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Using Artificial Intelligence and 
Novel Polynomials to Predict 
Subjective Refraction
Radhika Rampat1,2, Guillaume Debellemanière1,2, Jacques Malet1 & Damien Gatinel1 ✉

This work aimed to use artificial intelligence to predict subjective refraction from wavefront 
aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction 
was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms 
were trained to predict each power vector using data from 3729 eyes. The model was validated 
by predicting subjective refraction power vectors of 350 other eyes, unknown to the model. The 
machine learning models were significantly better than the paraxial matching method for producing 
a spectacle correction, resulting in a mean absolute error of 0.301 ± 0.252 Diopters (D) for the M 
vector, 0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector. Our results suggest 
that subjective refraction can be accurately and precisely predicted from novel polynomial wavefront 
data using machine learning algorithms. We anticipate that the combination of machine learning and 
aberrometry based on this novel wavefront decomposition basis will aid the development of refined 
algorithms which could become a new gold standard to predict refraction objectively.

Globally it is estimated that 153 million people aged 5 or above are visually impaired due to uncorrected refractive 
errors1.The ability to automatically refract a patient and provide a spectacle prescription, equivalent to the time 
consuming current gold standard of subjective refraction, is an elusive goal that has intrigued many ophthalmic 
clinicians and researchers2–4.

One such automated and objective method is optical wavefront sensing using aberrometry which allows 
mathematical reconstruction and analysis of lower and higher order monochromatic aberrations of the eye. This 
has led many to believe that this objective method had the potential to be the new standard for optimizing correc-
tion of refractive errors by converting aberrometry data to accurate sphero-cylindrical refractions5–7.

Though several small sample studies showed promising results in terms of accuracy and precision of objective 
refraction from several methods related to wavefront analysis to date5–13 no study has found a validated method 
that can be used to prescribe a spectacle correction. It was found that results from the aberrometer, autorefractor 
and subjective refraction, though comparable with each other, were not accurate enough to prescribe spectacles 
directly from either instruments14. A recent publication found that a visual image quality metric could predict 
subjective refraction in myopic eyes but not habitually undercorrected hyperopic eyes, though the data set was 
again small15. Variability in the gold standard subjective refraction measurements themselves were also thought 
to be a source of poor precision7.

The ocular wavefront error is most commonly described by the Zernike polynomials16. To satisfy orthog-
onality constraints with low order modes, some higher order Zernike polynomials contain low order terms in 
their analytical expression leading to lack of accuracy when predicting the sphero-cylindrical refraction17. It is 
known that conventional therapies such as spectacles or contact lenses correct just the lower-order aberrations 
but the presence of higher-order aberrations influences the prescription itself12. An important finding by Cheng 
et al.6 showed that subjective judgment of best focus does not minimize RMS wavefront error (Zernike defocus 
= 0), nor create paraxial focus (Seidel defocus = 0), but makes the retina conjugate to a plane between these two. 
The levels of spherical aberration (Z4°) and secondary astigmatism (Z4

±2) influenced the levels of defocus and 
primary astigmatism that produced the best visual performance. These objective metrics were tested based on an 
assumption that the Zernike polynomial decomposition was producing a clear distinction between the low and 
high order components of the wavefront error. This assumption could explain the poor correlation between sub-
jective and objective refraction, especially when it came to large amounts of higher order aberration5–7,9,11,12,18,19.
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A new series of polynomials, labeled LD/HD (Low Degree/ High Degree), have been proposed to provide a 
more mathematically relevant separation of the higher and lower modes20. In this decomposition, the normal-
ized higher order modes are devoid of low order terms and mutually orthogonal within but not with lower order 
aberrations. With this approach, the low order wavefront component is equal to the paraxial curvature matching 
of the wavefront map.

Machine learning is already in use in Ophthalmology for image analysis in medical retina21–23, and glaucoma 
(Visual Fields and Disc Photos)24,25 as well as recent developments for use in diagnoses including retinopathy of 
prematurity26. It is also used in regression tasks, notably in IOL calculations27. Deep learning has been applied 
to predict refractive error from fundus images and other image analysis techniques also28,29. Attempts to predict 
subjective refraction from Zernike polynomials have also been tried using a multilayer perceptron with two 
hidden layers30.

Our aim was to build and evaluate a set of predictive machine learning models to accurately and precisely 
objectively refract a patient using wavefront aberrometry with LD/HD polynomial decomposition, and to evalu-
ate the relative importance of each polynomial in the prediction process for each vector.

Results
Group comparability.  Patients demographics are presented in Table 1. Training set and test set were compa-
rable in terms of patient ages, sex-ratio, side repartition, mean refractive spherical equivalent and mean refractive 
cylinder.

Prediction performance of the different methods.  The performance of prediction methods are pre-
sented in Table 2. Figure 1 illustrates the prediction performances of the different approaches for the M vector and 
Fig. 2 illustrates those for the J0 and J45 vectors. Statistical testing for differences between the various prediction 
methods is presented in Table 3. The XGBoost models using all the polynomials, resulted in a Mean Absolute 
Error of 0.30 ± 0.25 Diopters (D) for the M vector, 0.12 ± 0.09 D for the J0 vector and 0.09 ± 0.08 D for the J45 
vector, whilst the Paraxial matching method resulted in a Mean Absolute Error of 0.40 ± 0.35 D for the M vector, 
0.17 ± 0.14 D for the J0 vector and 0.14 ± 0.1 D for the J45 vector. The XGBoost models using only the low-degree 
polynomials resulted in a Mean Absolute Error of 0.35 ± 0.29 D for the M vector, 0.16 ± 0.14 D for the J0 vector 
and 0.12 ± 0.10 D for the J45 vector. Bland-Altman plots showed a good agreement between subjective refraction 
and the predictions obtained with the machine learning models, with no systematic error depending on degree of 
refractive error (Fig. 4). Paired t-test were not significant.

Training set Test set p value

n eyes 3729 350 —

n patients 1809 193 —

Female % 57.1% 58.9% 0.71

Right Eye % 49.7% 49.4% 1.00

Mean SD Min. Max. Mean SD Min. Max.

Age 36.03 11.24 18.10 72.40 36.35 11.48 20.00 66.00 0.71

Refractive SE −1.89 2.54 −6.75 6.13 −1.96 2.58 −6.63 4.88 1.00

Refractive Cyl −0.81 0.90 −6.00 0.00 −0.87 0.94 −5.25 0.00 1.00

Table 1.  Patients demographics in the training set and test set. T-test was performed to test for group 
comparability. Abbreviations used: Spherical Equivalent (SE), Cylinder (Cyl) and number (n). SE and Cyl are in 
Diopters (D).

Prediction Method

Absolute Prediction Error Prediction Error (Accuracy)

PrecisionMean SD Min. Max. Mean SD Min. Max.

PM -M 0.40 0.35 0.00 1.66 0.06 0.53 −1.66 1.66 1.06

XGB (LO only) -M 0.35 0.29 0.00 1.50 -0.02 0.46 −1.43 1.50 0.91

XGB (LO/HO) -M 0.30 0.25 0.00 1.41 0.01 0.39 −1.14 1.41 0.78

PM - J0 0.17 0.14 0.00 0.69 -0.05 0.22 −0.69 0.66 0.44

XGB (LO only) - J0 0.16 0.14 0.00 0.74 0.00 0.22 −0.74 0.71 0.43

XGB (LO/HO)- J0 0.12 0.09 0.00 0.44 -0.01 0.15 −0.44 0.43 0.30

PM - J45 0.14 0.10 0.00 0.55 0.02 0.17 −0.55 0.45 0.34

XGB (LO only)- J45 0.12 0.10 0.00 0.61 0.01 0.15 −0.61 0.59 0.31

XGB (LO/HO)-J45 0.09 0.08 0.00 0.49 0.00 0.13 −0.49 0.43 0.25

Table 2.  Absolute Prediction Error, Prediction Error and Precision of the three methods were evaluated 
(Paraxial Matching, XGBoost using Low order polynomials only, XGBoost using all available polynomials) for 
each vector M, J0 and J45. P values for the comparison between methods are presented in Table 3. Abbreviations 
used: Low Order (LO), Low and High Order (LO/HO) and Paraxial Matching (PM).
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Pairwise prediction methods comparison.  The XGBoost models using all the polynomials performed 
statistically better than Paraxial matching for every vector and every metric, except for accuracy for the J45 vector 
prediction. They also performed better than the XGBoost models trained with low-degree polynomials only, 
although the difference was not significant for precision in predicting the M vector and accuracy in predicting 
the J0 and J45 vectors.

Feature importance.  SHAP value analysis for the three XGBoost models trained with the full set of poly-
nomials is presented in Fig. 4. It showed that G2

0(defocus) was by far the most influential feature to predict the M 
vector, with G4° (primary spherical aberration) being the second most important feature. The bottom two graphs 
demonstrate that G2

2 (Vertical astigmatism) and G4
−2 (Oblique secondary astigmatism) were the most important 

features to predict the J0 vector, while G2
−2 (Oblique astigmatism) and G4

2 (Vertical secondary astigmatism) were 
the most important features to predict the J45 vector.

Figure 1.  Probability density function (Gaussian kernel density estimate) for the Spherical Prediction Error, for 
the 3 methods studied. We compare paraxial fitting with low degree LD/HD polynomials (Red), with XGBoost 
model using low degree only (Green) and XGBoost model with all aberrations (Blue). The density of accurate 
predictions is more important with the latter.

Figure 2.  Scatter plot showing the J0 vector prediction error on the X-axis and J45 vector prediction error on 
the Y-axis with corresponding 95% confidence ellipses for the 3 methods studied. We compare paraxial fitting 
with low degree LD/HD polynomials (Red), with XGBoost model using low degree only (Green) and XGBoost 
model with all aberrations (Blue). The black cross locates the (0,0) coordinate. Precision is better using the last 
method.
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Discussion
The machine learning approach using LD/HD polynomials was more effective than the paraxial matching 
method for predicting the results of conventional, sphero-cylindrical refraction from wavefront aberrations used 
by Thibos et al. previously7. Interestingly, the XGBoost models trained using low-order aberrations only proved 
more accurate than paraxial matching. This could suggest that those low-order polynomials interact, in some 
circumstances, in a more complex way than previously thought. The best precision and accuracy were obtained 
when all the novel polynomials coefficients were used as predictors, demonstrating the significant influence of the 
higher order aberrations on the spectacle correction.

Gradient boosting creates new models that predict the residual errors of prior models during the training pro-
cess. The models are used together to predict the target value. XGBoost is an implementation of gradient boosted 
trees focused on performance and computer efficiency. It can perform both regression and classification tasks. It 
was chosen because of its recognized performances and its resistance to overfitting31.

Feature importance G2° (defocus) was unsurprisingly the most influential feature to predict the M vector, with 
G4° (primary spherical aberration) being the second most important feature. One interesting finding was that 
G4

−2 (Oblique secondary astigmatism) was the second most important feature to predict J0, and G4
2 (Vertical 

secondary astigmatism) the second most important feature to predict J45, while the inverse would be more intui-
tive. This demonstrates the interest in the machine learning approach, that allows us to discover new patterns and 
relationships between predictors by disregarding previous assumptions.

Our results confirm the prevalence of 4th order aberrations within the higher order coefficients influencing 
the sphero-cylindrical refraction as it has been previously shown6. The LD/HD modes being devoid of defocus 
terms (radial degree 2), they unambiguously confirm the influence of the radial degree 4 of the wavefront error, 
on sphero-cylindrical refraction.

The predictive influence of the variables used in the model does not explain their exact role, and that is a 
weakness of such machine learning algorithms, as interpretability and model comprehension are limited by the 
big number of decision trees, their complexity and depth.

Of note, we did not test our method for repeatability. However, it relies solely on the OPD-Scan III output, and 
this device has already shown very good repeatability32–35.

Our study had some unavoidable limitations, among which is accommodation. We created a study design 
using undilated refraction, mirroring the real life clinical environment where spectacle correction is provided in 
adults, as well as allowing preservation of data volume. We did not test children or elderly patients so cannot gen-
eralize to these groups. By virtue of the technique, it is not possible to objectively refract patients with strabismus, 
corneal scarring, cataracts or vitreous opacity that would preclude clear wavefront analysis.

Precision may be masked by the imprecision of the gold standard of subjective refraction. Of note the exam-
iner was aware of the autorefraction. We hope our study results will enable future development of machine 
learning algorithms from the LD/HD polynomials and objective refraction techniques, to prescribe glasses 
efficiently, not only to adults but also to children and vulnerable adults without need for their input or pro-
longed cooperation.

Methods
Patients and dataset constitution.  This study was approved by the Institutional Review Board at 
Rothschild foundation and followed the tenets of the Declaration of Helsinki. Informed consent was obtained 
from all participants. A total of 2890 electronic medical records of patients (6397 eyes) evaluated for refractive 
surgery at the Laser Vision Institute Noémie de Rothschild (Foundation Adolphe de Rothschild Hospital, Paris) 
were retrieved and consenting patients data was analyzed. We excluded patients with strabismus and any other 
ocular abnormalities except ametropia. After data cleaning, eyes with subjective refraction and a valid wavefront 
aberrometry examination were randomly split into a 350 eyes test set and a training set, with no cross over of 

Prediction Method
Mean Absolute 
Error

Mean Error 
(Accuracy) Precision

M vector prediction

XGB L & H/PM p < 0.0001 p < 0.001 p < 0.0001

XGB L/PM p < 0.0001 p < 0.0001 p = 0.06 (NS)

XGB L/XGB L & H p < 0.0001 p < 0.001 p = 0.02 (NS)

J0 vector prediction

XGB L & H/PM p < 0.0001 p < 0.0001 p < 0.0001

XGB L/PM p = 0.05 (NS) p < 0.0001 p = 0.82 (NS)

XGB L/XGB L & H p < 0.0001 p = 0.03 (NS) p < 0.0001

J45 vector prediction

XGB L & H/PM p < 0.0001 p = 0.03 (NS) p < 0.0001

XGB L/PM p < 0.0001 p = 0.03 (NS) p = 0.003

XGB L/XGB L & H p < 0.0001 p = 0.48 (NS) p = 0.003

Table 3.  Pairwise statistical comparison of the different prediction methods. Mean Absolute Errors and Mean 
Errors were compared using a Wilcoxon signed-rank test and Precision differences were compared using the 
Levene test for equal variances. Abbreviations used: Low (L), High (H), Paraxial Matching (PM).
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same patient data. A manual review of medical records of eyes in the test set was checked to ensure the quality of 
data, leaving 3729 eyes for the training set.

Aberrometry.  Wavefront analysis was obtained using the OPD-Scan III (Nidek, Gamagori, Japan). The 
aberrometer was specially configured to run using beta-software incorporating the new series of LD/HD 

Figure 3.  SHAP feature importance for each model of the XGBoost using the all aberrations approach. The 
top graph (a) displays the most important features for M prediction: G2° (defocus) and G4° (primary spherical 
aberration) were the most influential. The bottom two (b,c) graphs demonstrate that G2

2 (Vertical astigmatism) 
and G4

−2 (Oblique secondary astigmatism) were the most important features to predict the J0 vector, while G2
−2 

(Oblique astigmatism) and G4
2 (Vertical secondary astigmatism) were the most important features to predict 

the J45 vector.
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polynomials, noted Gn
m using the same double index scheme of the Zernike polynomials. The wavefronts 

were decomposed up to the 6th order. We chose to stop our polynomials analysis at the 6th order. This 
cut-off is beyond the number of polynomials that was determined by the members of the Vision Science 
and its Applications Standards task force (VSIA) to be necessary to describe the HOA of the human eye with 
sufficient accuracy in 200036. It applied to the paraxial matching analysis as well as the machine learning 
approach. The first three polynomials (Piston, Tilt, Tip) were removed from the features because of their 
low relevance in this work. Defocus, Vertical Astigmatism and Oblique Astigmatism constituted the Low 
order polynomial group, and all the others constituted the High order polynomials group. A 4 mm pupil 
disk diameter was chosen to obtain the coefficients and any pupil less than 4 mm during the acquisition of 
the wavefront with the OPD-Scan III, was an exclusion criterion. A 4 mm pupil diameter analysis cut-off 
was used because it is close to the mean physiological photopic pupil diameter in different studies37–39. Our 
results may not reflect the results that could be found using very large or very small pupils.

Subjective refraction.  Corresponding non-cycloplegic subjective refractions conducted on the same day by 
an experienced optometrist were analyzed. The maximum plus rule was used to the nearest 0.25 D to minimize 
accommodation and maximize the depth of focus7.

Power vector analysis.  Each refraction in Sphere S, Cylinder C, and axis A format was transformed into 
3D dioptric vector space (M, J0, J45) where the three components are orthogonal. Refraction data sets were 
vectorized using standard power vector analysis with the components M, J0 and J4540 using Eqs. (1), (2) and (3).

S CM
2 (1)= +

α= − ×








CJ0
2

cos 2
(2)

CJ45
2

sin 2
(3)

α= − ×








Machine learning methodology.  Three machine learning models were separately trained to predict each 
vector component from the new series of polynomials. We used a Gradient Boosted Trees algorithm (XGBoost)41. 
Parameter tuning was performed using 5-folds randomized search cross-validation. Mean squared error 

Figure 4.  Bland-Altman diagrams showing the agreement between the predictions made using the XGBoost 
model trained with all available aberrations, and subjective refraction, for M (a), J0 (b) and J45 (c). No statistical 
difference was found using one sample t-test, for each vector prediction.
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regression loss was chosen as the evaluation metric. We used Python 3.6.8 with the following libraries: Jupyter 
4.4.0. Pandas 0.23.4, Scikit-learn 0.20.2, Matplotlib 3.0.2, Seaborn 0.9.0, XGBoost 0.81.

Feature importance analysis.  SHAP (SHapley Additive exPlanations) values were calculated for each 
model in order to determine the most influential polynomials (Fig. 3).

SHAP value is a recently described tool that aims to increase machine learning models interpretability42. It 
allows us to understand how a specific feature negatively or positively participates in the target variable prediction 
by computing the contribution of each feature towards the prediction. This allows better estimation of the impor-
tance of each feature in the prediction process. A random variable was introduced as a predictive feature during 
the training in order to help differentiate useful features from the others.

Model evaluation and statistical analysis.  Performances of the machine learning models were evaluated 
on the test set never seen by the model nor used for the hyperparameters choice, to avoid overfitting. For each 
machine learning approach (using low order polynomials only, and using every polynomial), the three vectors of 
the refraction were predicted one by one using the three machine learning models. Paraxial matching predictions 
were calculated using Eqs. (4–6)

G
r

M 4 3
(4)

2
0

2=
−

=
−G

r
J0 2 6

(5)
2
2

2

=
− −G

r
J45 2 6

(6)
2

2

2

where Gn
m is the nth order LD/HD coefficient of meridional frequency m, and r is the pupillary radius. It is impor-

tant to note that as high order LD/HD coefficients are devoid of low-order aberrations, this calculation is equiva-
lent to paraxial curvature matching calculated by computing the curvature at the origin of the Zernike expansion 
of the Seidel formulae for defocus and astigmatism using Zernike polynomials as described by Thibos et al.7.

Mean absolute errors were calculated for each prediction method. Accuracy of the predictions for each vector 
was defined as the mean value of the prediction error. Precision was defined as two times the standard deviation 
(SD) of the prediction error7. Each prediction method was evaluated against each other. Mean absolute prediction 
errors and mean prediction errors were evaluated using the Wilcoxon-signed rank test with Bonferroni correc-
tion. Differences in precision were evaluated using the Levene test with Bonferroni correction. We used a similar 
confidence ellipse to Thibos et al. to graphically report our results7,43. Bland-Altman plots and paired t-test were 
conducted to study the agreement between subjective refraction and the machine learning models predictions. A 
p-value less than 0.05 was considered significant.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding author 
on reasonable request.
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