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Abstract
1. Herbivores consider the variation of forage qualities (nutritional content and di-

gestibility) as well as quantities (biomass) when foraging. Such selection patterns 
may change based on the scale of foraging, particularly in the case of ungulates 
that forage at many scales.

2. To test selection for quality and quantity in free-ranging herbivores across scales, 
however, we must first develop landscape-wide quantitative estimates of both 
forage quantity and quality. Stoichiometric distribution models (StDMs) bring op-
portunity to address this because they predict the elemental measures and stoi-
chiometry of resources at landscape extents.

3. Here, we use StDMs to predict elemental measures of understory white birch 
quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We 
analyzed global positioning system (GPS) collared moose (n = 14) selection for 
forage quantity and quality at the landscape, home range, and patch extents using 
both individual and pooled resource selection analyses. We predicted that as the 
scale of resource selection decreased from the landscape to the patch, selection 
for white birch quantity would decrease and selection for quality would increase.

4. Counter to our prediction, pooled-models showed selection for our estimates 
of quantity and quality to be neutral with low explanatory power and no scalar 
trends. At the individual-level, however, we found evidence for quality and quan-
tity trade-offs, most notably at the home-range scale where resource selection 
models explain the largest amount of variation in selection. Furthermore, individu-
als did not follow the same trade-off tactic, with some preferring forage quantity 
over quality and vice versa.

5. Such individual trade-offs show that moose may be flexible in attaining a limiting 
nutrient. Our findings suggest that herbivores may respond to forage elemental 
compositions and quantities, giving tools like StDMs merit toward animal ecology 
applications. The integration of StDMs and animal movement data represents a 
promising avenue for progress in the field of zoogeochemistry.
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1  | INTRODUC TION

Finite energy and material within ecosystems forces constraints 
upon all trophic levels. Heterotrophs are left to optimize their en-
ergy intake with strategic foraging and evolved digestive tracts 
(Pyke et al., 1977; Werner & Hall, 1974). While producers consist 
mostly of carbon-based compounds, consumers consist of pro-
portionally more nitrogenous and phosphorous compounds. Thus, 
primary consumers must eat relatively large amounts of producer 
matter to meet their body composition requirements (Barboza 
et al., 2009; Fagan et al., 2002; Sterner & Elser, 2002). Additionally, 
access to plant matter of higher digestibility and assimilation effi-
ciency can contribute to higher animal growth rates, survival, and 
reproductive outputs (McArt et al., 2009; Parker et al., 2009; Wam 
et al., 2018). As a result, herbivores have evolved strategies to for-
age with consideration to plant qualities (i.e., digestive efficiency) 
and quantities (i.e., biomass or abundance; Parker et al., 2009). 
Determining plant quality requires tissue composition analysis, 
limiting our ability to measure and map plant quality across land-
scapes. Large herbivores forage at multiple spatial scales, from 
the landscape to the bite-level (Johnson, 1980; Senft et al., 1987), 
and likely respond differently to plant quantities and/or qualities 
across scales, collectively influencing their ecosystem effects 
(Estes et al., 2011; Schmitz et al., 2018).

Herbivore strategy for food acquisition may depend on the scale 
of foraging (Cruz-rivera & Hay, 2000; Hebblewhite et al., 2008; Van 
der Wal et al., 2000; Wilmshurst et al., 1999). In terrestrial land-
scapes, plant biomasses and nutritional contents are influenced by 
environmental factors such as habitat type (Sardans et al., 2011), 
soil nutrients (Fan et al., 2015; Sardans et al., 2011), elevation (Yang 
et al., 2015), or slope (Leroux et al., 2017), creating a heterogeneous 
distribution of plant quantities and qualities. When plant quantity 
and quality do not positively correlate across a landscape, herbivores 
should adopt one of multiple strategies, such as balancing selection 
between quantity and quality or selecting one over the other. An 
individual's tactic for quantity and quality selection is likely to de-
pend on scale because information available for decision-making 
increases in resolution with reducing scales of foraging (Rettie & 
Messier, 2000; Senft et al., 1987). The scalar hypothesis predicts 
that coarser factors that affecting forage quantities, like climate, 
water bodies, and plant biomass, influence larger scaled foraging 
decisions, for example, home-range selection (Bailey et al., 1996; 
Wilmshurst et al., 1999). Finer factors that influence smaller scaled 
foraging decisions, for example, patch use or bite choice, are often 
quality-related indicators: plant morphology, palatability, nutri-
ent content, and secondary compounds (Bailey et al., 1996; Senft 
et al., 1987; Verheyden-Tixier et al., 2008; Wilmshurst et al., 1999). 
Thus, herbivores are likely to show selection for plant quantities at 

the larger scales of foraging and for plant quality at smaller scales 
(van Beest et al., 2010).

Testing selection for plant qualities across multiple scales of for-
aging remains challenging in many systems because measuring plant 
quality at larger spatial extents may not always be feasible. Plant 
biomass has been quantified across larger spatial extents in various 
ecosystems (Foroughbakhch et al., 2005; Fortin et al., 2003; Lone 
et al., 2014). Meanwhile, Weisberg and Bugmann (2003) highlight 
the need for an “accurate database of the spatial heterogeneity of 
available forage of varying quality, over the same fine scales as are 
modeled” (p. 4) as a way to measure quality in the context of foraging 
strategies for ungulates. However, due to landscape data limitations, 
studies remotely measuring ungulate responses to spatial distribu-
tions of forage usually default to habitat type or dominant plant spe-
cies classifications as estimates of forage quality and subsequently 
disregard intraspecific variation in quality (for example van Beest 
et al., 2010). While using browse species is not an incorrect way to 
capture quality variation, it limits which foraging scales a study can 
investigate, findings may not be comparable across systems, and 
model responses to categorical variables cannot be directly com-
pared to those of continuous variables.

Plant elemental compositions offer the opportunity to describe 
interspecific and intraspecific variation of forage quality in a contin-
uous manner. Plant nitrogen content is a common elemental measure 
to correlate with forage quality because nitrogen is a limited nutrient 
in terrestrial ecosystems, required for protein synthesis, and needed 
in higher proportion by animals relative to plants (Fagan et al., 2002; 
Sterner & Elser, 2002). Elements are a base unit for all living organ-
isms, and heterotrophs rearrange element components they consume 
into compounds they require. Thus, the direct nutritional driver be-
hind foraging may best observed by measuring selection for nitrogen 
content rather than composite currencies or nutritional compounds 
(Felton et al., 2018). However, studies which measure herbivore re-
sponses to plant nitrogen contents often do so with small-bodied 
herbivores (Schatz & McCauley, 2007), use smaller scales of obser-
vation (Nie et al., 2015), or are otherwise restricted to experimental 
conditions (Ball et al., 2000; but see Champagne et al., 2018, Moore 
et al., 2010). Certain technological developments, such as high-res-
olution airborne imaging spectroscopy, have made landscape-wide 
mapping of nitrogen content possible, but only in ecosystems where 
the forage is aerially visible (Schweiger et al., 2015). Recently devel-
oped methods, termed Stoichiometric Distribution Models (StDMs; 
sensu Leroux et al., 2017) present a solution by modeling understory 
plant elemental quantities and compositions across landscapes, al-
lowing for variation in both forage quantities and qualities to be pre-
dicted across landscapes.

Here, we used StDMs to investigate selection strategies of for-
age quantity and quality, across multiple spatial extents for a large, 
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wide-ranging, understory browsing mammal. We studied a moose 
(Alces alces)—white birch (Betula papyrifera) system on the island of 
Newfoundland, Canada. White birch grows widely and is heavily 
preferred by moose in Newfoundland (Dodds, 1960). We measured 
individual moose resource selection in relation to understory white 
birch availability at the landscape, home range, and patch scales. Our 
landscape-wide estimates of available forage for white birch quanti-
ties and qualities derive from the continuous elemental predictions 
of the StDMs. Our objective was not to create highly predictive, 
cross-season moose resource selection models, but to test the rela-
tionship between moose habitat selection patterns and distributions 
of browse in terms of browse elemental predictors for quantity and 
quality across multiple foraging scales. To do so, we measured moose 
resource selection during the short temporal window of the early 
growing season in Newfoundland as this was the temporal window 
of the StDM predictions. We predicted that if moose show selec-
tion for white birch quantity and quality, their selection for quantity 
would be highest at the landscape extent and decrease when refined 
to home range and then patch extents, while the reverse would be 
true for white birch quality selection (van Beest et al., 2010). We also 
predicted that quantity–quality trade-offs may occur, but the direc-
tion of such trade-offs would depend on the scale of foraging; at no 
scale should there be negative selection for both plant quantity and 
quality (Figure 1). Collectively, this study represents an opportunity 
to test the foraging strategies of an ungulate species under non-ex-
perimental conditions by linking the biogeochemical landscape to 
herbivore movements.

2  | METHODS

2.1 | Study region and moose collaring

This study took place on the northern peninsula of the island of 
Newfoundland, Canada (Figure 2). Dominant tree species of this 
region include black spruce (Picea mariana), balsam fir (Abies bal-
samea), and white birch, which is the primary forage for moose in 

Newfoundland during early summer (Dodds, 1960). We collared 14 
adult moose (male = 4; female = 10) in this region between 2011 
and 2015 with global positioning system (GPS) collars set to take 
locations every two hours. Each individual was collared for the 
duration of one year (2011 n = 5; 2013 n = 1; 2014 n = 5; 2015 
n = 3; Table 2). The 14 moose collars were deployed in two areas 
approximately 300 km apart within the island of Newfoundland: 
Plum Point study area (PP; n = 7) and Old Man's Pond (OMP; n = 7; 
Figure 2). Three additional moose were collared in a third study area 
(Leroux et al., 2017), but we did not use these data because there 
were too few moose individuals to compare landscape-scale selec-
tion with the other study areas. The boundaries of each study area 
were delineated using minimum convex polygons (MCPs) at 95% 
around all of their respective moose fixed locations (PP = 514 km2; 
OMP = 393 km2; Figure 2).

2.2 | Forage quantity and quality measures

We used spatial predictions from StDMs, a method for predicting 
resource elemental compositions and quantities across a landscape, 
to represent forage resources in this study (Leroux et al., 2017). We 
clipped white birch leaves from the browsing heights (0.3–2.0 m) of 
1–6 individuals at 10 m radius plots (n = 106) across the Plum Point 
study area. Sampling was constrained to a small temporal window 
(June 30 and July 7, 2015) representing green-up time to minimize 
temporal variation in foliar elemental composition due to senes-
cence. At each plot, we measured densities of three size classes 
of white birch by height (0.3–0.5 m; 0.51–1 m; 1.01–2 m). We es-
timated biomass for each age class by measuring standing stocks 
(all leaves between heights 0.3–2.0 m) from a sample of trees and 
then used these estimates to calculate total white birch biomass for 
each plot (Leroux et al., 2017). Ground-collected samples were then 
sent to the Agriculture and Food Laboratory at University of Guelph 
(Guelph, Ontario, Canada) and analyzed for carbon, nitrogen, and 
phosphorus compositions (%). Using the biomass estimates and el-
emental compositions, we calculated elemental quantities (g/m2) for 

F I G U R E  1   (a) Conceptual diagram of resource grain from the perspective of different spatial extents. Landscapes are composed of a 
coarse patchwork of forage quantities, within which are home ranges with a finer-scaled gradient of quantities and patches of forage varying 
in both quantity and quality. (b) According to literature, at the landscape extent, herbivores should most often positively select for quantity, 
while at the patch extent, they should most often positively select for quality. At the home range extent, either quantity or quality could be 
selected for. At no scale should moose negatively select for both quantity and quality
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each plot. Lastly, the carbon, nitrogen, and phosphorous quantities 
(g/m2) and compositions (%) of newly developed understory white 

birch growth (June 1st–July 16th) were fit to six landscape predic-
tors across the two study areas of our moose collar data (Leroux 
et al., 2017; Table 1). Landscape predictors included three abiotic 
features—normalized aspect, slope, and elevation—and three biotic 
features—landcover, stand height, and dominant tree species (see 
Table 1 for StDM covariate details). Because our plant data derives 
from StDMs fit for the specific temporal window of early summer, we 
subset all collar data to only include fixes from that same temporal 
window (June 1st–July 16th). There was a mismatch of year between 
some individual moose GPS collar data and forage data from StDMs 
(1–4 years, mean = 1.93). The six-explanatory landscape variables 
that predicted forage elemental measures in the StDMs are fairly 
static in this system relative to the 4-year window of mismatch. We 
assume the relative StDM predictions to remain consistent within 
this 4-year window (i.e., areas with high quantity of white birch in 
year t will also have high quantity in year t + 1), but also assume 
moose response findings to be conservative given inter-annual cli-
matic variation.

We used final StDM spatial predations of reasonably strong fits 
(R2). We used StDM predictive surfaces of white birch carbon quan-
tity (log g/m2; R2 = 0.28) to represent forage quantity. To estimate 
forage quality, we used StDM predictive surfaces of white birch 
nitrogen composition (%; R2 = 0.31) and assume nitrogen concen-
tration to positively correlate with browse quality (Ball et al., 2000; 
Mattson, 1980; McArt et al., 2009). The StDMs also predicted birch 
elemental ratios, elemental ratios are calculated from elemental 

F I G U R E  2   The island of Newfoundland in relation to eastern North America, with the boundaries of our study areas shown. Within each 
study area, we show their stoichiometric distribution model outputs for white birch forage nitrogen concentrations and carbon quantities 
and the MCPs of each study area's study moose home ranges. White areas are areas where we have no inference for certain habitat types 
like wetlands or water bodies. MCP, minimum convex polygons

TA B L E  1   Explanatory covariates used in the stoichiometric 
distribution models to predict the white birch quantity carbon 
and nitrogen composition values, the type of data each covariate 
provided, and the description of each covariate's calculation or 
categories

Predictor 
variable Data type Description/categories

Normalized 
aspect

Continuous Direction of slope

Slope Continuous Tangent of surface angle to 
horizontal

Elevation Continuous Height above sea level

Landcover Categorical Two categories: Coniferous 
and other (deciduous or 
mixed wood)

Stand Height Categorical Four categories: 0–6.5 m; 
6.6–9.5 m; 9.6–12.5 m; 
12.6–21.5 m.

Dominant Tree 
Species

Categorical Three categories: 75% balsam 
fir; 50%–75% balsam fir with 
remainder black spruce and/
or white birch; 50–75 black 
spruce or white spruce with 
remainder balsam fir white 
birch, or tamarack.
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compositions and quantities, so we used nitrogen composition 
rather than carbon:nitrogen as our proxy of forage quality to main-
tain an independence between quantity and quality.

While elemental currencies do not account for plant secondary 
metabolite (PSM) concentrations, moose have been found to be ni-
trogen-constrained (McArt et al., 2009). Betula species favor using 
carbon-based PSMs (Palo, 1984), have also been experimentally 
shown to be nitrogen-limited, and display most PSMs at higher con-
centrations under greater UV exposure rather than greater nitrogen 
fertilizer (Keski-Saari et al., 2005). Since plants often acquire fiber 
and lose nutritional content as they gain biomass during the growing 
season, (Hebblewhite et al., 2008), we also tested for negative cor-
relations (Pearson's r) between our white birch quantities and quali-
ties which could be driven by static, landscape variation in plant age.

2.3 | Defining the scales of foraging

We examined moose resource selection at the landscape, home 
range, and patch extents, or second, third, and 3.5th order selection 
according to the Johnson (1980) framework. We used the R statisti-
cal program for all analyses (version 3.5.1; R Core Team, 2018). We 
designated each study area, PP or OMP, to be the “landscape” for 
its moose individuals. We calculated “home range” extents for each 
individual with MCPs at 95% around all GPS fixes within the time 
window of this study (June 1st–July 16th) using the R package “ade-
habitatHR” (Calenge, 2006). Lastly, we defined our highest resolution 

of forage landscape data, 30 m × 30 m pixels, to be “patches,” or the 
immediate area around a sample or GPS fix point. We did not col-
lect plant data in waterbodies, wetlands, roads, etc., and did not use 
StDMs to predict forage values in these habitats (Leroux et al., 2017). 
Therefore, we cleaned all resource selection analysis data, including 
moose GPS data, to only include points within forested areas with 
StDM predictions. We used two types of resource selection analyses 
and the same predictive StDM landscape layers to test selection at 
all three scales (Figure 1; Figure S1).

2.4 | Forage selection: landscape extent

At the landscape, our study's largest spatial extent, foraging deci-
sions include where an animal places its home range (Boyce, 2006; 
Johnson, 1980). To test if home ranges differ in the availability of 
forage quantities and qualities compared to the landscape, we used 
a resource selection function (RSF), a model which compares used 
and available locations of an organism and can be fit with logistic 
regression by assuming the exponential function:

with xj representing resource variables j = 1, 2…k and βl representing 
model coefficients l = 0, 1 … k (McLoughlin et al., 2010).

We defined available points to be within study areas, or “land-
scapes” (i.e., PP and OMP), and used points to be within home ranges 

w(x)=exp(�0+�1x1+�2x2+⋯+�kxk)

TA B L E  2   Descriptive statistics (means, medians, standard deviations), and the correlation (Pearson's r) for white birch carbon quantity 
(log g/m2) and nitrogen composition (%), from each designated study area and home range

MCP Sex Year
Area 
(km2)

Quantity carbon % Nitrogen
C × N 
correlation

Mean Median SD Mean Median SD Pearson's r

PP and OMP — — 907 −1.65 −1.67 0.89 2.78 2.78 0.28 −0.01

PP — — 514 −1.92 −2.19 0.89 2.82 2.82 0.27 0.11

OMP — — 393 −1.41 −1.53 0.82 2.74 2.74 0.28 −0.04

PP2 F 2013 26.27 −1.7 −1.7 0.72 2.77 2.73 0.28 0.03

PP3 M 2011 10.64 −1.87 −1.89 0.7 2.66 2.68 0.29 −0.37

PP4 F 2011 16.28 −2.46 −2.59 0.5 2.78 2.79 0.15 −0.16

PP5 F 2011 22.97 −2.27 −2.31 0.63 2.71 2.72 0.23 0.49

PP6 F 2015 2.12 −1.99 −2.22 0.72 2.63 2.67 0.18 0.59

PP8 F 2011 3.13 −2.08 −2.24 0.7 2.61 2.63 0.15 0.09

PP9 M 2011 5.13 −1.82 −1.65 0.7 3 3 0.14 0.12

OMP4 F 2014 20.28 −1.37 −1.57 0.61 2.79 2.8 0.27 0.13

OMP5 F 2015 10.69 −1.79 −1.76 0.54 2.85 2.86 0.13 0.43

OMP7 M 2014 9.18 −0.8 −0.82 0.83 2.75 2.77 0.26 0.13

OMP11 F 2014 12.06 −1.34 −1.31 0.66 3.04 2.98 0.26 −0.44

OMP12 F 2014 6.68 −1.19 −1.37 0.66 3.03 3 0.26 −0.28

OMP13 F 2015 15.08 −1.74 −1.71 0.96 2.82 2.82 0.18 −0.08

OMP15 M 2014 3.51 −1.36 −1.44 0.83 2.68 2.71 0.19 0.08

Note: For every moose individual, we provide its sex and collar year.
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(Dupke et al., 2017; Figure S1). We sampled available points from study 
areas randomly at 22 points per km2. We sampled using points from 
home ranges in a uniform grid at 70 points per km2, using the “spsam-
ple” function in the “sp” R package (Bivand et al., 2013). At each point, 
we extracted the values for white birch quantity carbon (log g/m2) and 
nitrogen composition (%) from our predictive StDM landscape layers. 
We employed an RSF to compare used and available moose points with 
explanatory variables being carbon quantity and nitrogen composition 
and their interaction term. The logistic regression was fit, using the 
“glm” function (family = binomial, link = logit) in the R statistical program 
for each study area and its respective seven home ranges and once with 
data from both study areas and all 14 home ranges.

2.5 | Forage selection: home range extent

Our next, finer-scale of foraging was the home range. At this scale, 
we sought to investigate if areas used by a moose differ to the avail-
ability of forage quantities and qualities of its total home range 
(Johnson, 1980). To do so, we defined available points to be within 
home ranges, using the same method completed to sample used 
points in the landscape-scale analysis. We defined used points to 
be collar fixes (Dupke et al., 2017; Figure S1). At each point, we ex-
tracted the white birch carbon quantity and nitrogen composition 
measures from our predictive StDM landscape layers. We fit the RSF 
using a logistic regression with the “glm” function in the R statisti-
cal program for each of the 14-individual moose and once with all 
individual data from both study areas pooled together. Explanatory 
variables were carbon quantity and nitrogen composition and their 
interaction term, like in the landscape scale.

2.6 | Forage selection: patch extent

The last and most restricted extent of foraging we investigated was 
the patch in which foraging decisions include the animal's choice of 
a patch (i.e., 30 m × 30 m pixel) over those available at the time of 
selection (Charnov, 1976). Here, we adopt an integrated step selec-
tion analysis (iSSA) to ask if moose select patches of certain forage 
quantities or qualities over others (Avgar et al., 2016). The iSSA pairs 
each used location to a set number of random locations the moose 
could have viably visited instead based on the distributions of the in-
dividual's total step lengths and turn angles (Avgar et al., 2016). This 
technique of sampling from the animal's natural range of movement 
speeds, or step lengths, and trajectories, or turn angles, allows for 
a more precise estimation of fine scale resources available to that 
animal at a given location.

We performed iSSA with the “amt” R package (Signer et al., 2019). 
First, we transformed the used fixes into 2-hr steps (straight line dis-
tances between consecutive locations). Prior cleaning of the data cre-
ated some temporal gaps in between GPS fixes, so we eliminated any 
steps that had a time difference greater than two hours. A gamma 
distribution of step lengths (the log transformed value represents the 

scale parameter) and a von Mises distribution of cosine-transformed 
turn angles were used to describe movement behavior (speed and di-
rectionality, respectively) of individuals (Avgar et al., 2016). From each 
start point, 10 available step locations were calculated by randomly 
extracting step lengths and turn angles from such distributions. We 
then extracted the white birch carbon quantity and nitrogen com-
position measures from our predictive StDM landscape layers at all 
step end locations. Used points were paired to the generated available 
points in the conditional logistic regressions. Explanatory variables 
for the model included the quantity carbon values, nitrogen compo-
sitions, step lengths, turn angles, and all combinations of interaction 
terms. We fit the conditional logistic regression model, using the 
“clogit” function in the R “survival” package, for each of the 14-indi-
vidual moose and once with all individual data from both study areas 
pooled together (Therneau & Grambsch, 2000).

3  | RESULTS

3.1 | Descriptive results

The mean predicted quantity carbon of white birch forage from 
the PP (514 km2) and OMP (393 km2) study areas were 0.23 g/m2 
(SD = 0.88) and 0.35 g/m2 (SD = 0.82), respectively. The maximum 
quantity carbon was 4.09 g/m2 in PP and 3.53 g/m2 in OMP while 
minimum values were 0.024 g/m2 for PP and 0.021 g/m2 for OMP. 
The mean white birch nitrogen concentration in PP was 2.82% 
(SD = 0.27) and 2.74% (SD = 0.28) in OMP. Maximum nitrogen con-
tent values were 3.61% and 3.78% and minimum nitrogen contents 
were 1.89% and 1.59% for the PP and OMP study areas, respec-
tively. The average size of a moose individual's home range for our 
study's time frame (June 1st–July 16th) was 12.36 km2 for PP indi-
viduals and 11.07 km2 for OMP individuals (Table 2).

We used selection coefficients from our resource selection anal-
yses to assess the direction and strength of moose selection for white 
birch quantities and qualities and pseudo R2 to assess the strength 
of our selection analyses. R2s from the patch extent iSSAs cannot be 
directly compared to landscape and home-range RSFs because of 
the different model types used (i.e., conditional logistic regression 
vs. logistic regression). Positive coefficients represent positive selec-
tion for the resource, negative coefficients represent avoidance of a 
resource, and near-zero coefficients represent neither selection for 
nor against a resource. Interaction coefficients represent selection 
trade-offs between quantity and quality with positive interactions 
representing a preference for forage quantity over quality and neg-
ative interactions representing the reverse. Collectively, we found 
differing directions and magnitudes of selection for birch quantity 
and quality, with models showing a wide range of explanatory pow-
ers depending on the spatial extent (landscape–home range–patch) 
and sample-level (individual or pooled). We did not find year of GPS 
data to have a significant effect on the model fits (pseudo R2s) or ob-
served individual trade-offs (f < 1.10, p > .38) for either patch-level 
or home range-level models.
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3.2 | Landscape extent

Selection coefficients for quantity carbon were −0.02 in PP, and 
−1.03 in OMP. Selection coefficients for nitrogen composition were 
−1.00 in PP and 2.01 in OMP. Our RSFs explained 1.6% and 3.2% 
of the variation for PP and OMP, respectively. The pooled model, 
using data from both study areas had virtually no explanatory power 
(R2 = 0.007) and selection coefficients for quantity carbon and nitro-
gen composition were −1.66 and 1.32, respectively (Table 3).

3.3 | Home range extent

At the home range level is where moose individuals showed the 
strongest selection. Individuals showed a large range of selection for 
both forage properties, with carbon selection coefficients ranging 
from −10.8 to 17.0 and nitrogen selection coefficients ranging from 
−13.4 to 8.6 (Figure 3, Table 3). Up to 18% of variation was explained 
in individual models, but some individual models had no explanatory 
power (pseudo R2 0.009–0.18; Table 3). No individuals negatively 

TA B L E  3   The number of Used (U) and Available (A) points and summaries (intercepts [Int.], β-coefficients, and standard errors [SE]) 
and evaluations (pseudo R2) for pooled and individual models measuring moose selection for white birch quantity carbon (Qty C; log g/m2) 
and nitrogen compositions (% N). The landscape (LN) and within-home range (HR) scales used logistic regressions and conditional logistic 
regressions were used for the patch (Pt) scale

Scale Model U A Int.

Qty C % N Qty C × % N

R2β SE β SE β SE

LN Pooled 8,433 20,000 −4.74 −1.66 0.17 1.32 0.11 0.55 0.06 0.007

LN PP 4,084 9,345 1.61 −0.02 0.26 −1 0.19 −0.06 0.09 0.016

LN OMP 4,349 10,655 −6.53 −1.03 0.25 2.01 0.15 0.37 0.09 0.032

HR Pooled 3,242 8,433 1.76 1.84 0.31 −0.88 0.2 −0.6 0.11 0.006

HR PP2 171 1,105 2.63 0.29 1.42 −2 1.1 −0.29 0.53 0.026

HR PP3 310 522 13.79 4.61 1.41 −5.5 0.91 −1.71 0.54 0.18

HR PP4 230 978 21.05 9.05 2.26 −8.35 2.08 −3.35 0.83 0.012

HR PP5 124 971 2.74 7.16 2.78 −1.36 1.99 −2.39 0.98 0.083

HR PP6 210 100 −23.15 −7.46 2.97 8.65 2.34 2.69 1.09 0.076

HR PP8 67 128 −4.74 −2.55 4.3 1.99 3.02 1.2 1.66 0.04

HR PP9 240 280 −11.79 −8.41 3.35 4.2 1.99 3.01 1.14 0.048

HR OMP4 285 1,148 −5.73 −0.31 1.3 1.25 0.75 −0.09 0.44 0.028

HR OMP5 251 531 38.86 17.01 3.67 −13.34 2.46 −5.67 1.28 0.07

HR OMP7 343 523 −0.92 0.27 1.03 0.11 0.43 −0.19 0.38 0.009

HR OMP11 267 671 1.86 2.38 1.32 −0.99 0.79 −0.82 0.43 0.009

HR OMP12 235 371 4.42 7.31 1.96 −1.48 0.91 −2.24 0.63 0.061

HR OMP13 361 936 −14.64 −3.7 1.45 4.71 1.02 1.24 0.51 0.051

HR OMP15 148 169 −16.61 −10.8 3.35 5.45 2.21 3.6 1.21 0.123

Pt Pooled 2,140 19,242 — 1.11 0.49 −0.14 0.42 −0.32 0.17 0.001

Pt PP2 90 712 — 7.77 4.712 −1.33 3.59 −2.76 1.65 0.019

Pt PP3 221 1,930 — 4.69 1.83 −1.51 1.92 −1.69 0.7 0.013

Pt PP4 145 1,314 — −4.09 3.73 4.16 4.45 1.79 1.46 0.009

Pt PP5 74 649 — 7.49 4.07 1.11 3.8 −2.21 1.38 0.016

Pt PP6 150 1,383 — −2.4 3.82 11.87 4.06 0.37 1.33 0.022

Pt PP8 31 225 — −4.1 7.87 0.21 7.28 1.43 3 0.039

Pt PP9 160 1,470 — −1.38 3.49 −0.3 3.14 0.55 1.15 0.01

Pt OMP4 182 1,632 — 3.57 2.6 0.54 2.1 −1.17 0.84 0.005

Pt OMP5 145 1,310 — 4.69 4.75 −6.32 4.13 −1.77 1.66 0.006

Pt OMP7 250 2,362 — −2.14 1.35 −1.97 1.42 0.86 0.48 0.008

Pt OMP11 167 1,505 — 0.45 2.11 1.11 2.1 −0.02 0.64 0.009

Pt OMP12 152 1,305 — 3.45 2.53 −0.81 1.85 −0.93 0.82 0.008

Pt OMP13 295 2,772 — −0.37 1.7 3.44 1.8 0.26 0.58 0.009

Pt OMP15 78 673 — −5.22 4.79 2.63 4.14 1.44 1.78 0.017
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selected nor positively selected for both quantity carbon and ni-
trogen composition; highly positive selection for one component is 
paired with a negative selection of its counterpart and vice versa 
(Figure 4). For individual models, pseudo R2s did not relate to the 
number of available points for individual RSFs (t = −0.77; p = .46). 
The pooled-sample model shows weaker selection (Cβ = 1.84, Nβ 
= −0.88) and virtually no explanatory power (R2 = 0.006; Table 3).

3.4 | Patch extent

Selection coefficients from the patch-scale iSSAs ranged from −5.22 
to 7.77 and −6.32 to 11.87 for white birch quantity carbon and ni-
trogen composition, respectively (Figure 3; Table 3; Coefficients for 
step length, turn angle, and their interactions with white birch car-
bon and nitrogen in Table S1). Individual models explained from zero 
to 3.9% of selection (pseudo R2; Table 3). Similar to the home-range 
scale, most individuals did not show simultaneous negative or posi-
tive selection for both birch characteristics, but with a somewhat 
smaller range of coefficient values (Figure 4). For individual models, 

pseudo R2s did not significantly relate to the number of available 
points for individual RSFs (t = −1.95; p = .075). The pooled-sample 
model shows little to no selection (Cβ = 1.11, Nβ = −0.42) and no 
explanatory power (R2 = 0.001; Table 3).

3.5 | Interaction coefficients and 
comparison of scales

The large range of individual coefficients for both carbon and ni-
trogen measures creates a lack of trend between scale and quan-
tity–quality selection in the pooled models (Figure 3). Within a scale, 
individual models with the strongest selection trade-offs (|interac-
tion β-coefficient|) often had higher explanatory power (Figure 4). 
Based on the interaction coefficients (positive values representing 
selection for quantity in avoidance of quality), trade-off tactics of 
individuals did not tend to change between the home range and 
patch extents: carbon–nitrogen interaction coefficients typically 
converged toward zero with only two individuals switching their 
trade-off tactic (Figure 5). We did not find repeated cases of nega-
tive correlations between predicted white birch quantity carbon and 
nitrogen composition from study areas and home ranges (Pearson's 
r; Table 2). These home range white birch correlation values did 
not have any significant effect on the respective individual model 
interaction coefficients (linear model weighted by standard error; 
t = −0.523, p = .605).

4  | DISCUSSION

Herbivore foraging strategies reflect the physiological challenge 
of converting carbon-heavy matter into more phosphorous and ni-
trogenous tissues: the tendency to select for plant compositions of 
higher N and P or plant quantities (Nie et al., 2015). We tested moose 
resource selection of forage nitrogen content and forage abundance 
at multiple scales using elemental measures of white birch nitrogen 
composition (%) and quantity carbon (log g/m2), respectively. We 
found support for our prediction that negative selection for both 
carbon quantity and nitrogen contents would not occur at any scale, 
but likewise found no instances of positive selection for both meas-
ures, which we predicted would occur at all scales (Figure 4). Unlike 
findings by van Beest et al. (2010), there was no distinct trend be-
tween forage selection tactic and scale (Figure 3). Instead, we found 
considerable individual variation: at the home-range scale, individual 
moose favored either quantity or quality at the expense of the other, 
with both trade-off directions expressed at similar magnitudes 
(Figure 4). Such individual variation should not be overlooked given 
moose have significant effects on plant biomass and productivity 
(Ellis & Leroux, 2017), and intraspecific diversity in functional traits 
can influence total ecosystem processes (Raffard et al., 2019).

At the home-range scale, we found the strongest selection of 
white birch nitrogen concentration and biomass (quantity carbon), 
showing both negative and positive responses for either by individual 

F I G U R E  3   Selection coefficients, positive coefficients 
representing positive resource selection, for white birch carbon 
quantities (log g/m2) and nitrogen compositions (%) from all 
three scales of foraging modeled. Individuals’ coefficients are 
linked between the patch and home-range scales, and to the 
coefficient values of their respective study areas (PP = squares, 
OMP = circles) with lines shaded by the absolute mean of quantity 
carbon and nitrogen composition coefficients from the individual's 
home-range scale models (|Cβ + Nβ|/2). Darker shades represent 
individuals whose coefficients were, on average, further from zero 
at the home-range scale. The black line in each panel shows the 
coefficients from models using all individuals pooled
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moose (0 < R2 < 0.18). Consequently, we find evidence that moose 
display distinct quantity–quality trade-offs within their home ranges 
(Figure 4). Such trade-offs support use of birch nitrogen composition 
as an estimate of forage quality, as has been done in other studies 
(Ball et al., 2000; Schweiger et al., 2015). Naturally higher nitrogen 
contents in browse must increase nutrient acquisitions in the diges-
tively constrained moose (Belovsky, 1978), so as to offset their need 
for prioritizing foraging in areas with high browse abundances. To 
confirm that trade-offs in forage selection were not due to grow-
ing trade-off within white birch (i.e., as birch grows it becomes less 
nitrogenous), we tested for correlation between birch carbon quan-
tity and nitrogen composition across each home range and study 
area. There were few cases of negative correlations between white 
birch quantity and quality within home ranges, and furthermore, 
any white birch StDM correlations did not influence the strength of 
moose selection trade-offs. Possibly, a lack of positive correlation 
between white birch quantities and nitrogen compositions is suffi-
cient to limit moose and force trade-off foraging strategies. StDMs 
predict resource elemental compositions, not the allocations of such 
elements, like PSMs. While nitrogen is most commonly allocated to 
protein building in plants, tannins can interact with protein– limiting 

available nitrogen (McArt et al., 2009)—and PSM production by 
Betula can be induced by UV exposure, not necessarily nutrient 
availability (Keski-Saari et al., 2005). Thus, environmental driven 
production of PSMs in white birch could add a layer of complexity to 
our landscapes of quality. This could potentially explain the diversity 
of individual selection patterns but would require further plant sam-
pling and landscape modeling to properly investigate.

We found no selection responses at the landscape scale, while 
patch-scale models produced coefficients slightly more equivo-
cal than the home-range models. The lack of selection responses 
at the landscape scale contradicted our prediction that the land-
scape-scale models would result in the highest selection coeffi-
cients for birch quantity. Other studies have found that moose 
display landscape-level selection for forage quantity as predicted, 
but when using coarser measures of forage availability (Dussault 
et al., 2005; Herfindal et al., 2009). Though we predicted that ni-
trogen composition selection coefficients would be highest at 
the patch scale, we observed a similar pattern of trade-offs in the 
patch scale as the home-range models (Figure 4). Most individuals 
maintained their trade-off tactic from the home range to the patch 
scale, similar to trade-offs in roe deer (Capreolus capreolus) found by 
Dupke et al. (2017), but the trade-offs become more equivocal at 
the patch scale (Figure 5). This could imply that once a moose se-
lects an area within a home range to forage, the differences between 
patches may be less important than maintaining high daily forage 
intake (Belovsky, 1984; Parker et al., 2009). Alternatively, selection 

F I G U R E  4   Selection coefficients with standard errors for 
white birch carbon quantity and white birch nitrogen composition 
from all scales of foraging modeled in this study, landscape, home 
range, and patch, plotted against one another. Axis scales are equal 
across panels, coefficients are scaled in size by their pseudo R2, and 
individuals are distinguished by their study area (shape) and sex 
(color)

F I G U R E  5   White birch quantity carbon and nitrogen 
composition interaction coefficients from home range (RSFs) 
and patch (iSSAs) individual moose selection models. Selection 
coefficients are linked between scales by individual and colored 
by individual sex. Positive CxN coefficients represent individuals 
who selected positively for quantity carbon and negatively for 
nitrogen compositions, while negative CxN coefficients represent 
the opposite scenario



13856  |     BALLUFFI-FRY et AL.

may bypass the patch scale and occur within the patch. A study by 
Astrom et al. (1990) found moose food choice to be better explained 
at the tree-level than at the stand-level, and Danell et al. (1991) also 
uncovered tree-level foraging decisions in moose.

Individuals varied the directionality of their quantity and qual-
ity selection, overriding any potential sample-wide trend between 
spatial extent and selection (Figure 3). Other studies have found 
herbivory quantity–quality trade-offs, where all individuals dis-
play a similar trade-off direction (Durant et al., 2004; Van der Wal 
et al., 2000; Wilmshurst et al., 1999). We find a unique situation in 
which individuals display opposing trade-offs, from prioritizing for-
age quantity over quality, to equal priority for quality over quantity, 
and many that select for neither. Detecting opposing strategies 
would not have been possible had our models not been performed 
at the individual-level. If moose are indeed plastic in their trade-
off tactic, quantity–quality functional responses remain possible 
(Leclerc et al., 2016); alternatively, if moose individuals are consis-
tent then fitness should be influenced by trade-off decisions (Parker 
et al., 2009; Wam et al., 2018).

Despite having only two predictor variables, we explained any-
where from 0% to 18% of the variation in individual RSFs within 
forested areas during the early growing season. Rather than use 
multiple acting landscape variables, such as forest type or aspect 
ratio, directly in RSAs to infer foraging strategies (Zweifel-Schielly 
et al., 2009), we linked these features to plant compositions and 
biomass first, creating more deterministic, and nutritionally linked 
resource selection analyses (RSAs; Leroux et al., 2017). Our intent 
was not to create highly explanatory RSAs across multiple habitats, 
but rather test how moose select for two specific forage charac-
teristics at multiple scales during a critical window of plant growth 
in forest patches. Unexplained variation in RSAs could have devel-
oped from differences between body masses, sexes, study areas, 
years (Barboza et al., 2009), the effects of carbon-based PSMs 
(Palo, 1984), or tannin-bound nitrogen (Keski-Saari et al., 2005). 
Despite these constraints, we still were able to detect some moose 
selection for plant nitrogen and biomass, suggesting that our find-
ings are conservative estimates. Ideally, StDMs will be implemented 
in areas with larger samples of collared animals interpret foraging 
strategies more confidently.

While nutritional landscapes that predict compound-based 
measures of plant quality (e.g., Duparc et al., 2020; Merems 
et al., 2020) also create deterministic large-scale foraging analy-
ses, StDMs provide a means to link individual, seasonal, and avail-
ability-dependent differences (Barboza et al., 2009) in herbivore 
resource selection to carbon and nitrogen cycles. Large terrestrial 
animals are known to have large-scale presence–absence or den-
sity-driven effects on plant communities (Estes et al., 2011), yet 
they are often not incorporated into carbon cycle models (Schmitz 
et al., 2018). Moose browsing and effects on litter nutritional com-
position have been shown to negatively impact ecosystem net pri-
mary productivity (Ellis & Leroux, 2017; Schmitz et al., 2014). The 
individuals of this study that chose to forage in areas of higher 
birch carbon quantities rather than areas of higher nitrogenous 

birch could be the individuals which have, directly, the largest neg-
ative effect on plant productivity (Kolstad et al., 2018). We also in-
terpret our observed trade-off as evidence that moose may strive 
to meet certain nitrogen intake amounts (0.627 ± 0.073 g/kg BW/
day; (Schwarts et al., 1987)) by consuming larger quantities or food 
of higher nitrogen contents. Daily nitrogen intake not only equals 
the nitrogen removal from primary producers, it also positively 
correlates to fecal nitrogen content (Howery & Pfister, 1990), 
which could be integrated into nitrogen cycling models. With 
moose being a dominant browser across the boreal biome, their 
foraging behaviors can have implications to boreal zoogeochemis-
try (Schmitz et al., 2018).

Connecting ecological theory across scales and systems has re-
mained a problem in ecology (Levin, 1992). Scale presents particular 
challenges for ungulate foraging, because such species react to plant 
distributions from the bite to the regional-level, making a case for 
tools like StDMs that capture the heterogeneity of plant qualities 
across landscapes (Leroux et al., 2017; Weisberg & Bugmann, 2003). 
Further, the use of elemental currencies in foraging studies creates 
findings that can be compared across systems. Ungulates can rap-
idly change plant communities, nutrient cycles, and whole ecosys-
tems through herbivory and fecal deposition (Didion et al., 2009; 
Hobbs, 2018). In our study we found that some moose in a pop-
ulation make individually varying trade-offs between both forage 
quantity and quality, implying that moose are nutritionally limited 
but flexible in their intake tactics. With the current accessibility of 
remote sensing data and wildlife monitoring technology, we have 
the opportunity to make inferences about animal responses to fine-
scaled, biogeochemical processes.
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