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ABSTRACT: Accurate and rapid evaluation of density is crucial
for evaluating the packing and combustion characteristics of high-
energy-density fuels (HEDFs). This parameter is pivotal in the
selection of high-performance HEDFs. Our study leveraged a
polycyclic compound density data set and quantum chemical
(QC) descriptors to establish a correlation with the target
properties using the XGBoost algorithm. We utilized a recursive
feature elimination method to simplify the model and developed a
concise and interpretable density prediction model incorporating
only six QC descriptors. The model demonstrated robust
performance, achieving coefficients of determination (R2) of
0.967 and 0.971 for internal and external test sets, respectively, and root-mean-square errors (RMSE) of 0.031 and 0.027 g/cm3,
respectively. Compared to the other two mainstream methods, the marginal discrepancy between the predicted and actual molecular
densities underscores the model’s superior predictive ability and more usefulness for energy density calculation. Furthermore, we
developed a web server (SesquiterPre, https://sespre.cmdrg.com/#/) that can simultaneously calculate the density, enthalpy of
combustion, and energy density of sesquiterpenoid HEDFs, which greatly facilitates the use of researchers and is of great significance
for accelerating the design and screening of novel sesquiterpenoid HEDFs.

1. INTRODUCTION
High-energy-density fuels (HEDFs) garner significant attention
owing to their substantial density and energy density,1−5 which
enhance the payload and flight range of aircraft. Prior research
indicates that employed HEDFs possess high-strain polycyclic
hydrocarbon structures,6−12 as seen in fuels such as RJ-4, RJ-5,
JP-10, Syntin, and caged hydrocarbon fuels. However, synthesiz-
ing these HEDFs typically entails hazardous and toxic
intermediates derived from petroleum,13,14 making the process
costly, perilous, and complex. Research has demonstrated that
these molecules can be synthesized through simpler chemical
and microbial methods, presenting potential candidates for
renewable HEDFs.15−19 Notably, these renewable fuels match
the density and net heat of combustion of the specialty fuel JP-
10. Currently, the inefficient yield and purity of sesquiterpenoids
obtained through these methods pose significant challenges for
the rapid, accurate, and large-scale experimental characterization
of these compounds.16,19 To overcome these obstacles,
dependable theoretical computations for evaluating the density
and energy of sesquiterpenoid HEDFs can offer a potent
solution.
Density is a crucial parameter in gauging the packing density

and combustion characteristics of HEDFs. The rapid and
accurate evaluation of density is vital for logically selecting new
high-performance HEDFs and for calculation of their energy

density. Over recent decades, numerous researchers have strived
to predict the density of various compounds.20−27 Previously,
cubic equations of state (EoS), such as SRK EoS,28 PR EoS,29

and simple RM EoS,30 have been commonly used for
hydrocarbon density prediction. Although these EoS methods
predict hydrocarbon density with commendable accuracy and a
relative error of less than 5%, their calculation process requires
the resolution of multiple parameters, leading to low efficiency
and complicated utilization. Moreover, it is assumed that the
molecule is a three-dimensional structure surrounded by a 0.001
au electron density.31 The electrostatic potential parameter at a
0.001 au electron density can quantitatively depict the physical
and chemical properties of the compound.32 Qiu et al.33 and
Rice et al.34 suggested a direct density prediction method within
the density functional theory (DFT) framework, where
molecular density is calculated as mass divided by volume.
However, this method often produces density values higher than
the experimental values, leading to significant errors in
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subsequent tests. Politzer et al.35 later introduced a parameter,
vσtot2 , which provides a better explanation of the intermolecular
interactions for predicting the density of neutral compounds.
The results highlight the high reliability of this method, which
has an average absolute error of approximately 3% and a strong
coefficient of determination R2 of 0.924. Additionally, molecular
dynamics36,37 and group contribution methods38,39 have also
proven successful in more accurately predicting molecular
density.
In addition to established density prediction methods, a

newer strategy rapidly determines the molecular density of
compounds by constructing a quantitative mathematical
function that correlates the density with molecular structural
characteristics. This approach leverages machine learning (ML)
techniques. With advancements in computing and intelligent
algorithms, researchers have developed several quantitative
structure−property relationship (QSPR) models.40−43 These
models combine intelligent algorithms with various molecular
descriptors, including those predicting the density of energy-
containing materials.43−45 The excellent predictive performance
of these models confirms the feasibility of this approach.
However, the correlation between molecular properties and
their geometric or electronic structures remains unclear and
undefined, rendering theoretical models less effective for guiding
the design and development of novel HEDFs. Considering the
sensitivity of HEDFs’ properties to their molecular struc-
tures,46,47 it is essential to investigate how the microstructures of
sesquiterpenoid HEDFs impact their density properties. More-
over, the energy density of HEDFs can be directly derived from
the mass net heat of combustion, which is obtained by
converting the enthalpy of combustion combined with the
corresponding density.
At present, no reports on density predictions or energy

density calculations for sesquiterpenoid HEDFs are available,
and experimental data on sesquiterpene molecules are scarce. In
light of this, we explore density prediction by utilizing a transfer
learning approach. Initially, we constructed a QSPR model for
predicting the density of sesquiterpenoid HEDFs. This was
based on a collected data set of 1567 molecules, bearing
structural similarity to sesquiterpenes with experimental density
values, and a quantum chemical (QC) descriptor derived within
the framework of DFT. Subsequently, using the Shapley additive
explanation (SHAP) method, we identified key QC features
influencing the density of sesquiterpenoidHEDFs. This not only
provides a theoretical foundation for the development and
design of novel HEDFs but also addresses the interpretability
issue of the QSPR model. Finally, for the benefit of users, we
incorporated these models into an automated web server that
predicts the density, enthalpy of combustion, and energy density
of sesquiterpenoid HEDFs.

2. MATERIALS AND METHODS
2.1. Data Collection and Preprocessing. Given the

limited experimental density data for sesquiterpenoid HEDFs,
the corresponding QSPR prediction models could not be
directly constructed. As a result, we curated a data set from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/), con-
sisting of 2100 compounds withmolecular structures resembling
the target molecule composition and documented experimental
density values. To ensure the quality and accuracy of the data,
the acquired cyclic compound collection underwent deweight-
ing, desalting, and meticulous manual screening. This process
yielded a data set of 1567 molecules suitable for subsequent

QSPR modeling. Notably, these data sets consist entirely of
experimental density values at normal pressure and temperature.
This enables the direct calculation of the energy density of
sesquiterpenoid HEDFs at normal pressure and temperature
based on the existing data sets of their enthalpy of combustion.
Additionally, the structures of these cyclic compounds were
illustrated using GaussView 6.0 software48 to aid in calculating
and extracting their QC descriptors.
2.2. Calculation of Quantum Chemical Descriptors.

The nature of a molecule is intrinsically determined by its
structure, and QC descriptors effectively characterize its
electronic structure and reactivity.49−51 These descriptors
offered insights into the properties of sesquiterpene molecules
at the level of reaction mechanisms enhancing the interpret-
ability of QSPR models. The calculation of QC descriptors
involved three primary steps: (1) We used the GMMX 3.0
conformational search module in GaussView 6.0 software to
conduct a conformational search of the initially constructed
structures based on the MMFF94 force field. (2) Utilizing
Gaussian 1652 software, we selected the top 10 low-energy
conformations (from the lowest to the highest energy) from the
conformational search results for geometric optimization and
frequency calculation at the B3LYP/6-311+G(d)53,54 theory
level. We then chose the conformations with the lowest energy
and without imaginary frequency as the initial structures for QC
descriptor calculation. Geometric structure optimization and
frequency analysis of the low-energy conformations were
conducted using the M06-2X/6-31G(d)-D3(BJ)/SMD (sol-
vation model based on density).37,55,56 (3) At the same
theoretical level, single-point energy calculation, and natural
bond orbitals,57 analyses were conducted for molecules in the
neutral, one-electron gain, and one-electron loss states of the
lowest energy conformation. Next, quantitative molecular
surface analysis of the wavefunction file (.chk) computed was
performed using the Multiwfn package.58 Finally, our self-
developed software Quantum 1.0, in combination with
Multiwfn, was employed for the batch extraction of 54 QC
descriptors.
2.3. Model Development and Performance Evalua-

tion. 2.3.1. Construction of the QSPRModel. Extreme gradient
boosting (XGBoost), a cutting-edge ensemble learning
algorithm, has been successfully employed in recent ML
competitions and data processing tasks.59−61 Operating under
the gradient boosting framework, XGBoost facilitates more
efficient and scalable development, providing insights into
cached access patterns, data compression, and fragmentation.62

In this study, we employed the XGBoost algorithm to construct
a QSPRmodel using QC descriptors and a density data set. This
method allowed us to verify the correlation between various
molecular features and the density.
For our QSPR model, the density data set was divided into an

internal training set and an external test set, based on the type of
carbon skeleton in the polycyclic structure compounds, at a 4:1
ratio. To ensure that the model maintained a strong general-
ization ability in predicting density, we implemented a 5-fold
cross-validation approach on the internal training set.
Concurrently, to mitigate overfitting and ensure model stability,
we repeated the 5-fold cross-validation 1000 times. We then
evaluated the quality of the QSPR model using six main
statistical parameters: the coefficient of determination for cross-
validation (Qcv2 ), root-mean-square error for cross-validation
(RMSEcv), mean absolute error for cross-validation (MAEcv),
coefficient of determination for the external test set (Qext2 ), root-
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mean-square error for the external test set (RMSEext), and mean
absolute error for the external test set (MAEext).
2.3.2. Feature Selection. To further simplify our model and

enhance its interpretability, we implemented the recursive
feature elimination (RFE)63 method, which is based on
XGBoost, for QC descriptor screening. The operational steps
of this feature selection approach are as follows: (i) We built a
density prediction model using the QC descriptors from the
training set after removing redundant variables. Each descriptor
was ranked based on its importance; (ii) descriptors with the
lowest importance were eliminated, and the density model was
reconstructed with the remaining descriptors. This process
yielded a new priority ranking of descriptors in terms of their
importance. We repeated this process until all descriptors were
removed; (iii) we plotted the RMSEcv against the corresponding
number of descriptors. From this plot, the concise and high-
performing QSPR model as a new density prediction model was
selected. Subsequently, we utilized a transfer learning
approach64 to predict density based on the new model
parameters combined with the QC descriptors of the target
molecules.
2.3.3. QSPR Model Explanation. Additionally, using the

SHAPmethod proposed by Lundberg and Lee,65 we analytically
calculated the correlations between these feature vectors and
target attributes. This approach addresses the common issue of
the lack of interpretability in high-performing models and
accelerates the development of novel sesquiterpenoid HEDFs
with desired properties.
2.4. Multiproperty Computing Web Server. The

integration of QC and ML offers a robust solution for the
rapid and accurate prediction of properties for both existing and
potential new sesquiterpene molecules. This approach can
significantly mitigate the extensive and laborious experimental
work, decrease financial costs, and provide valuable theoretical
and technical support for the early assessment and study of
biomass sesquiterpenoid HEDFs. In this study, we incorporated

a density prediction model and a straightforward multiple linear
regression (MLR) equation66 for the enthalpy of combustion
into a web server. This server enables direct prediction of the
density, enthalpy of combustion, and energy density of
sesquiterpenoid HEDFs based on QC descriptors obtained
from the DFT framework. The calculation for enthalpy of
combustion, mass net heat of combustion, and energy density
follows the given methods:

y H1.557V 5.960ZPE 3.639 11.395En n

176, 862.174

capacity= _

(1)

y
M

NHOCG =
(2)

NHOC NHOCV G= · (3)

where y denotes the enthalpy of combustion of themolecule,V is
defined as the volume, ZPE refers to the zero-point energy of the
molecule after structural optimization and frequency calcu-
lation,Hcapacity is the constant heat capacity, En_n represents the
single-point energy of the molecule in the negative state, M
denotes the molecular mass, NHOCG is the net mass heat of
combustion of the target molecule, and ρ and NHOCV are
defined as the density and energy density, respectively.

3. RESULTS AND DISCUSSION
3.1. Skeletal Analysis.We examined the skeleton structure

of 1567 compounds, focusing specifically on the core structure
by analyzing the retained ring systems after all substituents were
removed from the molecules. Our analysis identified a total of
150 distinct carbon skeletons, which predominantly included
macrocycles, simple rings, complex heterocycles, and polycyclic
structures. The detailed results are displayed in Figure 1a. The
skeletons of the compounds, as revealed by our analysis, cover
nearly all of the structural types of sesquiterpenoid HEDFs, as

Figure 1. Carbon skeletons of 1567 compounds (a) and sesquiterpenoid HEDFs (b).

Table 1. Evaluation Parameters of the QSPR Model

XGBoost

training set external test set

model number of QC descriptors Qcv2 RMSEcv (g/cm3) MAEcv (g/cm3) Qext2 RMSEext (g/cm3) MAEext (g/cm3)

old model 54 0.973 ± 0.000 0.028 ± 0.000 0.018 ± 0.000 0.975 0.026 0.018
new model 6 0.967 ± 0.000 0.031 ± 0.000 0.020 ± 0.000 0.971 0.027 0.019

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01898
ACS Omega 2024, 9, 26213−26221

26215

https://pubs.acs.org/doi/10.1021/acsomega.4c01898?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01898?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01898?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01898?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01898?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


shown in Figure 1b. This comprehensive range facilitates the
accurate prediction of the density of target molecules using the
transfer learning method.
3.2. Performance Evaluation of theQSPRModel. In this

study, we employed the XGBoost algorithm along with 54 QC
descriptors and density data sets to develop a QSPR model for
predicting the density of sesquiterpenoid HEDFs. To ensure
robust generalization and stability, we incorporated a 5-fold
cross-validation technique within the internal training set. The
validation results for both the internal and external test sets of
the QSPR model are detailed in Table 1, and Figure 2 presents

the relationship between the experimental and predicted density
values for both the training and test sets. Specifically, Qcv2 of the
5-fold cross-validation ranged from 0.966 to 0.976, and RMSEcv
ranged from 0.026 to 0.031 g/cm3. For the external test set, Qext2
was 0.975, and RMSEext was 0.026 g/cm3. These results
suggested that the QSPR model delivers both excellent and
stable predictive performance with minimal errors across all
statistical results. Moreover, we demonstrated a strong
correlation between the QC descriptors and the predicted
target. Given the complexity of the original model, it was not
suitable for the rapid prediction of sesquiterpenoid HEDFs’
density in online integration tools. Therefore, we employed the
RFE method to create a series of simplified density prediction
models based on the importance rankings of the features. Figure
3 illustrates the relationship between the RMSEcv of the 5-fold
cross-validation and the number of descriptors used. By
balancing model complexity and performance, as well as the
usability of prediction tools, we determined that a new model
containing only six QC descriptors was optimal. As shown in
Table 1, this new model, built on the reduced set of six QC
descriptors, maintains performance comparable to the original
model while simplifying its complexity. The relationship
between the predicted density values of the new model and
the experimental values is presented in Figure 4.
To further validate the predictive performance of our new

model, we compared it with two widely accepted density
prediction methods: ACD/Labs software (https://www.
acdlabs.com/) and a linear equation.35 We applied these
methods to predict the density of the 1567 compounds. Table
2 summarizes the evaluation parameters of these methods, while
Figure 5 illustrates the relationship between the predicted and

experimental values. The results indicated that the prediction
performance of both mainstreammethods was inferior to that of
our QSPR model, substantiating the reliability of the QSPR
model constructed using the XGBoost algorithm. This
suggested that it may be more appropriate for predicting the
density of sesquiterpenoid HEDFs.
Consequently, we used the newmodel, which incorporates six

QC descriptors of sesquiterpenoid HEDFs, to predict the
density of target molecules through a transfer learning approach,
as demonstrated in Figure 6. To verify the practical applicability
of the QSPR model, we applied it to predict sesquiterpenoid
HEDFs with known experimental density values.16 The results
are listed in Table 3. The discrepancy between the experimental
density values and the predicted values is small, and its
performance is better than the other two prediction schemes.
In conclusion, the QSPR model, with only 6 parameters,
exhibited exceptional and consistent predictive performance,
enabling swift and accurate density predictions for sesquiterpe-
noid HEDFs.
3.3. Feature Analysis. The interpretability challenge of the

QSPR model was addressed by using the SHAP method,

Figure 2. Relationship between experimental values of the density and
predicted values.

Figure 3. Relationship between the RMSEcv of models and the number
of descriptors.

Figure 4. Relationship between the predicted values of density of the
new model and the experimental values.

Table 2. Evaluation Results of Density Prediction by ACD/
Labs Software and Linear Equation

other methods R2 RMSE (g/cm3) MAE (g/cm3)

ACD/Labs software 0.841 0.071 0.036
linear equation 0.933 0.044 0.028
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elucidating the correlation between features and target proper-
ties. This approach lays a theoretical foundation for the
development and design of sesquiterpenoid HEDFs. The
input data consisted of the internal training set of the new
model, ensuring accuracy in determining the contribution of
each feature. Additionally, the same 1000 iterations of 5-fold

cross-validation were utilized for hyperparameter optimization,
enhancing the model’s robustness.
The overall importance of the features in our QSPR model

was determined by calculating the absolute Shapley values for
each feature with the results depicted in Figure 7. This analysis
suggested that a small subset of features significantly impacted

Figure 5. Comparison of the predicted density values of ACD/Labs software (a) and the linear method (b) with experimental values.

Figure 6. Density prediction flow of sesquiterpenoid HEDFs.

Table 3. Experimental and Predicted Values of the Density of Sesquiterpene Molecules such as α-Cedrene, Longifolene, and
Longifolane
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the density of sesquiterpenoid HEDFs. We further analyzed the
correlation between these 6 descriptors and density, as
illustrated in Figure 8. In this figure, points with larger

eigenvalues are colored red, indicating a strong impact, whereas
blue points correspond to smaller eigenvalues, indicating a
weaker impact. Among these, p (microscopic density) had the
most profound impact on the QSPR model. This attribute
reflects the degree of molecular packing within the cyclic
compounds in space. The higher this value, the denser the spatial
arrangement of the compound, thus increasing its macroscopic
density. Other influential parameters derived from the electro-
static potential analysis at a 0.001 au electron density include

ESP_max (maximum electrostatic potential), ESP_Polar (polar
surface area (|ESP| > 10 kcal/mol)), and tot_nu (product of the
overall variance of the electrostatic potential and the constant of
charge balance). These parameters signify the strength of
intermolecular interaction forces, which, as seen in Figure 8,
positively impact density for higher values. Thus, stronger
intermolecular forces lead to closer molecular packing, which, in
turn, increases the density of the compound. Another more
important feature is g (chemical hardness) of the molecule,
which measures its chemical reactivity and stability. The analysis
indicates that higher g values, which signify lower reactivity and
greater molecular stability, are negatively correlated with the
density. For the polycyclic molecules within our study, we
postulate that compounds with lower g values, which contain
more strained rings, lead to tighter molecular packing and thus
larger density values. Finally, the SHAP values of q_Max (the
largest positive charge in the molecule) were smaller, indicating
that this descriptor had a smaller impact on the density of the
compound.
From the analysis, we have drawn several key conclusions:

First, only a small number of QC descriptors are crucial for
determining the density of compounds. Second, the combina-
tion of the XGBoost algorithm with the SHAP method provides
a transparent understanding of how features interact with
compound properties. Third, sesquiterpenoids that exhibit tight
stacking and strong intermolecular interactions and contain a
high number of strained rings are more likely to possess higher
density.
3.4. Web Server. To enhance the practical utility of our

density prediction model, we integrated it with a straightforward
and efficient MLR equation for calculating the enthalpy of
combustion. We developed a web server, SesquiterPre (https://
sespre.cmdrg.com/#/), designed to predict the density,
enthalpy of combustion, and energy density of sesquiterpenoid
HEDFs. Notably, this server requires only 10 QC descriptors to
compute these properties, as shown in the primary modules
depicted in Figure 9.
The density predictionmodule of this server was created using

a high-quality data set, mainly composed of the 1567 multiring
structure density data sets and six QC descriptors highlighted
earlier. The practical applications and evaluation parameters of
the QSPR model demonstrate that the densities of sesquiterpe-
noid HEDFs can be accurately predicted. The enthalpy of

Figure 7. Overall importance of six QC descriptors.

Figure 8. SHAP summary plot.

Figure 9. Main function modules of SesquiterPre.
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combustion for input molecules is directly predicted by using
the established MLR equation. In this module, V, ZPE, Hcapacity,
and En_n need to be provided to swiftly calculate the enthalpy of
combustion. Energy density calculations are carried out using eq
3.
SesquiterPre was developed using Python and can handle

multiple simultaneous accesses. To initiate a prediction, users
are required to prepare five types of computational output files.
These include the following: (i) the result files obtained from
geometric structure optimization and frequency calculation, (ii)
the results of single-point energy calculation for three different
states, and (iii) quantitative molecular surface analysis. The
necessary 10QC descriptors are obtained from the above output
files. Recognizing that these descriptors require unit conversion
and computational extraction, this tool automates these tasks to
simplify the process for users. Subsequently, SesquiterPre can
predict all three properties after a clicking run. The detailed
prediction flow is illustrated in Figure 10. This result table
displays the SMILES, 3D structure, molecular mass, and
property prediction results for the input molecules. Lastly,
SesquiterPre provides a user-friendly layout for the results' table,
which can be downloaded as a .CSV file.
Looking ahead, in addition to the existing data set comprising

1567 polycyclic compounds and 292 sesquiterpenoid HEDFs,
we plan to continue gathering relevant data. This new piece of
data will be incorporated into the model construction data set to
continuously enhance the predictive performance of this server.

4. CONCLUSIONS
Owing to the absence of density values for target molecules, we
utilized a data set of polycyclic compounds with structures akin
to those of sesquiterpenoid molecules and known experimental
density values as substitutes. We then constructed a model to
predict the density of sesquiterpenoid HEDFs using the
XGBoost algorithm, a density data set, and 54 QC descriptors.
The high-performance QSPR model confirmed a strong
correlation between the predicted target and QC descriptors.
To decrease the complexity of the model, we employed the RFE
method for feature screening. This led to the development of a
new density prediction model containing only six QC features
using the same algorithm. The coefficients of determination R2
for the internal training set and external test set were
approximately 0.967 and 0.971, respectively. The RMSE values
were as low as 0.031 and 0.027 g/cm3, while the mean absolute
errors (MAE) were 0.020 and 0.019 g/cm3, respectively.
Furthermore, compared to the two mainstream methods, the
calculation results further illustrated the exceptional predictive
performance and practical application of the constructed QSPR

model. Subsequently, SHAP analysis led us to speculate that
sesquiterpenoid HEDFs with a high degree of stacking, robust
intermolecular interactions, and numerous tensegrity rings
would exhibit a higher density. Finally, we developed a web
server, SesquiterPre (https://sespre.cmdrg.com/#/), using an
accurate density predictionmodel and theMLR equation for the
enthalpy of combustion combined with 10 QC descriptors. This
server can swiftly and accurately predict the density, enthalpy of
combustion, and energy density of sesquiterpenoid HEDFs.
This study will aid in the rapid screening of high-performance
HEDFs, thereby improving the processes of fuel development
and design.
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