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ABSTRACT

We introduce and study a set of training-free meth-
ods of an information-theoretic and algorithmic com-
plexity nature that we apply to DNA sequences to
identify their potential to identify nucleosomal bind-
ing sites. We test the measures on well-studied ge-
nomic sequences of different sizes drawn from dif-
ferent sources. The measures reveal the known in
vivo versus in vitro predictive discrepancies and un-
cover their potential to pinpoint high and low nucleo-
some occupancy. We explore different possible sig-
nals within and beyond the nucleosome length and
find that the complexity indices are informative of
nucleosome occupancy. We found that, while it is
clear that the gold standard Kaplan model is driven
by GC content (by design) and by k-mer training;
for high occupancy, entropy and complexity-based
scores are also informative and can complement the
Kaplan model.

INTRODUCTION

DNA in the cell is organised into a compact form, called
chromatin (1). One level of chromatin organisation consists
in DNA wrapped around histone proteins, forming nucleo-
somes (2). A nucleosome is a basic unit of DNA packaging.
Depending on the context, nucleosomes can inhibit or fa-
cilitate transcription factor binding and are thus a very ac-
tive area of research. The location of low nucleosomal oc-
cupancy is key to understanding active regulatory elements
and genetic regulation that is not directly encoded in the
genome but rather in a structural layer of information.

The structural organisation of DNA in the chromosomes
is widely known to be heavily driven by GC content (3),
notwithstanding that k-mer approaches have been discov-
ered to increase predictive power (4–6). Indeed, local and

short-range signals carried by DNA sequence motifs or ‘fin-
gertips’ have been found to be able to determine a good
fraction of the structural (and thus functional) properties
of DNA, such as nucleosome occupancy, with significant
differences for in vivo versus in vitro data (7).

Intensive analysis of the statistical correspondence be-
tween DNA sequence and in vitro and in vivo position-
ing has shown the degree to which the nucleosome land-
scape is intrinsically specified by the DNA sequence (8).
Here, we consider a set of algorithmic and information-
theoretic complexity measures to help unveil how much of
the information encoded in a sequence in the context of the
nucleosome landscape can be recovered from training-free
information-content and algorithmic-complexity measures,
i.e. with no previous knowledge, such as informative k-mers.
Nucleosome location is an ideal test case to probe how in-
formative sequence-based indices of complexity can be in
determining structural (and thus some functional) proper-
ties of genomic DNA, and how much these measures can
both reveal and encode.

Information-theoretic approaches to genomic profiling

Previous applications based upon algorithmic complexity
include experiments on the evaluation of lossless compres-
sion lengths of sets of genomes (9,10), and more recently,
in (11), demonstrating applications of algorithmic complex-
ity to DNA sequences. In a landmark paper in the area, a
measure of algorithmic mutual information was introduced
to distinguish sequence similarities by way of minimal en-
codings and lossless compression algorithms in which a mi-
tochondrial phylogenetic tree that conformed to the evolu-
tionary history of known species was reconstructed (10,12).

However, most of these approaches have either been
purely theoretical or have been effectively reduced to appli-
cations or variations of Shannon entropy (13) rather than of
algorithmic complexity, because popular implementations
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of lossless compression algorithms are actually closer to
Shannon entropy than to algorithmic complexity (14,15).

In certain cases, some control tests have been missing. For
example, in the comparison of the similarity distances of
different animal genomes (10,12) based on lossless compres-
sion, GC content (counting every G and C in the sequence)
can reconstruct an animal phylogenetic tree as accurate as
the one produced in (16). This is because two species that
are close to each other evolutionarily will also have similar
GC content.

Species close to each other will have similar DNA se-
quence entropy values, allowing lossless compression algo-
rithms to compress statistical regularities of genomes of re-
lated species with similar compression rates. Indeed, the GC
content of every species can be mapped to a single point on
a Bernoulli-shaped curve typically used to illustrate the dis-
tribution of Shannon entropy across a set of strings, in this
case a set of genome sequences with entropy correspond-
ing to the count of G or C versus A or T. The result will be
that two species have similar genomic entropy if they have
similar GC content. Here, we intend to go beyond this––in
breadth as well as depth–using better-grounded algorithmic
measures and more biologically relevant test cases.

Current sequence-based prediction methods

While the calculation of GC content is extremely simple, the
reasons behind its ability to predict the structural properties
of DNA are not completely understood (3,17). For example,
it has been shown that low GC content can explain low oc-
cupancy, but high GC content can mean either high or low
occupancy (18) and this is why the methods here introduced
may prove to be highly valuable. But how much GC con-
tent alone encodes nucleosome position, given that DNA
(and thus GC content) encodes much more than chromatin
structure, is a topic of interest. The same DNA sequences
are constrained within functional/evolutionary trajectories,
such as protein coding versus non-coding and regulatory
versus non regulatory trajectories, among others. The in
vitro and in vivo discrepancy can be explained in the same
terms, with other factors such as chromatin remodellers and
transcription factors affecting nucleosome organisation dif-
ferently in vitro versus in vivo.

Current algorithms that build upon, while probing be-
yond GC content, have been largely influenced by sequence
motif (6,19) and dinucleotide models (20)––and to a lesser
degree by k-mers (5)––and thus are not training- free, and
are the result of years of experimental research.

The dinucleotide wedge model

The formulation of models of DNA bending was initially
prompted by a recognition that DNA must be bent for pack-
aging into nucleosomes, and that bending would be an in-
formative index of nucleosome occupancy. Various dinu-
cleotide models can account reasonably well for the intrinsic
bending observed in different sets of sequences, especially
those containing A-tracts (21).

The Wedge model (22) suggests that bending is the result
of driving a wedge between adjacent base pairs at various
positions in the DNA. The model assumes that bending can

be explained by wedge properties attributed solely to an AA
dinucleotide (8.7 degrees for each AA). No current model
provides a completely accurate explanation of the physical
properties of DNA such as bending (23), but the Wedge
model (like the more basic Junction model, which is less
suitable for short sequences and less general (24)) reason-
ably predicts the bending of many DNA sequences (25). Al-
though it has been suggested that trinucleotide models may
make for greater accuracy in explaining DNA curvature in
some sequences, dinucleotide models remain the most effec-
tive (21).

The Kaplan model

Kaplan et al. established a probabilistic model to demon-
strate the possibility that one DNA sequence may be occu-
pied by a nucleosome (7). They constructed a nucleosome–
DNA interaction model and used a hidden Markov model
(HMM) to obtain a probability score. The model is based
mainly on a 10-bp sequence periodicity that indicates the
probability of any base pair being covered by a nucleosome.
The Kaplan model is considered the most accurate, and is
the gold standard for predicting in vitro nucleosome occu-
pancy. However, previous approaches, including Segal’s (26)
and Kaplan’s (7), require extensive (pre-)training. In con-
trast, all measures considered in our approach are training-
free. The model of Kaplan et al. is considered the gold stan-
dard for comparison purposes.

MATERIALS AND METHODS

To study the extent to which some signals contribute to
the determination of nucleosome occupancy, we applied
some basic transformations to the original genomic DNA
sequence. The SW transformation substitutes G and C for
S (Strong interaction), and A and T for W (Weak interac-
tion). The RY transformation substitutes A and G for R
(puRines) and C and T for Y (pYrimidines).

Complexity-based genomic profiling

In what follows, we generate a function score fc for ev-
ery complexity measure c (detailed descriptions in the Sup.
Mat.) by applying each measure to a sliding window of
length 147 nucleotides (nts) across a 20K and 100K base
pair (bp) DNA sequence from Yeast chromosome 14 (3).
At every position of the sliding window, we get a function
score for every complexity index c applied to the sequence
of interest used to compare in vivo and in vitro occupancies.

The following measures are introduced. First those clas-
sical and of wider use (see Supplementary Material for def-
initions):

• Shannon entropy with uniform probability distribution.
• Entropy rate with uniform probability distribution.
• Lossless compression (based on the Lempel-Ziv-Welch

algorithmic or LZW)

And a set of measures based or motivated in algorith-
mic complexity (see Supplementary Material for exact def-
initions):
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• Coding Theorem Method (CTM) as an estimator of al-
gorithmic randomness by way of algorithmic probability
via the algorithmic Coding theorem (see Supplementary
Material) relating causal content and classical probability
(27,28).

• Logical depth (LD) as a BDM-based (see below) esti-
mation of logical depth (29), a measure of sophistication
that assigns both algorithmically simple and algorithmi-
cally random sequences shallow depth, and everything
else higher complexity, believed to be related to biolog-
ical evolution (30,31).

And a hybrid measure of complexity combining local
approximations of algorithmic complexity by CTM and
global estimations of (block) Shannon entropy (see Supple-
mentary Material for exact definitions):

• The Block Decomposition Method (BDM) that approx-
imates Shannon entropy––up to a logarithmic term––for
long sequences, but Kolmogorov–Chaitin complexity
(32,33) otherwise, as in the case of short nucleotides (34).

We list lossless compression under information-theoretic
measures and not under algorithmic complexity measures,
because popular implementations of lossless compression
algorithms such as Compress and all those based on
Lempel-Ziv-Welch (LZ or LZW), as well as derived algo-
rithms (ZIP, GZIP, PNG, etc.), are actually entropy estima-
tors (14,15,34).

BDM allows us to expand the range of application of
both CTM and LD to longer sequences by using Shan-
non entropy. However, if sequences are divided into short-
enough subsequences (of 12 nucleotides), we can apply
CTM and avoid any trivial connection to Shannon entropy,
and thus to GC content.

Briefly, to estimate the algorithmic probability
(35,36)––on which the measure BDM is based––of a
DNA sequence (e.g. the sliding window of length 147
nucleoides or nt), we produce an empirical distribution
(27,28) to compare with by running a sample of 2.5 ×
1013 Turing machines with two states and five symbols
(which is also the number of nucleotide types in a DNA
sequence) with empty input. If a DNA sequence is algo-
rithmically random, then very few computer programs
(Turing machines) will produce it, but if it has a regularity,
either statistical or algorithmic, then there is a high prob-
ability of it being produced. Producing approximations
to algorithmic probability provides approximations to
algorithmic complexity by way of the so-called algorithmic
Coding Theorem (36,27,28). Because the procedure is
computationally expensive (and ultimately uncomputable),
only the full set of strings of up to 12 bits was produced,
and thus direct values can be given only to DNA sequences
of up to 12 digits (binary for RY and SW and quaternary
for full-alphabet DNA sequences).

The same methods (CTM and BDM) that we will use
along the paper are also used in the context of applications
of data deconvolution and network biology (37–39). A re-
view of some of these measures is available in (40).

Table 1. Spearman correlations between complexity indices with in vivo
and in vitro experimental nucleosome occupancy data from position 187
001 bp to 207 000 bp on the 14th yeast chromosome

In vitro In vivo

In vitro 1 0.5
In vivo 0.5 1
GC content 0.684 0.26
LD −0.29 −0.23
Entropy 0.588 0.291
BDM 0.483 0.322
Compress 0.215 0.178

RESULTS

Table 1 shows the in vitro nucleosome occupancy depen-
dence on GC content, with a correlation of 0.684 (similar
to that reported by Kaplan (7)) for the well-studied 20K bp
genomic region (187K–207K) of Yeast Chromosome 14, ex-
actly as was reported in (26) using their data, with no sliding
window but on full sequences. Knowledge-based methods
dependent on observed sequence motifs (41) are compu-
tationally cost-effective alternatives for predicting genome-
wide nucleosome occupancy. However, they are trained on
experimental statistical data and are not able to predict any-
thing that has not been observed before. They also require
context, as it may not be sufficient to consider only short
sequence motifs, such as dinucleotides (7,21).

Complexity-based indices

Figure 1 shows the correlations between in vivo, in vitro data
and the Kaplan model. In contrast, the SW transformation
captures GC content, which clearly drives most of the nucle-
osome occupancy, but the correlation with the RY transfor-
mation that loses all GC content is very interesting. While
significantly lower, it does exist, and indicates a signal not
contained in the GC content alone, as verified in Figure 4.

In Table 1, we report the correlation values found be-
tween experimental nucleosome occupancy data and ab ini-
tio training-free complexity measures. BDM alone explains
more than any other index, including GC content in vivo,
and unlike all other measures LD is negatively correlated, as
theoretically expected (42) and numerically achieved (34), it
being a measure that assigns low logical depth to high al-
gorithmic randomness, with high algorithmic randomness
implying high entropy (but not the converse).

Entropy alone does not capture all the GC signals, which
means that there is more structure in the distributions of
Gs and Cs beyond the GC content alone. However, entropy
does capture GC content in vivo, suggesting that local nu-
cleotide arrangements (for example, sequence motifs) have a
greater impact on in vivo prediction. Compared to entropy,
BDM displays a higher correlation with in vivo nucleosome
occupancy, thereby suggesting more internal structure than
is captured by GC content and entropy alone, that is, se-
quence structure that displays no statistical regularities but
is possibly algorithmic in nature.
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Figure 1. Top: Scaled score values of nucleosome occupancy in the 14th Yeast chromosome (experimentally validated versus the Kaplan model) on a sliding
window of length 4K nt for both in vitro and in vivo data against different measures/signals: the occupancy predicting Kaplan model (clearly better for in
vitro). Middle: SW is simply GC written as SW in contrast to RY (which is not AT). Calculated correlation values are highly correlated to the Kaplan model
but are poor at explaining in vivo occupancy data. Bottom: The RY DNA transformation, a signal orthogonal to SW (and thus to GC content), whose
values report a non-negligible max-min correlation, suggesting that the mixing of AT and GC carries some information about nucleosome occupancy
(even if weaker than GC content), with in vivo values showing the greatest correlation, unlike SW/GC, thus possibly neglected in predictive models (such
as Kaplan’s). The starting and ending points of the 100K segment are 187K − 40K and 207K + 40K nts in the 14th Yeast chromosome surrounding the
20K sequence studied in (3,26).

Model curvature versus complexity indices

The dinucleotide model incorporates knowledge regarding
sequence motifs that are known to have specific natural cur-
vature properties, and adds to the knowledge and predictive
power that GC content alone offers.

Using the Wedge dinucleotide model we first estimated
the predicted curvature on a set of 20 artificially gener-
ated sequences (Supplementary Table S3 (Supplementary.
Material)) with different statistical properties, in order to
identify possibly informative information-theoretic and al-
gorithmic indices. As shown in Supplementary Table S1
(Supplementary. Material), we found all measures nega-
tively correlated to the curvature modelled, except for LD,
which displays a positive correlation––and the highest in ab-
solute value––compared to all the others. This is consonant
with the theoretically predicted relation between algorith-
mic complexity (CTM and BDM) and logical depth (LD)
(34). All other measures (except for LD) behave similarly to
BDM. Since BDM negatively correlates with curvature, it
is expected that the minima may identify nucleosome posi-
tions (see next subsection).

The results in Table 1 and Supplementary Table S1 (Sup.
Mat.) imply that for all measures, extrema values may be
indicative of high nucleosome occupancy. In the next sec-
tion we explore whether extrema of these measures are also
informative about nucleosome location.

According to Table 1 there is a positive correlation be-
tween nucleosome occupancy and therefore one would ex-
pect to see higher nucleosome occupancy at higher values of
BDM. This only result by itself would imply that the max-
imum of BDM would be more informative about nucleo-
some positions.

Nucleosome dyad and centre location test

The positioning and occupancy of nucleosomes are closely
related. Nucleosome positioning is the distribution of indi-
vidual nucleosomes along the DNA sequence and can be
described by the location of a single reference point on the
nucleosome, such as its dyad of symmetry (43). Nucleosome
occupancy, on the other hand, is a measure of the probabil-
ity that a certain DNA region is wrapped around a histone
octamer.

Here, we have taken a set of sequences that are, to our
knowledge, among the most studied in the context of nucle-
osome research. Their structural properties have been ex-
perimentally validated, making them ideal for testing any
measure on, and they have also been used in other studies.

Figure 2 shows the location capabilities of algorithmic in-
dices for nucleosome dyad and centre location when nucleo-
somal regions are placed against a background of (pseudo-)
randomly generated DNA sequences with the same average
GC content as the immediate left legitimate neighbour. As
illustrated, BDM outperforms all methods in accuracy (Fig-
ure 2 and Supplementary Table S2 (Supplementary Mate-
rial)) and in signal strength (Figure 3). The results indi-
cate an emerging trend. For algorithmic and information-
theoretic measures the minimum is correlated with nucleo-
somal centre location, except for LD (which is weakly neg-
atively correlated). GC content fails even if we give it the
advantage of taking both min and max values as possible
indicators of the nucleosome centre. This is because we de-
signed the experiment for GC content to fail by surrounding
the nucleosome regions by pseudo-random DNA sequences
with GC content similar to the surrounded nucleosomal re-
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Figure 2. Nucleosome centre location according to five indices on 14 much-studied and experimentally validated nucleosomes in Yeast (source and full
sequences listed in Table S5) intercalated with another 16 pseudo-random DNA segments of 147 nts with the same average GC content as one of the
immediate neighbouring legitimate nucleosomal sequences to erase any GC content difference on purpose. Values are normalised between 0 and 1 and
they were smoothed by taking one data point per 10. The y axis scales differ between the left and right panels for ease of illustration only. Experimentally
known nucleosome centres (called dyads) are marked with dashed lines and the centres located, according to each measure, are marked with a magenta
circle. Panels on the right for which no dyad is known have their centre estimated by the centre of the nucleosomal sequence. By design GC content performs
poorly, but entropy recovers the signal ab initio. Centre predictions were called based on the local (147 nt window) minimum; only GC Content was called
based on either the local minimum or local maximum (min/max), thus giving it an extra edge. LD centre calls were made to the local maximum. Values
for the best performer index, BDM, are reported in Table 3. We know, however, that the Kaplan model relies heavily on GC-content and K-mers, so we
expect that it would be fooled when flanked by sequences of similar GC content.

gions. Yet the complexity-based indexes were still able to
pinpoint the locations consistently and more accurately.

The results for BDM and LD suggest that the first four
nucleosomal DNA sequences, of which three are clones,
display greater algorithmic randomness (BDM) than the
statistically pseudo-randomly generated background (sur-
rounding each legitimate sequence) designed to erase any
GC content difference, while all other nucleosomes are
of significantly lower algorithmic randomness (BDM) and
mixed (both high and low) structural complexity (LD).
Structural complexity in the context of LD means se-
quences that are deep in computational content, that is,
they are neither random nor trivial and they require com-
putational work (the segments can only be generated by
a slow computer program). The same robust results were
obtained after several replications with different pseudo-
random backgrounds. Moreover, the signal produced by
similar nucleosomes with strong properties (44), such as
clones 601, 603 and 605, had similar shapes and convex-
ity. The results suggest that algorithmic and information-

theoretic measures can recover a strong signal and can com-
plement GC content and K-mer training in finding nucleo-
some positions and nucleosomal centres.

Figure 3 shows the strength of noise versus signal in
the distribution of values for three indices (min values for
BDM, max values for LD, and min/max values for GC con-
tent). The signal-to-noise ratio is much stronger for BDM
and LD, but LD is shifted in the opposite direction (to
BDM), consistent with the theoretical expectation (what
is highly random for BDM is shallow for LD) (see Sup-
plementary Material), but for GC content the distribution
is normal, indicating that GC content distributes values
no much better than random (which was expected by de-
sign), unlike BDM, that performs better even on exactly
the same data. In other words, both BDM and LD spike
at nucleosome positions stronger and removed from nor-
mality compared to GC content on nucleosomal regions on
a pseudo-random DNA background (with GC content the
same as each flanked nucleosomal region). BDM is infor-
mative about every dyad or centre of a nucleosome, with 8
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Figure 3. Histogram of values for each complexity score in Figure 2. On
the x-axis are the complexity values arranged in bins of size 0.05 spanning
0 to 1 (the normalised complexity scores reported in Figure 2), while the y-
axis shows how many times the same value repeats. The plot demonstrates
how BDM and LD are the most removed from normal, unlike GC content.
A normal probability distribution is plotted in black, with mean and std
deviation estimated from the GC content values for comparison purposes.
BDM carries the strongest signal, followed by LD skewed in the opposite
direction, as expected, given its relationship to algorithmic complexity as
estimated by BDM.

out of the 14 predicted within 1 to 7 nts distance. Unlike all
other measures, LD performed better for the first half (left
panel 2) of nucleosome centre locations than for the sec-
ond half (right panel 2), suggesting that the nucleosomes of
the first half may have greater structural organisation. BDM
outperforms all other indices.

Supplementary Table S2 (Supplementary Material) com-
pares distances to the nucleosome centres as predicted with-
out any training, with BDM outperforming GC content, as
shown in Figure 2. The average distance between the pre-
dicted and the actual nucleosome centre is calculated to the
closest local extreme (minima or maxima) for GC content
and only minima for BDM (hence giving GC content an ad-
vantage) within a window of 73 bps from the actual centre
(the experimentally known dyad, or the centre nucleotide
when the dyad is not known).

In accordance with the results provided in Figure 2 and
Table 1, the minima of BDM is informative for nucleosome
position for the 14 test sequences whose natural curvature
is a fit to the superhelix. The minima of BDM (maxima of
LD) may thus also indicate nucleosome location. This latter
finding is supported by results in Supplementary Table S2.

Our results suggest that if some measures of complexity
indicate high or low occupancy nucleosomal regions where
GC content fails, the measures may capture structural sig-
nals different from GC content, such as k-mers, accounting
for <20% of the accuracy of the Kaplan model (with the
rest owing to GC content alone). However, the strong sig-
nal captured by some complexity measures and the marks
found in signals complementary to GC content (RY con-
tent) suggest that these complexity measures are not only
able to capture the usual markers, such as GC content,
with, e.g., Shannon entropy alone, but also k-mer knowl-
edge, without any previous knowledge or training. Further-
more, the measures may be revealing signals complemen-
tary to GC content running along the DNA not revealed
hitherto and requiring further examination.

Informative measures of high and low occupancy

To find the most informative measures of complexity c we
maximised the separation by taking only the sequences with
the highest 2% and lowest 0.2% nucleosome occupancy
from a 100K DNA segment for highest and lowest nucle-
osome occupancy values. There were 7701 high and 5649
low occupancy in vitro sequences, and 4332 high and 3989
low in vivo sequences. The starting and ending points of the
100K segment are 187K–40K and 207K + 40K nts in the
same 14th Yeast chromosome (3,26), that is, 40K nts sur-
rounding the original shorter 20K sequence first studied in
this paper.

The box plot for the Kaplan model indicates that the
model may not work as well for extreme sequences of high
occupancy where the maximum over the segments on which
these nucleosome regions are contained reaches an average
correlation of ∼0.85 (in terms of occupancy), as shown in
Figure 1 for in vitro data. This means that these high occu-
pancy sequences may be on the outer border of the standard
deviation in terms of accuracy in the Kaplan model.

The best model is the one that best separates the high-
est from the lowest occupancy, and therefore is clearly Ka-
plan’s model. Except for information-theoretic indices (En-
tropy and Compress), all algorithmic complexity indices
were found to be informative of high and low occupancy.
Moreover, all algorithmic complexity measures display a
slight reduction in accuracy in vivo versus in vitro, as is con-
sistent with the literature. All but the Kaplan model, how-
ever, are training-free measures, in the sense that they do
not contain any prior k-mer bias related to high and low
occupancy and thus are naive indices. Yet all algorithmic
complexity measures were informative to different extents,
with entropy, CTM and BDM performing best and LD per-
forming worst, and LD displaying inverted values for high
and low occupancy as theoretically expected (because LD
assigns low LD to high algorithmic complexity) (42). Also
of note is the fact that CTM and BDM applied to the RY
transformation were informative of high versus low occu-
pancy, thereby revealing a signal different from GC content
that models such as Kaplan’s may only partially capture in
their k-mer training.

Lossless compression was the worst behaved, showing
how CTM and BDM outperform what is usually used
as an estimator of algorithmic complexity (14,15,34). Un-
like entropy alone, however, lossless compression does take
into consideration sequence repetitions, averaging over all
k-mers up to the compression algorithm sliding window
length. The results thus indicate that averaging over all se-
quence motifs––both informative and not––deletes all ad-
vantages, thereby justifying specific knowledge-driven k-
mer approaches introduced in models such as Segal’s and
Kaplan’s.

CONCLUSIONS

Current gold standard prediction methods for nucleosome
location correlate highly with GC content and require ex-
tensive (pre-)training to refine what GC content can achieve.

More recently, deep machine learning techniques have
been applied to DNA accessibility related to chromatin and
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Figure 4. Box plots of informative indices for top highest and bottom lowest occupancies on Yeast chromosome 14 of 100K bp, representing about 1%
of the Yeast genome. The occupancy score is given by a re-scaling function of the complexity value fc (y-axis) where the highest score value is 1 and the
lowest 0. In the case of the Kaplan model, fc is the score calculated by the model (7) itself, which retrieves probability values between 0 and 1. Other cases
not shown (e.g. entropy rate or Compress on RY or SW) yielded no significant results. Magenta and pink (bright colours) signify measures of algorithmic
complexity; the information-theoretic based measures are in dark grey. This segment in chromosome 14 is a randomly chosen sequence for which both in
vivo and in vitro nucleosomal positioning values are available, which is likely the reason it is frequently used in the literature. When integrating more regions
the errors accumulated due to large gaps of missing values produced results impossible to compare, thereby forcing us to constrain the experiment to this
segment.

nucleosome occupancy (45). However, these techniques re-
quire a huge volume of data for training if they are to predict
just a small fraction of data with marginally improved accu-
racy, as compared to more traditional approaches based on
k-mers, and they have not shed new light on the sequence
dependence of occupancy. Here we test the ability of a gen-
eral set of measures, statistical and algorithmic, to be infor-
mative about nucleosome occupancy.

Here, we have gone beyond previous attempts to con-
nect and apply measures of complexity to structural and
functional properties of genomic DNA, specifically in the
highly active and open challenge of nucleosome occupancy
in molecular biology. While more investigation is needed,
these first experiments strongly suggest, and we report, that:

(1) Algorithmic measures such as CTM and BDM of DNA
sequences are informative of nucleosome occupancy.
This is especially true for:
(a) Sequences in which GC content may not be as in-

formative. Because, unlike k-mer frequency-based
scores, BDM does not trivially correlate with GC
content, as shown in Figure 2. In contrast, we know
that the correlation of the Kaplan model with GC
content is very high (overall ∼0.90 Pearson corre-
lation based on Figure 1).

(b) Sequences with very high or very low nucleosome
occupancy (Figure 4). These sequences have been
reported to have particular biological significance
(see (46)). While the difference between low and

high complexity is still best captured by the Kaplan
model, the entropy and complexity-based indices
are also highly informative for high occupancy and
complexity-based measures remain informative for
occupancy.

(2) Computational biologists can estimate CTM and BDM
values for candidate nucleosomal DNA sequences of
any length using an online complexity calculator, http:
//complexitycalculator.com and following these steps:
(a) Chunk the DNA sequence into subsequences of de-

sired sliding window length,
(b) Introduce each DNA sequence into the calcula-

tor field (see Supplementary Figure S1 in the Sup.
Mat.),

(c) Retrieve the value for each query,
(d) The ordered time series of CTM/BDM values is the

score function. Lowest values are more likely to sig-
nal a nucleosome centre according to the results in
this paper.

Source code to perform these calculations without querying
the website is also available online, written in R and easily
accessible through the acss package, fully documented at:
https://cran.r-project.org/web/packages/acss/acss.pdf.

This suggests that the training-free CTM, BDM and LD-
based indices may cover domains previously left uncovered
by the Kaplan model, and that these new measures can
complement current protocols, making it possible to com-

http://complexitycalculator.com
https://cran.r-project.org/web/packages/acss/acss.pdf


e129 Nucleic Acids Research, 2019, Vol. 47, No. 20 PAGE 8 OF 9

bine these measures with the Kaplan method to produce
even more accurate predictions. The results are actually be
very timely because understanding nucleosome positioning
(and chromatin state) is becoming a key factor in designing
CRISPR/Cas9 gene editing experiments (47)

Further investigation of the indices’ application to high
nucleosome occupancy should be performed by using some
other standard organisms, such as Caenorhabditis elegans,
on which in vitro and in vivo nucleosomal data is compre-
hensive. In the future, we will also explore applying these
tools on sequences for high GC content but this is not in
the scope of this current paper.

The algorithmic complexity approach is interesting when
following our methods (as opposed to e.g. popular lossless
compression algorithms) because they do not only provide
scores by numerical estimations for different nucleosomal
and genomic regions according to their function or struc-
ture but they also provide access to the actual models (com-
puter programs) that are able to reproduce the complexity
of each region and represent thus a set of candidate gener-
ative models for different regions with shared (low versus
high) algorithmic properties. These models offer a window
(as opposed to a black box) to further inspection of un-
derlying causes for feature extraction and knowledge dis-
covery in the form of, e.g. new longer range k-mers. The
fact that our algorithmic indexes can account for structural
properties and have informative power suggests that there
are common mechanistic properties shared among similar
structural genomic regions.

A direction for future research suggested by our work
is therefore the exploration of the use of these complexity
indices to complement current models and recent machine
learning approaches for reducing the feature space, by, e.g.,
determining which k-mers are more and less informative
and occur as a result of a recursive property according to
the set of computer programs that reproduce a region.

Another direction to explore could involve an extensive
investigation of the possible use of genomic profiling for
other types of structural and functional properties of DNA
according to their algorithmic complexity and algorithmic
probability indices, with a view to contributing to, e.g., HiC
techniques or protein encoding/promoter/enhancer region
detection, and to furthering our understanding of the effect
of extending the alphabet transformation of a sequence to
epigenetics.
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metric. IEEE Trans. Inform. Theory, 50, 3250–3264.

13. Utro,F., Di Benedetto,V., Corona,D.V.F. and Giancarlo,R. (2015)
The intrinsic combinatorial organization and information theoretic
content of a sequence are correlated to the DNA encoded
nucleosome organization of eukaryotic genomes. Bioinformatics, 1–8.

14. Zenil,H., Badillo,L., Hernández-Orozco,S. and Hernández-Quiroz,F.
(2018) Coding-theorem like behaviour and emergence of the
universal distribution from Resource-bounded algorithmic
probability. Int. J. Parallel Emergent Distrib. Syst., 34, 161–180.

15. Zenil,H. (2017) Algorithmic data analytics, small data matters and
correlation versus causation. In: Pietsch,W, Wernecke,J and Ott,M
(eds). Computability of the World? Philosophy and Science in the Age
of Big Data. Springer Verlag, pp. 453–475.

16. Pozzoli,U., Menozzi,G., Fumagalli,M., Cereda,M., Comi,G.P.,
Cagliani,R., Bresolin,N. and Sironi,M. (2008) Both selective and
neutral processes drive GC content evolution in the human genome.
BMC Evol. Biol., 8, 1.

17. Galtier,N., Piganeau,G., Mouchiroud,D. and Duret,L. (2001)
GC-content evolution in mammalian genomes: the biased gene
conversion hypothesis. Genetics, 159, 907–911.

18. Minary,P. and Levitt,M. (2014) Training-free atomistic prediction of
nucleosome occupancy. Proc. Natl. Acad. Sci. U.S.A., 111,
6293–6298.

19. Cui,F. and Zhurkin,V.B. (2010) Structure-based analysis of DNA
sequence patterns guiding nucleosome positioning in vitro. J. Biomol.
Struc. Dyn., 27, 821–841.

20. Trifonov,E.N. and Sussman,J.L. (1980) The pitch of chromatin DNA
is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. U.S.A.,
77, 3816–3820.

21. Kanhere,A. and Bansal,M. (2003) An assessment of three
dinucleotide parameters to predict DNA curvature by quantitative
comparison with experimental data. Nucleic Acids Res., 31,
2647–2658.

22. Ulanovsky,L.E. and Trifonov,E.N. (1986) Estimation of wedge
components in curved DNA. Nature, 326, 720–722.

23. Burkhoff,A.M. and Tullius,T.D. (1988) Structural details of an
adenine tract that does not cause DNA to bend. Nature, 331,
455–457.

http://complexitycalculator.com/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz750#supplementary-data


PAGE 9 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 20 e129

24. Crothers,D.M., Haran,T.E. and Nadeau,J.G. (1990) Intrinsically
bent DNA. J. Biol. Chem., 265, 7093–7096.

25. Sinden,R.R. (2012) DNA Structure and Function. Elsevier.
26. Segal,E., Fondufe-Mittendorf,Y., Chen,L., Thåström,A., Field,Y.,
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