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Abstract

Background: Deep learning has made tremendous successes in numerous artificial intelligence applications and is
unsurprisingly penetrating into various biomedical domains. High-throughput omics data in the form of molecular
profile matrices, such as transcriptomes and metabolomes, have long existed as a valuable resource for facilitating
diagnosis of patient statuses/stages. It is timely imperative to compare deep learning neural networks against
classical machine learning methods in the setting of matrix-formed omics data in terms of classification accuracy
and robustness.

Results: Using 37 high throughput omics datasets, covering transcriptomes and metabolomes, we evaluated the
classification power of deep learning compared to traditional machine learning methods. Representative deep
learning methods, Multi-Layer Perceptrons (MLP) and Convolutional Neural Networks (CNN), were deployed and
explored in seeking optimal architectures for the best classification performance. Together with five classical
supervised classification methods (Linear Discriminant Analysis, Multinomial Logistic Regression, Naive Bayes,
Random Forest, Support Vector Machine), MLP and CNN were comparatively tested on the 37 datasets to predict
disease stages or to discriminate diseased samples from normal samples. MLPs achieved the highest overall
accuracy among all methods tested. More thorough analyses revealed that single hidden layer MLPs with ample
hidden units outperformed deeper MLPs. Furthermore, MLP was one of the most robust methods against
imbalanced class composition and inaccurate class labels.

Conclusion: Our results concluded that shallow MLPs (of one or two hidden layers) with ample hidden neurons
are sufficient to achieve superior and robust classification performance in exploiting numerical matrix-formed omics
data for diagnosis purpose. Specific observations regarding optimal network width, class imbalance tolerance, and

genomics data.

inaccurate labeling tolerance will inform future improvement of neural network applications on functional
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Background

In the past decade, deep neural networks have inspired
waves of novel applications for machine learning prob-
lems. Recently, the biomedical field has also witnessed a
surge of deep learning assisted studies, which involve
protein structure prediction, gene expression regulation,
protein classification, etc. [1]. For instance, in just 3
years, a series of deep learning models [2-5] was devised
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to map DNA/RNA sequence motifs and boost transcrip-
tion factor binding estimation. In addition, deep learning
models have been built for classifying metagenomics [6]
and predicting heart failure [7], suicide risk [8], hospital
re-admission [9], and disease outcomes [10].

Many deep learning applications use feedforward artifi-
cial neural network models [11]. Perceptrons [12] are the
simplest form of feedforward neural networks which
consist of only two layers (input and output). Multi-Layer
Perceptrons (MLPs) extend from perceptrons by embed-
ding one or more hidden layers. MLP and alike models
had a long and continual record of successes in the
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supervised classification of high-throughput molecular
data. One of the best well-known examples is the classifi-
cation of four subtypes of small-round-blue-cell tumors,
executed on 63 training subjects and 25 testing subjects in
2001 [13]. This pioneering study applied a Linear Percep-
tron, a two-layered neural network with a linear activation
function. Following this seminal study, artificial neural
network models gained great popularity in the supervised
classification of microarray expression data [14—16]. Very
recently, a two-layered artificial neural network was
adapted to achieve excellent prognosis prediction of the
new generation of gene expression profiles, RNA-Seq
data [17].

Convolutional Neural Network (CNN) is a recent di-
vergent variant of MLP, comprising one or more convo-
lutional layers followed by one or more fully connected
layers. With demonstrated advantage in processing
images and videos, CNN becomes a trendy jackknife for
various machine learning applications, and the biomed-
ical domain is no exception. A notable application of
CNN in biological studies is DeepBind, which predicts
the sequence specificities for hundreds of DNA- and
RNA-binding proteins [2]. Most recently, CNN was
applied to mine medical records for predicting hospital
re-admission [9]. More adapted CNN models for bio-
medical research are on the horizon [18, 19].

Decades ago, it was proposed that one hidden layer
with an appropriate number of neurons (units) suffices
the “universal approximation” property [20, 21]. It is
generally agreed that a neural network with more than
one hidden layer can be regarded as a deep architecture,
so CNNs and MLPs of two or more hidden layers are
classified as deep learning model. With neural network
models re-gaining popularity in the deep learning wave,
it is worthwhile to interrogate the additional merit
brought forth by the “deeper” architecture particularly.
As a matter of fact, doubtful voices arose. For example,
despite its name, DeepBind may not necessarily be
“deep,” because many of its models are composed of
merely one convolution step along with its associated
operations. A subsequent survey of DeepBind and re-
lated CNN architectures concluded that deep architec-
tures are not necessary for the motif discovery task [22].
In another evaluative work, it was suggested that the
deep learning approaches may not be suitable for meta-
genomic classification [23].

Nevertheless, deep architectures are rapidly emerging
for tackling the disease diagnosis problem. One study
[24] leveraged an unsupervised deep learning method,
the sparse autoencoder, to transform feature representa-
tion before a traditional supervised model (Logistic
Regression) was employed for disease classification. Only
minor improvement was brought forth by the sparse auto-
encoder [24]. Another study [25] applied a CNN-rooted
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Generative Adversarial Network to discriminate cancer
samples from normal samples using microarray data. This
study was implemented on only two datasets, and the re-
sults were compared between the Generative Adversarial
Network and two baselines based on Restricted Boltz-
mann Machines. Without comparing to a wide panel of
alternative models and without testing on a good number
of datasets, the alleged advantage of the proposed deep
learning model was not convincing. These recent trials did
not successfully prove deep neural networks as a superior
choice in exploiting omics data for diagnosis purpose. It is
under-addressed whether deep neural network architec-
tures is as promising for this purpose as in other success-
ful applications [1]. Explicit and unambiguous guidance is
expected to inform the data scientists and computational
researchers in the community at large.

Given the uncertain performance in omics-based
anomaly classification yet demonstrated successes in
other biomedical research sectors, deep neural network
models deserve a thorough evaluation in the setting of
well-structured genomics datasets, being benchmarked
against their shallow analogs as well as classical models
beyond neural networks. Herein, we evaluated the per-
formance of MLP and CNN relative to classical machine
learning models for disease classification on omics data
(including high throughput transcriptome and metabo-
lome datasets). Observations and conclusions made in
this study are informative for researchers who are inter-
ested in applying deep learning techniques to predict
anomaly status from omics data.

Results

Single-layered MLPs with ample hidden units perform
better than deeper MLPs

We first compared the relative performances of MLP/
CNN across six primary architectures (Additional file 1:
Table S1) of varying depths (number of layers) and
widths (number of units at a layer), which derived from
the basic structures (Fig. 1) inspired by a related evalu-
ation study [22]. In total, 37 dataset-specific performance
values, in ACC or Kappa, are generated for each archi-
tecture. Within each dataset, we converted the original
performance values for six models to ranks, and evalu-
ated the overall performance of each architecture by the
average rank across 37 datasets. The architecture with
minimal average rank was regarded as the overall best
structure.

The classification performance of six MLP architec-
tures across 37 tasks are visualized in column-scaled
heatmaps (Fig. 2, left panes). The Kappa metric clearly
indicates that 1L_128U, the single-layered architecture
with 128 hidden units, had the best performance. It
appears that the performance of single-layered MLPs
had a positive dependence on the number of hidden
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Fig. 1 The basic architectures for MLP (A) and CNN (B). Because MLP's and CNN's basic architectures both had a single hidden/convolution layer
of 16 units or kernels, they were both coded as “1L_16U." Starting from 1L_16U, variant architectures with increasing number of units on hidden
layers and/or additional hidden layers were included into the testing panel (Additional file 1: Table S1). While not shown in the plot, the
architectures by default have a dropout layer immediately prior to the output layer with a dropout rate of 0.5
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Fig. 2 Performance of six architectures of MLP/CNN in classifying 37 datasets. Values in each column were scaled. Architectures were ordered by the
mean rank of performance across all 37 datasets (“Aggregate” bar). TCGA transcriptome data were employed for both stage classification (12 cases) and
cancer/normal classification (¥, 14 cases). Five original NSCLC datasets were organized into nine datasets for stage classification (5 datasets) and histology
classification (4 datasets), separately. Two metabolome datasets for chronic kidney disease were adopted to perform classification among 6 classes
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units, as 1L,_128U, 1L_64U, 1L_32U, and 1L_16U were
ranked as the 1st, 2nd, 3rd, and 4th places in overall
Kappa performance (Fig. 2, top-left pane). Precisely,
1L_128U attains the highest Kappa for 16 out of 37
datasets, whereas the other three single-layered MLPs
won in fewer datasets (13 times for 1L_64U, 7 times for
1L_32U, and 5 times for 1L_16U). A two-layered MLP
with 16/32 units (2L1_32U) and a three-layered MLP
with 16/32/64 units (3L1_64U) returned inferior per-
formance than the four single-layered MLPs. The ACC
metric gave similar rankings of the six MLP architec-
tures (Fig. 2, bottom-left), although placing the model of
64 units (1L_64U, average rank =2.71) ahead of the
model of 128 units (1L_128U, average rank =2.78). In
terms of ACC, 1L_128U performed best 13 times, and
1L_64U performed best 12 times.

The pattern of CNN performance is not as evident as
that of MLP (Fig. 2, right panes). A weak trend can be
observed that one single convolutional layer, especially
one with a good number of kernels, tends to outperform
other architectures. However this trend is violated by
the fact that a three-layered structure (3L1_64U)
defeated all other architectures in terms of Kappa (Fig.
2, top-right pane). CNN architecture 3L1_64U achieved
the best performance in 22 out of the total 37 datasets,
including 13 TCGA cancer-vs-normal discriminations,
five TCGA stage classifications, two NSCLC classifica-
tions, and CKD stage classification using both positive
and negative ion metabolomics datasets. In terms of
ACC, single-layered CNNs of moderate or large num-
bers of kernels (128 and 64) outperformed the
three-layered CNN model (Fig. 2, bottom-right pane).

A similar composite heatmap figure involving six add-
itional architectures that waived the drop-out design is
provided in Additional file 1: Figure S1. Across the
expanded architecture set, the phenomenon was still ob-
vious that single-layered MLPs with ample hidden units
achieved the best performance, whereas the CNN per-
formance pattern becomes even more obscure. As a side
note, we found that MLP models with the drop-out
design consistently outperformed MLP models devoid of
the drop-out design. This distinction was not apparent
with CNN models.

These results suggest that single-layered MLPs with a
moderate-to-great (> 64) number of units outperform
MLPs of multiple hidden layers. Nevertheless, the six
primary architectures covered only one instance of
two-layered and one instance of three-layered structures.
To fully verify the presumable advantage of single-layered
MLPs, we additionally investigated two-layered MLP ar-
chitectures with alternative unit configurations (2L1_64U
and 2L1_128U) and deeper MLPs with equal numbers of
units per layer (2L_128U, 3L_128U, and 4L_128U) were
tuned to the supposedly optimal value (128). Still,
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single-layered MLPs 1L_128U and 1L_64U dominated
over other architectures, with 1L_128U ranked the best
for both Kappa and ACC and 1L_64U ranked the 3rd
place for Kappa and the 2nd place for ACC (Fig. 3).

MLP outperforms CNN and classical machine learning
models

For each distinct classification scenario, we determined
an optimal architecture for MLP/CNN as the one win-
ning the most datasets and evaluated the performance of
MLP and CNN using these optimal architectures. MLP’s
optimal architectures were 1L_64U for the scenarios of
TCGA (stage classification) and NSCLC (adenocarcin-
oma vs squamous); 1L,_128U for the scenarios of TCGA
(cancer vs normal), NSCLC (stage classification), and
CKD (stage classification). Of note, 1 L-128 U was not
found as the optimal architecture for MLP across all sce-
narios. 1 L-64U was found to be nearly as good as 1
L-128 U in the overall evaluation, being voted in the 2nd
place by Kappa and in the 1st place by ACC (Fig. 2, left
panes). CNN’s best performing architectures were
3L1_64U for all scenarios except for NSCLC (stage clas-
sification), which favored 1L_128U.

Across all datasets, the average Kappa performance of
the seven machine learning models were sorted from
best to worst in the following order: MLP, LDA, MLR,
NB, CNN, RF, and SVM (Fig. 4a, left). Across all data-
sets, the average ACC performance of the seven models
were sorted from best to worst in the following order:
MLP, RE, LDA, NB, SVM, MLR, CNN (Fig. 4a, right).
Per either Kappa or ACC, MLP stood out as the best
performing method, whereas CNN is not conspicuous in
either metric. We further compared MLP against each
of the other six methods using a single-tailed Wilcoxon’s
Signed Rank Test, finding that MLP significantly outper-
formed CNN, NB, RF, and SVM in Kappa (all p-values
<0.001) and it significantly outperformed CNN, MLR,
LDA, and NB in ACC (all p-values <0.01) (Fig. 4b).
Combining the test results for Kappa and ACC, we
conclude that MLP defeated each of the six competitor
models, no matter whether the competitor is older
(MLR, LDA, and NB) or relatively modern (RF, SVM,
and CNN).

In addition to demonstrating an overall superiority
across all 37 datasets, MLP also achieved statistically sig-
nificant advantage over most competitors in individual
groups of datasets for TCGA (cancer vs normal) and the
TCGA (stage classification). For the TCGA (cancer vs
normal), MLP outperformed all other models except RF
in terms of both Kappa and ACC (p <0.01, Wilcoxon’s
Signed Rank Test). For the TCGA (stage classification),
MLP outperforms all other models except LDA in either
Kappa or ACC (p <0.01, single-tailed Wilcoxon’s Signed
Rank Test). Kappa and ACC for each method and each
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Fig. 3 Ranks of classification performance of six primary and five extended architectures of MLP. The original performance measures (Kappa or
ACC) were converted to ranks (1-11) within each dataset, with a smaller rank signifying a better performance. Each dot represented a rank per
architecture and per dataset. Dots were colored by the dataset group (see section Datasets). Architectures were ordered by the mean rank across
all datasets. See Additional file 1: Table S1 for definitions of the various architectures

cancer type unambiguously found MLP as the overall
best model for TCGA (cancer vs normal) (Additional file
1: Figure S2). MLP did produce better performance over
the majority of the other machine learning methods for
the other three test scenarios (NSCLC (adenocarcinoma
vs squamous), NSCLC (stage classification), and CKD
(stage classification). However, these advantages were
not statistically significant. This could be due to limited
sample sizes. For example, MLP had higher ACC and
Kappa than NB, MLR, LDA, MLP, and SVM in the CKD
positive and negative ion metabolomics datasets (Fig. 4b,
blue lines), but the advantages cannot be evaluated sta-
tistically given that only two datasets were used.

MLP is robust against imbalanced class composition and
inaccurate class labels

Within the TCGA (cancer vs normal) scenario, BRCA
(breast cancer) had the largest number of cancer pa-
tients and thus was often chosen for elaborated analyses.
We performed an investigation of class-imbalance

robustness on a series of datasets originating from
BRCA. The BRCA dataset contains 112 normal samples
and 1093 tumor samples. From this full dataset, we
derived a series of 10 datasets with increasing tumor vs
normal ratio (112 tumor vs 112 normal, 224 tumor vs
112 normal, ... 1090 tumor vs 112 normal). The per-
formance values of each method, in Kappa and ACC,
were calculated under each imbalance ratio, and the
average performance values of each method were con-
nected to reveal a possible trend over increasing imbal-
anced ratios (Fig. 5). While all methods had decent ACC
values (>0.88) for all class-imbalance ratios, CNN had
excessive Kappa fluctuations across the surveyed range
(Fig. 5). Particularly, at imbalance ratios 4 and 7, the
average Kappa of CNN dropped to near zero. These
absurdly low average Kappa values demonstrated the
unstable performance of CNN under class imbalance.
For example, the five repetitive datasets at tumor vs nor-
mal ratio 4 returned 0.88, 0.25, — 3.04, 0.86, and 0.71 in
Kappa values. The unstable Kappa values further proved
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that CNN is not an ideal machine learning method for
classification using numerical matrix-formed omics data.

All classical methods (MLR, LDA, NB, RF, and SVM)
maintain excellent Kappa compared to CNN. One-lay-
ered MLP had as good Kappa values as the classical
methods in a majority of the whole imbalance range,
with deterioration to unacceptable levels at the high im-
balance end (tumor vs normal ratio > 8). Two-layered
MLP, or 2L_128U specifically, had Kappa values > 0.8
until the imbalance ratio elevated to 9, from which the
Kappa plunged to negative at the imbalance ratio of 10.
Overall, MLP had good robustness against moderate
class imbalance, and two-layered MLP showed better ro-
bustness than single-layered MLP in this regard.

Using a balanced BRCA RNA-seq dataset (with a 1:1
tumor vs normal ratio), we studied the influence of
inaccurate class labeling on classification performance.
We randomly selected a portion of equal-sized positive
examples and negative examples in the training dataset
and let them undergo random shuffling of class labels.
Note that the class labels of the testing dataset were not
altered. The samples undergoing label shuffling
accounted for 0, 10, 20, 30, 40, and 50% of the training
data, thus generating 0%, ~5%, ~10%, ~15%, ~20%,
and ~ 25% mislabeled training samples. The mislabeling
was repeated three times to generate three repetitive
datasets for each inaccuracy level. The performance of
each method was summarized across cross-validation
datasets and aggregated over the repetitive swapping
trials. Grouped barplots present the comparative results
in terms of aggregated Kappa and ACC (Fig. 6). As ex-
pected, for all methods the classification performance
declines as proportion of the mislabeling increased in
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the training dataset. Surprisingly, even with a quarter of
training data points wrongly labeled, all methods pre-
serve good ACC (> 0.81) and acceptable Kappa (> 0.63).

With no mislabeling, RF and MLP-2L tied as the best
performing methods, with exactly the same Kappa of
0.991 and the same ACC of 0.995. As the mislabeling
rate increased, RF maintained its high performance.
MLP was the second best robustness method. MLP-1L
and MLP-2 L performed neck to neck with slight advan-
tage to MLP-1. LDA followed MLP as the third most
robust method.

CNN and MLP require much greater computation time
than traditional models

We empirically evaluated the computation complexity of
various machine learning models on the CKD positive ion
metabolomics dataset. We derived five cross-validation
datasets where each contained a randomly sampled 562 or
563 subjects for training data and the remaining 141 or
140 subjects for testing data. All five classical machine
learning models, along with one instance of CNN and four
instances of MLP were tested (Table 1). All classical classi-
fiers used a trivial computation time as compared to deep
learning models, which consumed tens of thousands times
more computation time than the swiftest model LDA.
MLP models cost slightly less computation time than
CNN. Increasing the depth of MLP models marginally
increased the computation time.

Discussion

Deep learning is finding more and more exciting applica-
tions in several domains of bioinformatics [1]. Nevertheless,
phenotype classification using numerical matrix-formed
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Table 1 Elapsed computation time (in seconds) for various
machine learning models. The positive Kidney dataset was used
as the test dataset. All classifiers were implemented on a
desktop personal computer with an Intel® Xeon® CPU E5-1650
v4 processor of 3.6 GHz and a random access memory of 32 GB

Test1 Test2 Test3 Test4 Test5
MLR 0.29 0.27 027 0.28 0.28
LDA 0.03 0.01 0.01 0.01 0.02
NB 0.1 0.09 0.09 0.11 0.1
SVM 0.05 0.05 0.05 0.05 0.05
RF 0.64 0.65 073 0.65 0.64
CNN_3L 194.19 195.25 196.53 192.28 21215
MLP_1L 144.70 145.76 144.53 139.73 173.07
MLP_2L 155.72 154.83 154.75 151.88 171.06
MLP_3L 169.61 17042 178.89 16691 169.39
MLP_4L 169.83 172.26 179.52 167.61 172.89

omics data has received insufficient attention from deep
learning practitioners. Thus, we carried out a survey of
various architectures of MLPs and CNNs to pinpoint the
most optimal configuration(s) for phenotype classification
using RNA-seq and high throughput metabolomics data.
Because of the vast computation load necessitated by a
large number of tested datasets (Table 2), we had to apply a
simple cross-validation schema for assessing seven methods
across 93 datasets. In real construction and evaluation of a
specific classifier, usually two layers of model validation are
required, namely the internal cross-validation and the ex-
ternal independent validation [26]. Secondly, we included
both binary classification and multi-class classification
problems in our survey, and adopted ACC and Cohen’s
Kappa as performance measures because they could handle
multi-class problems in the same way as binary problems.
The choice of best performance measures is an open ques-
tion, especially in the multi-class context. Other than
Cohen’s Kappa, Matthew’s Correlation Coefficient [26]
might be a good measure as well, which could be included
as an alternative to Kappa in future evaluation studies.
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We tested four discrete values for the number of units
(neurons) per layer, namely 16, 32, 64, and 128. A posi-
tive dependence of classification accuracy on the unit
number was observed for MLP. Occasionally, the per-
formance peaked at unit number 64 and plateaued from
64 to 128. In conclusion, when provided with a good
number of neurons on the hidden layers, shallow MLPs
are sufficient for achieving excellent disease classification
accuracy. This conclusion is in agreement with the
major finding from a survey of CNN structures for tran-
scription factor binding prediction [22]. While that sur-
vey concerned the validity of deep learning models in
analyzing DNA sequences, the present study concerns
the validity of deep learning models in analyzing numer-
ical matrix-formed data.

CNN is likely to succeed when an intrinsic spatial
structure exists within the input data, such as in
two-dimensional image processing or one-dimensional
DNA/RNA sequence analyses. In our scenario, the fea-
tures of the omics data matrices do not have an innate
spatial structure. We mandated an arbitrary structure
among features by convolving the features according to
the decreasing order of principal components. Lack of
genuine spatial structure within the omics data matrices
may primarily account for the failure of CNN. The ex-
ploration of CNN in such applications may be expanded
to settings that incorporate more reasonable feature
structures. For example, genes can be grouped to func-
tional terms through Gene Ontology, or they can be or-
ganized into clusters according to expression similarity.
Indeed, custom CNN models with these very innovative
features have appeared in preprint manuscripts [18, 19].
Despite the possibility of improvement, our present
work surveyed a representative range for major archi-
tecture parameters, namely network depth and width,
and we did not detect any promising signal from our
numerous trials. Our results tend to resonate with a
negative perspective into CNN application in well
structured genomics data [23]. At least, our results
indicate that a CNN with fine-tuned depth or width

Table 2 Five groups of omics datasets used for testing classification models

Dataset group Classification # Datasets # Classes # Raw # Reduced # Subjects Maximum
problem features features class ratio
TCGA* TCGA (cancer vs normal) 14x5°% 2 20,501 40 48-258 1:1
TCGA TCGA (stage classification) 12 2,3, 0r4 20,501 40 190-974 31
NSCLCh NSCLC (adenocarcinoma 4 2 21,619 - 54,675 40 58-254 4.3:1
VS squamous)
NSCLC.s NSCLC (stage classification) 5 3 21,619 - 54,675 40 58-265 441
CKD CKD (stage classification) 2 6 14,742° and 7,852°  54°and 49° 703 131

“Five repetitive sets of positive subjects were randomly sampled from the full TCGA samples to match with the negative dataset. Training and testing were
performed on each combined dataset, and performance values were averaged across the five repetitive datasets to return one value per cancer type

PCKD positive ion metabolomics
“CKD negative ion metabolomics
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is still unlikely to overshadow conventional competitors.
Substantial innovation and meticulous benchmarking is
needed before CNN can establish a promising role in
omics data analysis, especially when dealing with tran-
scriptome data.

Conclusions

In conclusion, we found that single-layered MLPs (i.e.,
MLPs of one hidden layer), and occasionally two-layered
MLPs, achieved the best classification performance as
long as they were deployed with ample neurons on the
hidden layers. The performance of CNN classifiers was
inferior compared to MLP, and no evident pattern can
be discerned for CNN. Furthermore, when compared
with classical machine learning method such as RF and
SMV, well-configured MLPs demonstrated an overall
best performance. In the face of suboptimal class
composition and mislabeled training data, single-layered
or two-layered MLPs retained satisfactory robustness. In
summary, our results proved that single-layered or
two-layered MLP models are a good choice for perform-
ing phenotype classification on matrix-formed omics
data. The results also dispelled the anticipation of ex-
cellent performance of CNN in such scenarios. Al-
though slower compared to classical machine learning
methods, the extra computation time used by MLP is
still tolerable. The only scenario in which we do not
recommend using MLP is for extremely imbalanced
classification datasets.

Methods

Datasets

In this study, we obtained 37 high-throughput omics
datasets from three sources, and organized them into
five groups (Table 2). First, RNA-seq data in RSEM
format were downloaded from The Cancer Genome
Atlas (TCGA) via the R package TCGA2STAT [27] and
were log transformed. Cancer stages with number of
subjects less than 50 were discarded, and cancer types
with two or more eligible stages were retained. As a re-
sult, 12 TCGA cancer types (COAD, KIRP, COADREAD,
KIPAN, KIRC, THCA, BLCA, BRCA, HNSC, LIHC,
LUAD, and LUSC) were used for supervised classifica-
tion of cancer stages. Cancers COAD and KIRP were di-
vided into two stages; cancers COADREAD, KIPAN,
KIRC, and THCA were divided into four stages; all other
six cancers, namely BLCA, BRCA, HNSC, LIHC, LUAD,
and LUSC, were divided into three stages. From a differ-
ent perspective, we derived binary-class datasets from 14
TCGA cancers (BRCA, COAD, COADREAD, HNSC,
KICH, KIPAN, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD,
THCA, and UCEC), focusing on the tumor vs. normal
distinction. Since normal samples always account for a
minor portion in the TCGA data cohort, we randomly
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sampled an equal number of tumor samples to match
with the normal samples of each cancer type. The ran-
dom subsampling process was repeated five times, and
model training and testing were separately performed on
each dataset and averaged across the five trials to return
a summary evaluation per cancer type.

Second, we downloaded five RNA-seq datasets for
multiple stages of non-small cell lung cancer (NSCLC)
patients from Gene Expression Omnibus. These five
datasets were accessed via IDs GSE10245, GSE11969,
GSE19804, GSE41271, and GSE42127, which involved
58, 144, 59, 265, and 174 human subjects, respectively.
All subjects from these five datasets were NSCLC stage
L, II, or III patients. Except for GSE19804, all other four
datasets were reorganized for binary histology classifica-
tion between adenocarcinoma and squamous NSCLC.

The last two dataset used were high throughput
metabolomics datasets generated from 703 subjects in a
chronical kidney disease (CKD) study. The 703 subjects
include 587 CKD patients with five stages (CKD1 =120,
CKD2 =104, CKD3 =110, CKD4 =119, CKD5=134)
and 116 age-matched normal healthy controls. The meta-
bolomics dataset were generated by ultra-performance li-
quid chromatography-high-definition mass spectrometry
in both positive and negative ion modes, respectively. The
metabolomics data were properly normalized following
established guideline [28].

In summary, 37 datasets were collected for this study.
Each dataset comprised tens of thousands of molecules,
so a beforehand feature reduction was unavoidable. To
be consistent with a companion ongoing project, we
used LASSO [29] to handle the two CKD datasets, and
as a result, retained 54 and 49 variables for the
CKD-positive and CKD-negative datasets, respectively.
Because LASSO did not work on some of the other
datasets (i.e., LASSO did not reduce the number of fea-
tures), we applied the commonly used Principal Compo-
nent Analysis to select a comparable number of features,
namely, 40. Although nowadays computation resource is
not as a limiting factor as in the past, our study involved
repeated model training/testing on a large number of
datasets each involving tens of thousands of raw features
(Table 2), which would pose extreme computation bur-
den if without any feature reduction. LASSO and Princi-
pal Component Analysis effectively reduced the number
of features of these datasets to a manageable scale suit-
able for our comparative evaluation purpose. Feature re-
duction operation was practiced in another deep
learning study [24] as well.

Deep learning models

We examined two major variants of modern neural
networks, Multi-Layer Perceptrons (MLP) and Convolu-
tional Neural Networks (CNN), for our survey. MLPs
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encompass two-layered feed-forward neural networks
which had proven validity in the supervised classification
of microarray data. We formalized various architectures
of MLPs, making sure to cover deeper models with more
than one hidden layer. Recently, CNNs have been suc-
cessfully employed in sequence analyses of DNA/RNA
data [2], and efforts to exploit CNN in numerical omics
are on the rise [18, 19]. It’s worthwhile to to investigate
if CNN proves as promising in numerical classification
as in image recognition at the onset of the trend.

The activation functions for all layers except the out-
put layer were always Rectified Linear Units [30], while
the output layer used the softmax activation function
[31]. The “rmsprop” optimizer [32] and the “categori-
cal_crossentropy” loss function [33] were chosen for all
MLP and CNN models. Within each fold of the outer
5-fold cross validation, an inner 5-fold partition of the
training dataset was imposed and the inner loop of
5-fold cross validations was utilized to choose the opti-
mal batch size of training examples, from three candi-
date values (1, 32, and the number of all training
examples). For the inner cross-validation implementa-
tions, MLP and CNN were configured to learn 1000
epochs of the training datasets, however after complet-
ing the inner cross validations the minimal epochs
achieving the best validation accuracy were recorded for
each value of the batch_size parameter. For the outer
cross-validation implementations, the batch size was set
as the dataset-specific optimal value and of the optimal
epochs (< 1000) determined from the inner cross valida-
tions was exerted for saving unnecessary computation
time. In most cases, we found the optimized batch size
was one.

We largely followed a previous study by Zeng et al.
[22] to devise basic architectures of MLP and CNN
models (Fig. 1), from which variant forms with more
units per layer and/or more layers were derived (Add-
itional file 1: Table S1). Of note, for narrative ease, we
encode the various architectures according to the num-
ber of hidden layers, without counting the output layer.
For instance, our basic single-layered architecture
1L_16U (Fig. 1) would be called a two-layered network
in common terminology. We tested different network
widths by setting the number of units at 16, 32, 64, or
124 (Additional file 1: Table S1). These values accorded
with the parameter setting in Zeng et al.’s work [22] yet
bearing an additional interpolated value (32) to ensure a
more even coverage of the tested range. We also investi-
gated the effect of dropping-out [34], a novel technique
proposed to mitigate overfitting. By incorporating or re-
moving a final dropout layer which randomly drops out
a half of input units) 6 x 2 architectures for both MLP
and CNN were formed (Additional file 1: Table S1),
upon which we explored possible width-dependent and/
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or depth-dependent performance patterns. Afterwards,
we extended our survey to additional deep MLP archi-
tectures containing 2, 3, or 4 hidden layers (Additional
file 1: Table S1), arriving at a more definite conclusion
on optimal architecture(s) of MLP and CNN for super-
vised classification using matrix-formed omics data. All
deep learning functionalities were offered by the R pack-
age keras [35].

Classical machine learning models

We examined five classical machine learning models to
compare with MLP and CNN. Linear Discriminant
Analysis (LDA) realizes classification by seeking a linear
combination of features that best separate the labeled
objects. The R package MASS [36] was utilized for LDA
computation. Multinomial logistic regression (MLR) is
an extension of binomial logistic regression to allow for
a dependent variable with more than two categories. In
essence, MLR models the logit transformation of
probability-wise class membership through a linear sum-
mation of various dependent variables. The R package
nnet [36] was utilized for MLR computation. Naive
Bayes (NB) is a probabilistic classifier that applies Bayes'
theorem with strong (naive) independence assumptions
between the features. Although the assumption of NB
usually does not hold in practical applications, NB often
yields acceptable classification performance and may
outperform sophisticated algorithms. The R package klaR
[37] was utilized for NB computation, where any feature
with zero variance in a class was dropped beforehand.

Random Forest (RF) is an ensemble model performed
by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the
classes. Since its introduction in the 1990s [38], RF has
been widely applied in biomedical applications with
great successes. The R package randomForest [39] was
utilized for RF computation, where the number of trees
was set at the suggested value 500.

A Support Vector Machine (SVM) is a representation
of the examples as points in space, mapped so that the
examples of the separate categories are divided by a clear
gap that is as wide as possible. SVM was invented in the
1960s and significantly enhanced in the 1990s [40]. The
R package 1071 [41] was utilized for SVM computation,
where a linear kernel was adopted.

Classification performance measures

We used two metrics to measure the performance of each
method. All aforementioned models provide classification
output for each test example as a score vector, which are
the probabilities of assigning the examples to each class.
Such a score vector is transformed to a class designation
by selecting the class with the highest score. Classification
Accuracy (ACC) is defined as the proportion of samples
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that are correctly classified to their class labels. Cohen’s
Kappa statistic [42] is an effective but under-utilized
metric that has a special advantage for machine learning
cases involving multiple classes and/or imbalanced class
distribution. More details regarding Kappa statistics are
presented in the Additional file 1: Table S2. Most analyses
conducted in this study used five-fold cross validation,
with four-fold cross validation applied to only GSE10245
and GSE19804, the datasets with limited number of
samples (< 60).

Additional file

Additional file 1: Supplementary text, table, and figures. Here we
included explanation to Cohen’s Kappa, Table S1, Table S2, and Figures
S1 & Figure S2 cited in the manuscript. (PDF 807 kb)
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