overall error for the RSA reconstruction of each position was calculated by averaging the 
errors in all the distances. Accuracy was defined as the average error in the reconstruction of 
the phantom over the 16 trials with motion between them. Precision was defined as the standard 
deviation of the error in the reconstruction of the phantom over the 40 static trials. Secondary 
measures of interest were the RMS error of the fit of the chosen polynomial to the distortion 
grid points and the errors in the distortion corrected distances between the points when the 
grid was replaced on the II.
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Statistical analysis of the RMS errors of the fits of the various polynomials, the distances 
between the beads, and the accuracy of the RSA reconstructions were performed using Friedman 
Repeated Measures Analyses of Variance on Ranks followed by post hoc Student-Newman-
Keuls multiple comparisons. These were also used to compare the results between the two 
fluoroscopes. Levene’s test was used to analyze the precision data to determine any differences 
in the standard deviations of the RSA reconstructions. Statistically significant differences were 
defined as p < 0.05.

 
III.	Res ults 

No significant differences were found between the two fluoroscopes in the RMS errors as a 
function of II orientation and polynomial degree. Therefore, the results for the two fluoroscopes 
were combined to compare the effects of the various polynomial corrections. RMS errors ranged 
from 58 ± 15 μm in the x-direction and 63 ± 18 μm in the y-direction, for a fifth order polyno-
mial of third order in the axis of correction and second order in the perpendicular axis (i.e., for 
correction of the x-coordinates of points in the image, the polynomial would be of third order 
in x and of second order in y), to 679 ± 321 μm in the x-direction and 410 ± 130 μm in the  
y-direction, for a third order polynomial in each direction (Fig. 1). Significant differences were 
found between distortion correction using a polynomial of order three in the axis of correction 
and two in the perpendicular axis and all other orders of correction tested (p < 0.05).

Similar results were obtained when the distances between the beads of the grid in a second, 
staggered position were examined (Fig. 2). Errors in uncorrected points were 315 ± 43 μm. 
Average errors in corrected pointed ranged from 51 ± 3 μm, for a fifth order polynomial of third 
order in the axis of correction and second order in the perpendicular axis, to 181 ± 21 μm, for 
a third order polynomial in each direction. The use of a polynomial of order three in the axis 
of correction and two in the perpendicular axis was found to result in significantly lower errors 
than all other orders of correction tested (p < 0.05).

The precisions of the reconstructions with each set of polynomials are shown in Fig. 3. They 
ranged from 14.6 μm to 24.9 μm, with the former using a polynomial of order three in the axis 
of correction and one in the perpendicular axis and the latter using a first order polynomial in 
each direction. There were no differences in the precisions of the reconstructions between any 
of the polynomial corrections.

Average accuracies of the RSA reconstructions ranged from 150 ± 69 μm, for a polynomial 
of third order in the axis of correction and first order in the perpendicular axis, to 457 ± 289 μm 
for a third order polynomial in each direction (Fig. 4). RSA reconstruction of the uncorrected 
points resulted in an error of 193 ± 68 μm. The use of a polynomial of order three in the axis of 
correction and one in the perpendicular axis was found to have significantly lower errors than 
all other orders of correction tested (p < 0.05). First order polynomials in the axis of correction 
always resulted in worse errors than the uncorrected points (p < 0.05), regardless of the order 
of correction in the perpendicular axis. Third order polynomials in each axis also resulted in 
worse errors (p < 0.05).
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Fig. 1.  RMS errors of the various polynomial models that were employed in (A) the x-direction and (B) the y-direction 
(mean ± 1 standard deviation). All corrections were found to be different from 3-2 (p < 0.05). Lighter bars indicate higher 
order polynomial models.

Fig. 2.  Errors in the distances between adjacent beads (mean (± 1 SD) of the distances measured on a second staggered 
image of the same grid and plotted as a function of the polynomial correction). All corrections were found to be different 
from 3-2 (p < 0.05). Lighter bars indicate higher order polynomial models.
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IV.	D ISCUSSION

Contrary to our hypothesis, the polynomial with the smallest RMS error in solving for the 
polynomial coefficients and the smallest errors in the distances between points on the translated 
distortion grid did not have the lowest average RSA reconstruction error. This is similar to the 
outcome of the only other study to employ a 3D phantom to quantify the results of distortion 
correction, where it was found that a fifth order correction resulted in the best polynomial  
fit.(11) However, as the images were being used for digital tomosynthesis, the variability of 
the correction coefficients with the fifth order was a concern. Therefore, a fourth order was 
preferred. In this investigation, the variability of the RMS error of the fit of the sixth order 
polynomial to the distortion grid points would be a concern, as indicated by the high standard 
deviations in Fig. 1 (bar 3-3).

It had been found that distortion correction requirements may vary between IIs, although 
this was tested for four different models of two different makes, and not various IIs of the same 

Fig. 3.  Precision of the reconstruction (defined as the standard deviation of the error in the reconstruction of the phantom 
over the 40 static trials). Lighter bars indicate higher order polynomial models.

Fig. 4.  Accuracy of the reconstruction (mean (± 1 SD) of the error in the reconstruction of the phantom over the 16 trials 
with motion between them). All corrections found to be different from 3-1 (p < 0.05). Lighter bars indicate higher order 
polynomial models.
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make and model.(3,6) Using the two IIs of our system it was found that, as would be expected, 
distortion correction requirements did not differ.

In this study, the most appropriate choice of polynomial for distortion correction was not 
found to be dependent upon II orientation. Nevertheless, it was found to vary depending upon 
the intended use of the images. Although most applications of IIs are two-dimensional, it is 
increasingly common to use IIs for 3D analyses. The use of a calibration frame for these 3D 
applications most likely tempers the effects of distortion — leading to accuracies in the RSA 
reconstruction using uncorrected points that were far better than anticipated (as in Fig. 4). The 
distances between the beads in two dimensions indicate that distortion correction plays a much 
larger role in two-dimensional measurements. In addition, as anticipated, the precision of the 
measurements was not affected by distortion correction.

The advantages and disadvantages of the various methods of distortion correction have been 
examined in the literature, and it is generally agreed that the main disadvantage of implement-
ing a global approach is that any extreme local distortions cannot be corrected;(5) however, 
none are to be expected. The advantages are the decreased susceptibility to image noise and 
the ability to extrapolate the correction beyond the boundaries of the calibration points.(5) It 
has been shown that higher order polynomial corrections tend to result in higher RMS errors, 
as any noise that is present is modeled in addition to the distortion.(6,10) This may explain why 
errors from the third order polynomial were so high. Nevertheless, the chosen polynomial must 
have a sufficient degree to model the distortion; therefore, employing a first order polynomial 
in the axis of correction was insufficient, as demonstrated in Fig. 4.

This study had the same potential sources of error as those that are present when working 
with any fluoroscopy-based RSA system. These potential sources include image distortion 
and bead blurring due to the stochastic nature of X-ray detection. Image distortion, being the 
subject of this study, has clearly been addressed above. Bead blurring is addressed through 
the pixel-weighting bead location algorithm. In addition, the RSA algorithm has several  
built-in methods of decreasing the effects of other system noise, including a least squares method  
of reconstruction.(16)

 
V.	C onclusions

The findings of this study suggest that while significant efforts have been made to generalize 
distortion correction for IIs, correction should be validated with an independent “gold standard” 
phantom for each particular application for which it is to be used, as one correction algorithm 
may not suffice for all applications.
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