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Abstract: As an important component of the earth ecosystem, soil moisture monitoring is of great
significance in the fields of crop growth monitoring, crop yield estimation, variable irrigation, and
other related applications. In order to mitigate or eliminate the impacts of sparse vegetation covers
in farmland areas, this study combines multi-source remote sensing data from Sentinel-1 radar and
Sentinel-2 optical satellites to quantitatively retrieve soil moisture content. Firstly, a traditional Oh
model was applied to estimate soil moisture content after removing vegetation influence by a water
cloud model. Secondly, support vector regression (SVR) and generalized regression neural network
(GRNN) models were used to establish the relationships between various remote sensing features and
real soil moisture. Finally, a regression convolutional neural network (CNNR) model is constructed
to extract deep-level features of remote sensing data to increase soil moisture retrieval accuracy. In
addition, polarimetric decomposition features for real Sentinel-1 PolSAR data are also included in the
construction of inversion models. Based on the established soil moisture retrieval models, this study
analyzes the influence of each input feature on the inversion accuracy in detail. The experimental
results show that the optimal combination of R2 and root mean square error (RMSE) for SVR is 0.7619
and 0.0257 cm3/cm3, respectively. The optimal combination of R2 and RMSE for GRNN is 0.7098
and 0.0264 cm3/cm3, respectively. Especially, the CNNR model with optimal feature combination
can generate inversion results with the highest accuracy, whose R2 and RMSE reach up to 0.8947 and
0.0208 cm3/cm3, respectively. Compared to other methods, the proposed algorithm improves the
accuracy of soil moisture retrieval from synthetic aperture radar (SAR) and optical data. Furthermore,
after adding polarization decomposition features, the R2 of CNNR is raised by 0.1524 and the RMSE
of CNNR decreased by 0.0019 cm3/cm3 on average, which means that the addition of polarimetric
decomposition features effectively improves the accuracy of soil moisture retrieval results.

Keywords: soil moisture content; farmland areas; sentinel; regression convolutional neural networks

1. Introduction

As an important component of the earth ecosystem, soil moisture content (SMC) is
directly involved in the exchange of water and energy among surface water, groundwater,
and atmospheric vapor [1,2]. Meanwhile, it also plays an active role in the fields of water
resource management, ecological planning, agricultural production, and other related
fields [3,4]. In agricultural applications, SMC is not only the basic condition for crop
growth and development but also the key parameter for crop yield estimation, drought
monitoring, and variable irrigation [5,6]. Consequently, it is of great significance to retrieve
SMC accurately and in a timely manner.
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SMC distribution is influenced by several interacting factors, such as soil character-
istics, vegetation coverage, and climatic conditions. Therefore, it is relatively difficult to
obtain large-scale SMC information efficiently with the traditional single-point measure-
ment methods such as the drying method and digital probes [7,8]. Compared with ground
single-point measurement methods, remote sensing technology has been gradually applied
due to its wide coverage, strong timeliness, and low costs over the last three decades [9].
As the earliest and most mature technology of earth observation, optical remote sensing
has always been playing an important role [10–12]. However, the optical features have
reduced sensitivity to the water content of the observed target because the SMC retrieval
is only based on indirect relationships, and the accuracy is in general low. Conversely,
microwave remote sensing can directly obtain reflection information of SMC and has been
widely used.

Synthetic aperture radar (SAR), as an active microwave remote sensing technique, has
the capacity to penetrate surface vegetation, which is quite suitable for the quantitative
inversion of farmland surface SMC. Consequently, there are many scientific methods
and models for SMC retrieval with SAR data, such as the multi-temporal [13], empirical
approaches [14,15], machine learning algorithms [16–20], change detection algorithms [21],
and so on. In the area of bare soil, the backscattered radar signal is mainly in terms
of SMC and soil roughness. However, if the surface is covered with vegetation, some
additional measurements need to be applied to remove the vegetation influences on SAR
backscatter coefficients. To deal with this problem, the optical and SAR data are combined,
and several algorithms have been developed for estimation SMC [22,23]. Generally, these
algorithms can be divided into two main categories: (1) algorithms that removed vegetation
impact based on a vegetation microwave scattering model [24–27]; (2) algorithms in which
vegetation impact was represented by vegetation indexes or polarization decomposition
features and then the inversion model was employed to couple them with SMC [19,28,29].

For the former one, the vegetation backscattering could be effectively separated to
obtain the backscattering information of the bare soil through the vegetation microwave
scattering model, in which a water cloud model (WCM) is a commonly used model [24].
For example, Kong et al. [25] inverted farmland SMC using Radarsat-2 radar data and GF-1
optical data, and the results of SMC retrieval were improved after removing vegetation
effects based on WCM. Sekertekin et al. [26] retrieved SMC over vegetation covered sur-
faces, and its results showed that WCM was effective at eliminating the effect of vegetation
backscattering. Xing et al. [27] estimated the SMC using the Dubois model after removing
crop contribution to radar backscattering by a modified WCM, and validation results
presented satisfactory results. This approach is easy to use and can approximately mitigate
the vegetation influences. However, the model ignores that the inhomogeneity of vege-
tation will produce some errors. In addition, the model parameters must be recalculated
considering various vegetation conditions, which lead to an insufficient universality of
the model.

For the latter one, vegetation impact was not individually removed. On the one hand,
the impacts of vegetation cover were directly considered through the vegetation index.
For example, Attarzadeh et al. [28] presented an approach for the retrieval of SMC by cou-
pling single polarization C-band SAR and optical data at the plot scale in vegetated areas.
The vegetation effect was represented by three groups indices that were extracted from
the optical data. Holtgrave et al. [18] utilized Landsat-8 data to calculate the normalized
vegetation index (NDVI) to compensate the effect of vegetation on radar backscattering
and estimated SMC in vegetation covered flood plains with Sentinel-1 SAR data based
on support vector regression. On the other hand, the phase information contained in
SAR images was decomposed into polarimetric parameters to evaluate the vegetation
impact. The H/A/α polarimetric decomposition (i.e., Cloude decomposition) model has
been successfully employed in previous SMC retrieval [19,29]. For example, Özerdem
et al. [19] employed the H/A/α method to decompose Radarsata-2 data to obtain the
polarization characteristics inputted to the generalized regression neural network (GRNN)
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algorithm to retrieve SMC. The results indicated that entropy (H), anisotropy (A), and
alpha angle (α) are helpful for improving the accuracy of SMC retrieval. Xie et al. [29]
combined the H/A/α and Freeman Durden polarization decomposition methods for SMC
retrieval from full-polarization Radarsat-2 data. These parameters are directly affected by
soil moisture. Another advantage is that they can be calculated from satellite data without
ground sampling. Therefore, in this study, the H/A/α decomposition model was applied
for polarimetric scattering parameters.

More recently, convolutional neural networks (CNN) and deep learning theory have
obtained considerable development for image classification [30] and surface parameter re-
trieval [31] in the remote sensing field. CNN could fully consider the spatial distribution of
parameters, so it is usually employed for extracting deeper features. These features are also
gradually applied for SMC regression analysis with good accuracy and applicability [32].

Furthermore, CNN has the capability of fusing optical and radar data and is therefore a
well adapted tool for extracting features. Unfortunately, there are few studies on exploiting
the potential of combining SAR data with CNN to retrieve SMC; this study aims to construct
a regression convolutional neural network (CNNR) for SMC retrieval. Notably, SMC
retrieval factors usually include the backscattering coefficients (such as VV, VH) of active
microwave radar data and vegetation factors (such as normalized difference vegetation
index (NDVI), modified soil adjusted vegetation index (MSAVI)) calculated from optical
data. Little consideration is given to the phase information of SAR data, which actually
affects the accuracy of SMC retrieval. So, this study first employed an Oh model to retrieve
SMC with a water cloud model and then evaluated the applicability of SVR and GRNN
models. CNNR also was employed to extract the inner feature in satellite data that involves
the strength and phase information of radar data and vegetation information of optical
data. Finally, CNNR was constructed to improve the prediction performance, and the
conclusions are presented in the last section.

The remaining sections are arranged as follows. In Section 2, the retrieval algorithms
are introduced. Section 3 introduces the study area, ground truth data collection, and
remote sensing datasets used in this paper. In Section 4, the performances of the constructed
models are assessed. The importance of various features is also analyzed in this section.
Section 5 discusses the advantages of the proposed method and the limitations of this work.
In the end, Section 6 concludes this paper.

2. Methods

The model inputs of this paper include the backscattering coefficient of dual polariza-
tion radar (VH, VV), elevation and local incidence angle (LIA), vegetation indexes (NDVI,
MSAVI, difference vegetation index (DVI)) and polarization decomposition features (H, A,
α). The specific flow chart of the research was demonstrated in Figure 1.

2.1. Oh Model and Water Cloud Model

Many backscattering models have been developed to explain the relation between
the SMC and SAR data; the Oh model was one of the most widely applied among
these backscattering models. The empirical expressions of the Oh model are written as
follows [33]:

σ0
vh = 0.11m0.7

v (cos θ)2.2[1− exp(−0.32(ks)1.8)] (1)

p =
σ0

hh
σ0

vv
= 1−

(
2θ

π

)0.35m−0.65
v

· exp(−0.4(ks)1.4) (2)

q =
σ0

vh
σ0

vv
= 0.095(0.13 + sin 1.5θ)1.4(1− exp(−1.3(ks)0.9)) (3)

where p and q represent the co-polarized ratio and the cross-polarized ratio, respectively,
θ is the radar wave incident angle, k is the wave number (k = 2π/λ where λ is the wave-
length), and s is the standard deviation of surface height. As the Sentinel-1 provides the
backscattering coefficients in VH and VV polarizations, only Formulas (1) and (3) are
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employed to retrieve SMC. In addition, the study area in this paper was sparsely covered
by winter wheat during the data acquisition time, and the backscatter coefficients extracted
from radar images included the influence of soil surface vegetation, so the water cloud
model (WCM) was used to separate the backscatter coefficients of vegetation. The WCM is
shown as follows:

σ0
can(θ) = σ0

veg(θ) + τ2(θ) · σ0
soil(θ) (4)

σ0
veg(θ) = A×VWC cos θ(1− τ2(θ)) (5)

τ2(θ) = exp(−2B×VWC sec θ) (6)

where σ0
can(θ) is the total backscattering coefficient of the vegetated surface, σ0

veg(θ) is the
direct backscattering coefficient of the vegetation layer, σ0

soil(θ) is the direct backscattering
coefficient of the soil surface, and τ2(θ) is the two-way transmissivity of the vegetation
layer. VWC is the vegetation water content (kg/m2), θ is the radar wave incident angle,
and A and B are empirical parameters depending on the vegetation type. The vegetation
type in this study area was mainly winter wheat. According to the literature [34], A and
B in WCM were taken 0.0018 and 0.138, respectively. In consideration of the relationship
between NDVI and VWC [25,35], VWC could be expressed as follows:

VWC = 0(NDVI ≤ 0.17) (7)

VWC = 4.285 7NDVI− 1.542 9(NDVI > 0.5) (8)

VWC = 1.913 4NDVI2 − 0.321 5NDVI(0.17 < NDVI ≤ 0.5). (9)

Finally, the soil backscatter coefficient could be separated based on Formulas (4)–(9).
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2.2. Support Vector Regression

Support vector regression (SVR) is the application of support vector machine (SVM)
in function regression fitting based on the theory of minimizing structural risk. With the as-
cendancies of strong generalization ability and the ability to work well with both large and
small samples, SVR is widely utilized to extract surface parameters using satellite imagery,
such as soil salinity mapping [36], SMC retrieval [26], and crop yield prediction [37].
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When kernel function k(xi, x) satisfies Mercer’s theorem, the corresponding regression
prediction function could be described as Formula (10) according to the related theory of
universal functions,

f (x) =
n

∑
i=1

(αi − α∗i ) · k(xi, x) + b (10)

where n is the number of training samples, αi, αi* represent the Lagrange operator, and b is
the bias. The Gaussian radial basis function was selected as the kernel function of SVR in
this study. The best combination of the penalty factor c and parameter g are determined
by the K-fold cross-validation method (K = 5), and the input data would be normalized
uniformly, since the radiation values of optical data and radar data are quite different.

2.3. Generalized Regression Neural Network

Generalized regression neural network (GRNN) is a kind of local approximation
network with radial basis kernel function composed of input, pattern, summation, and
output layer [38]. The main advantages of this network are that it is suitable for solving
nonlinear problems and has a low requirement for sample size, so it has been diffusely
made use of in meteorology [39], food inspection [40], and other fields. In the GRNN
model, the target parameter Y(x) is calculated as

Y(x) =

n
∑

i=1
yi exp[−(x− xi)

T · (x− xi)/2σ2]

n
∑

i=1
exp[−(x− xi)

T · (x− xi)/2σ2]
(11)

where n is the sample size, x represents the measured input value, and xi and yi are the i-th
neuron of the corresponding sample and the i-th observed value, respectively. As indicated
in Formula (11), the performance of GRNN is greatly affected by its smoothing factor σ.

2.4. Regression Convolutional Neural Network

CNN proposed by Lecun et al. in 1998 has the most outstanding performance in image
recognition [41,42]. The structure of a typical CNN network is consisted of convolutional,
pooling, excitation function, fully connected layers, and a classifier. In order to avoid the
reduction of inversion accuracy caused by decreasing feature information, the pooling
layer in the CNN is removed from the model. Meanwhile, the classifier in the last layer
of CNN is replaced by a regressor. The ReLU was selected as the excitation function with
the advantage that ReLU is an unsaturated nonlinear function, and there is no problem of
gradient disappearance [43]. For non-polarization decomposition feature combinations,
the input characteristic parameters include σ0

VH , σ0
VV , DEM, LIA, and one of the three vege-

tation indexes, creating a 5 × 1 one-dimensional vector. For polarization decomposition
feature combinations, the input characteristic parameters include σ0

VH , σ0
VV , DEM, LIA, H,

A, α, and one of the three vegetation indexes, creating an 8 × 1 one-dimensional vector.
Since the data size would be changed after adding the polarization decomposition feature,
the input of non-polarization decomposition feature combinations is uniformly expanded
into an 8 × 1 vector for modeling to facilitate comparison. The prediction accuracy of
CNN is highly affected by the number and size of convolution kernels and its network
structure. After repeated experiments using the existing data, the final structure is shown
in Figure 2. The optimized Conv1D model mainly includes four Conv1D layers and two
fully connected layers. The former two Conv1D layers were used to expand the depth
of the data, and the latter two Conv1D layers were utilized to extract deep features. The
output of the second Conv1D layers is a concatenation of a width 2 Conv1D layer, a width
3 Conv1D layer, and a width 4 Conv1D layer. In addition, the ReLU layer is connected
after each convolution layer. Two fully connected and dropout layers were set up to raise
regression fitting capability.
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3. Materials
3.1. Study Area

An agricultural region in the Yangling agricultural hi-tech industries demonstra-
tion zone, one of the districts of Shaanxi province, China, was chosen as the study
area (Figure 3). The study area has a spatial extent of approximately 20 km × 16 km
(107◦55′20” E~108◦15′40” E, 34◦15′15” N~34◦50′28” N) and is located in the middle of
Guanzhong Plain, which is a dominant wheat-producing area in China. The terrain in this
area is relatively flat with an altitude between 560 and 790 m. The jointing period of wheat
grows after April, so during the investigated period, the farmland surface was bare or
covered by little vegetation. Figure 3a,b show the Sentinel-1 SAR image of VH polarization
mode and Sentinel-2 optical image, respectively.
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3.2. Ground Measurements

The ground measurements were collected during 12 March 2018, 8 December 2019,
and 6 January 2020. Field sampling times were as consistent as possible with the time
of the satellite overpasses to reduce measurement errors. SMC were obtained using a
TDR-300 SMC meter, whose probe length is 5 cm, which is suitable for acquiring surface
SMC. For each sample, five replicate measurements of SMC were recorded and averaged.
To ensure the authenticity of ground sampling, these soil samples were placed in a 100 cm3

aluminum box and then dried to calculate SMC. The latitude and longitude of each sample
were received by a handheld global positioning system (GPS) with an accuracy of cm,
which is much smaller than the resolution of remote sensing images. After excluding the
abnormal points, the remaining 154 samples totaled in the three samplings are further
studied, and the statistics of the SMC for each period are shown in Table 1. The sample
set partitioning based on joint x-y distances (SPXY) were applied to select the training and
testing dataset [44]. In total, 123 samples in the measured data are used as the training set
of these models, and 31 remaining samples are adopted as validation set.

Table 1. Collected soil moisture content (SMC) data in the study areas.

Date Number of Samples Min–Mean–Max SMC
(cm3/cm3) SD of SMC

12 March 2018 45 0.0956–0.1624–0.2618 0.0398

8 December 2019 54 0.0832–0.1761–0.2692 0.0473

6 January 2020 55 0.0850–0.1478–0.2814 0.0427

3.3. Remote Sensing Data

Sentinel-1 radar and Setinel-2 optical satellite belong to the Sentinel series of satel-
lites developed by the European Space Agency (ESA), which is designed to dynamically
monitor the environment and safety of the earth. Sentinel-1 is equipped with C-band with
advantages of dual polarization and short time resolution. Ground Range Detected (GRD)
and three Single Look Complex (SLC) format data in Interferometric Wide Swath (IW)
mode were selected in this study. The multi-spectral imager installed on the Sentinel-2 has
13 bands ranging from visible light to short-wave infrared with different spatial resolutions.
These data could be downloaded freely from the website (https://scihub.copernicus.eu),
and more characteristics of the applied remote sensing data were introduced in Table 2.

Table 2. Characteristics of Sentinel-1 and Sentinel-2 data used in this study.

Satellite
Platform

Acquisition
Dates

Data
Modes

Data
Level

Polarizations
or Bands

Time
Resolution

Spatial
Resolution

Sentienl-1A
12 March 2018

GRD + SLC Level 1 VH + VV 12 days 5 m × 20 m8 December 2019
6 January 2020

Sentinel-2A
10 March 2018

MSI Level 1C Red + Near
Infrared

10 days 10 m × 10 m8 December 2019
6 January 2020

The preprocessing of Sentinel images is mainly carried out on the corresponding
software (Sentinel Application Platform, SNAP) especially developed by ESA. The pre-
treatment procedure of GRD data includes radiometric correction, radiometric terrain
flattening, speckle filtering using refined Lee filter with 7 × 7 windows [45], and geometric
terrain correction with SRTM3 as a Digital Elevation Model (DEM). For SLC products, the
preprocessing step includes polarization decomposition in addition to radiation correction,

https://scihub.copernicus.eu
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radiation terrain flattening, speckle filtering, and geometric terrain correction. Sentinel-2 op-
tical images were atmospherically corrected with the Sen2Cor processor. Finally, Sentinel-1,
Sentinel-2, and ground truth data were mapped to the WGS84 coordinate system, on which
the ground control points were used to precisely match Sentinel-1 and Sentinel-2.

3.3.1. Non-Polarization Decomposition Features

After the preprocessing of Sentinel multi-source data was completed, σ0
VH , σ0

VV , local
incidence angle (LIA), and elevation could be directly extracted from Sentinel-1 GRD
format data. The vegetation indexes that have been used in the previous literature were
calculated by the red and near-infrared bands [23,28]. For Sentinel-2, B4 is red band,
B8 is near-infrared band. The center wavelengths of B4 and B8 are 665 nm and 842 nm
respectively, and their spatial resolutions are both 10 m (Table 3 shows more details).

Table 3. Adopted vegetation indices calculated from Sentinel-2 data.

Vegetation Index (VI) Index Full Name Formulae References

NDVI Normalized Difference Vegetation Index NDVI = (B8 − B4)/(B8 + B4) [46]

DVI Difference Vegetation Index DVI = B8 − B4 [47]

MSAVI Modified Soil Adjusted Vegetation Index MSAVI = 1
2 [(2B8 + 1)−

√
(2B8 + 1)− 8(B8 − B4)] [48]

For example, the NDVI values of sampling points were calculated and plotted in
Figure 4; it can be seen that the NDVI values in 154 sampling points were obviously different.
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3.3.2. Polarization Decomposition Features

The H/A/α decomposition method was proposed by Cloude and Pottier based on
the eigenvectors of the coherent matrix [49]. In fully PolSAR systems, the measured vector
data can be expressed by the 2× 2 complex scattering matrix as the following format,

S0 =

[
SHH SHV
SVH SVV

]
(12)

where SHH , SHV , SVH , and SVV are the scattering elements from four independent po-
larization channels, the subscripts “H” and “V” denote the horizontal and vertical linear
polarizations, respectively. For the VV-VH polarization mode, the scattering matrix becomes
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S =

[
0 0

SVH SVV

]
. (13)

And the target coherent matrix is decomposed into two parts through matrix features

T =
2

∑
i=1

λieieT
i . (14)

Therefore, based on the quad-polarized data, the entropy (H), anisotropy (A), and
alpha angle (α) are defined as (15), (16), and (17), respectively.

H =
2

∑
i=1
−Pi log2 Pi, Pi = λi/

2

∑
i=1

λi, 0 ≤ H ≤ 1 (15)

A =
λ1 + λ2

λ1 − λ2
, 0 ≤ A ≤ 1 (16)

α =
2

∑
i=1

Piαi, 0 ≤ α ≤ π

2
. (17)

It should be noted that the basic theory of H/α decomposition was originally pro-
posed for the quad-PolSAR data, but the H/α decomposition could be modified for dual-
polarization SAR; more detailed steps could be found in Reference [50]. The effect of SAR
phase information on SMC retrieval would be indirectly judged by comparing the results
with or without polarization decomposition features.

3.3.3. Correlation Analysis between Input Parameters and SMC

This part was to analyze the correlation between each feature parameter and SMC; the
result is shown in Figure 5. It can be seen that VH, VV, and DEM have a certain correlation
to SMC. However, the correlation between LIA and SMC is very weak. Among the three
vegetation indexes, MSAVI has the strongest correlation with SMC, followed by NDVI, and
DVI is the weakest. Among the three polarization decomposition variables, the correlation
to SMC is α, H, and A in descending order.
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4. Results

This section is organized as follows: firstly, the overall performance of the SVR, GRNN,
and CNNR models was analyzed. Secondly, we investigated the potential of these retrieval
models by comparing the results of six sets of feature parameter combinations. Finally,
the relative importance of the feature parameters selected in the study was measured and
determined by statistical methods. Data analysis and modeling are completed based on
Matlab. In order to ensure the reliability of assessing soil moisture results, soil moisture
evaluation statistics should be consistent with community standards [51], so the coefficient
of determination (R2), root mean square error (RMSE), and mean relative error (MRE) were
applied as three indicators for evaluating the accuracy.

4.1. Model Performances

SMC retrieval results of the Oh model before and after removing vegetation were
demonstrated in Figure 6. The experimental results showed that the R2 of the test set
increased by 0.0537 and the RMSE decreased by 0.0007 cm3/cm3 after removing the
vegetation. Obviously, the accuracy of SMC retrieval had been improved after removing
the vegetation by WCM.
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after removing vegetation.

First, we explored the prediction effect of the SVR model under different combinations
that contain σ0

VH , σ0
VV , DEM, LIA, vegetation index, and polarization decomposition

features. This model is trained and verified by six sets of feature parameter combinations.
As can be seen from Figure 7a,c,e, when the input feature parameters are σ0

VH + σ0
VV +

DEM+ LIA + NDVI/MSAVI/DVI, the R2 of the test set is 0.6108, 0.6146, and 0.5998 and
the RMSE is 0.0284, 0.0273, and 0.0287 cm3/cm3, respectively. The results of Figure 7b,d,f
indicate that the R2 of the test set is 0.7097, 0.7619, and 0.6621, and the RMSE is 0.0242,
0.0257, and 0.0263 cm3/cm3, respectively, after H, A, and α were added to the model input.
Comparing the two groups of Figure 7a,c,e and Figure 7b,d,f, it can be obviously seen that
the correlation between DVI and SMC is the weakest among the three vegetation indexes
using the SVR model to estimate SMC.



Sensors 2021, 21, 877 12 of 21

Sensors 2021, 21, x FOR PEER REVIEW 12 of 22 
 

 

 ߪ + DEM + LIA + NDVI/MSAVI/DVI, the experimental results indicated that the R2 is 
0.5058, 0.5581, and 0.4964 and the RMSE is 0.0291, 0.0284, and 0.0301 cm3/cm3, respec-
tively. The R2 is 0.6962, 0.7098, and 0.6115, and the RMSE is 0.0286, 0.0264, and 0.0292 
cm3/cm3, respectively after H, A, and α were added to model input, as shown in Figure 
8b,d,f. It could be concluded that adding polarization decomposition to input vectors 
results in better prediction performance. Comparing the two groups of Figure 8a,c,e and 
Figure 8b,d,f, we can obtain the similar conclusion that the correlation between DVI and 
SMC is the weakest among the three vegetation indexes using the GRNN model to re-
trieve SMC. 

 
Figure 7. SMC retrieval results of the support vector regression (SVR) model with different feature 
combinations: (a) ߪு ߪ +   + Digital Elevation Model (DEM) + local incidence angle (LIA) + NDVI, 

Figure 7. SMC retrieval results of the support vector regression (SVR) model with different feature
combinations: (a) σ0

VH + σ0
VV + Digital Elevation Model (DEM) + local incidence angle (LIA) + NDVI,

(b) σ0
VH + σ0

VV + DEM + LIA + NDVI + H + A + α, (c) σ0
VH + σ0

VV + DEM + LIA + MSAVI, (d) σ0
VH +

σ0
VV + DEM + LIA + MSAVI + H + A + α, (e) σ0

VH + σ0
VV + DEM + LIA + DVI, (f) σ0

VH + σ0
VV + DEM +

LIA + DVI + H + A + α.

The same data processing procedure used in the previous SVR model was repeated
in this stage to retrieve SMC based on GRNN. The resulting images were provided in
Figure 8. As can be seen from Figure 8a,c,e, when the input feature parameters are σ0

VH +
σ0

VV + DEM + LIA + NDVI/MSAVI/DVI, the experimental results indicated that the R2 is
0.5058, 0.5581, and 0.4964 and the RMSE is 0.0291, 0.0284, and 0.0301 cm3/cm3, respectively.
The R2 is 0.6962, 0.7098, and 0.6115, and the RMSE is 0.0286, 0.0264, and 0.0292 cm3/cm3,
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respectively after H, A, and α were added to model input, as shown in Figure 8b,d,f. It could
be concluded that adding polarization decomposition to input vectors results in better
prediction performance. Comparing the two groups of Figure 8a,c,e and Figure 8b,d,f, we
can obtain the similar conclusion that the correlation between DVI and SMC is the weakest
among the three vegetation indexes using the GRNN model to retrieve SMC.
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Figure 8. SMC retrieval results of the generalized regression neural network (GRNN) model with
different feature combinations: (a) σ0

VH + σ0
VV + DEM + LIA + NDVI, (b) σ0

VH + σ0
VV + DEM + LIA +

NDVI + H + A + α, (c) σ0
VH + σ0

VV + DEM + LIA + MSAVI, (d) σ0
VH + σ0

VV + DEM + LIA + MSAVI +
H + A + α, (e) σ0

VH + σ0
VV + DEM + LIA + DVI, (f) σ0

VH + σ0
VV + DEM + LIA + DVI + H + A + α.
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A similar approach to construct an input vector in the previous SVR and GRNN
model was applied for this CNN model. Figure 9 showed the change of loss function of
the training and the validation set under feature combination (σ0

VH + σ0
VV + DEM + LIA

+ MSAVI + H + A + α). In the initial stage, the loss function value decreases rapidly. As
the number of iterations increases, the network tends to converge, and the network has
completely converged when the iteration ends, which indicated that the network is in a
good learning state and there is no over-fitting.
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Figure 10 displays the results of validation set under different combinations. The
R2 is 0.7347, 0.8124, and 0.7264 and the RMSE is 0.0258, 0.0237, and 0.0259 cm3/cm3, as
Figure 10a,c,e shows. The R2 of inputs with the addition of polarization decomposition
features is 0.8497, 0.8947, and 0.7815, and the RMSE is 0.0224, 0.0208, and 0.0245 cm3/cm3,
respectively. Furthermore, we could find that the linear relationship between DVI and
SMC is the weakest among the selected vegetation indices.

4.2. Analysis of Model Inversion Results

It can be seen from the above results that the feature combination (σ0
VH + σ0

VV +
DEM + LIA + MSAVI + H + A + α) is the optimal combination of the SVR, GRNN,
and CNNR models. The optimal combination of R2 and RMSE of SVR is 0.7619 and
0.0257 cm3/cm3, respectively. The optimal combination of R2 and RMSE of the GRNN is
0.7098 and 0.0264 cm3/cm3, respectively. The optimal combination of R2 and RMSE of the
CNNR is 0.8947 and 0.0208 cm3/cm3, respectively.

Moreover, it is necessary to analyze the influence of polarization decomposition
features on SMC. For SVR models, the R2 of inputs with the addition of polarization decom-
position features was increased by 0.0989, 0.1473, and 0.0623, and the RMSE was decreased
by 0.0042, 0.0016, and 0.0024 cm3/cm3, respectively in comparison to the previous input
of five characteristic parameters. For GRNN models, the R2 of inputs with the addition
of polarization decomposition features was increased by 0.1904, 0.1517, and 0.1151, and
the RMSE was decreased by 0.0005, 0.0020, and 0.0009 cm3/cm3, respectively. For CNNR
models, the R2 of inputs with the addition of polarization decomposition features was
increased by 0.1904, 0.1517, and 0.1151, and the RMSE was decreased by 0.0005, 0.0020,
and 0.0009 cm3/cm3, respectively. According to the statistics of the six groups under SVR,
GRNN, and CNNR models, the RMSE of the model decreases after adding the H, A, and α
parameters, which means that these decomposition features have a positive effect on the
SMC retrieval. The polarization decomposition features contain information different from
the radar backscattering coefficient, which can reflect the texture and roughness of the tar-
get object. Therefore, these models performed better after the polarization decomposition
features were added.
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Compared with the results in Figure 5, the accuracies of SMC retrieval were signifi-
cantly improved when input features were combined. Remote sensing data are affected by
factors such as SMC, vegetation, and radar incidence angle, so richer information is helpful
to establish better correspondence. For the Oh model, the SMC retrieval accuracy was
raised after removing the vegetation influence. For SVR, GRNN, and CRNN, the kernel
function was used to directly couple the relationship between SMC and remote sensing
parameters. In this case, CNNR had the strongest ability to extract features from the remote
sensing data; thus, its accuracy was the highest. In summary, the key to constructing an
SMC retrieval model is to obtain features related to SMC.

4.3. Analysis of Feature Parameters Importance

The SMC prediction results are not only influenced by the inversion model but also by
the different combination of characteristic parameters, so it is necessary to further analyze
the effect of each characteristic parameter on the SMC inversion results. Each possible
combination is composed of σ0

VH , σ0
VV , DEM, LIA, H, A, and α and vegetation indexes.

The seven inputs (σ0
VH , σ0

VV , DEM, LIA, H, A, α) give 27 combinations, one vegetation
index is involved at most among the three vegetation indexes in each input combination
(none, NDVI, MSAVI, DVI), so the total combinations are 27 × 4 = 512 (combinations
= [σ0

VH , ···, σ0
VH + LIA, ···, σ0

VH + H + NDVI, ···, σ0
VH + σ0

VV + DEM + LIA + H + A + α +
MSAVI]). Furthermore, this study defines the equivalent number to analyze the relative
importance of each feature parameter more objectively (Formula (18)).

EN =
RMSEaverage

RMSEchosen
(18)

where EN means equivalent number, RMSEaverage and RMSEchosen are the average root
mean square error of all selected combinations and the root mean square error of a certain
combination, respectively.

The equivalent number of each input feature was calculated by a partial combination
of SVR and GRNN models, where the RMSE of the test set of these combinations was
required to be less than 0.035 cm3/cm3, and the R2 was greater than 0.5. After screening,
160 groups in SVR and 146 groups in GRNN were used to calculate the equivalent number.
The counting results are shown in Figure 11.
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Although the equivalent number of each input feature in the two models are different,
the appearance trend is the same, from large to small arranged as σ0

VH , σ0
VV , LIA, DEM,

MSAVI, NDVI, and DVI. Among these features, σ0
VV (225.01/306) was more frequent than

σ0
VH (210.17/306), which is consistent with the conclusion made by Mirsoleimani et al. [14]

that σ0
VV was more sensitive to SMC than σ0

VH . The correlation analysis between input
parameters and SMC in Figure 5 varied that σ0

VV was more related to SMC than σ0
VH , too.

This was mainly because the co-polarized VV backscattering mode contains richer soil
scattering information and reflects more surface information than the cross-polarized VH
backscattering mode. Altitude DEM (189.96/306) was supported by the fact that Holtgrave
et al. [18] verified that altitude was an important feature of SMC retrieval. Among the three
vegetation indexes, MSAVI (105.45/306) has the strongest correlation with SMC, which is
followed by NDVI (103.26/306) and DVI (62.72/306), as described by Figure 11. Meanwhile,
the results in Figure 5 also indicated that the correlation to SMC is MSAVI, NDVI, and DVI
in descending order. This may be caused by the fact that MSAVI simultaneously presents
the influences of both vegetation and soil background, which makes its response to SMC
change more significantly in the area.

5. Discussion
5.1. Contribution of Polarization Decomposition Features

On the one hand, Figure 11 indicated that H, A, and α were all sensitive to SMC.
Judging from the equivalent number of the three parameters, the counting results of H
(141.68/306) and A (137.22/306) are relatively close, and α (148.81/306) led with a slight
advantage. The statistical results led to the conclusion that the addition of polarimetric
decomposition features is of superiority in SMC retrieval. This is supported by the fact that
Özerdem et al. found that H, A, and α are sensitive with SMC [19].

On the other hand, after mixing H, A, and α features, the CNNR models were able to
estimate SMC with RMSE between 0.0208 and 0.0245 cm3/cm3 and R2 between 0.78 and
0.89. To further investigate the quantitative impact of H, A, and α, the comparison result of
SVR, GRNN, and CNNR under six selected combinations is listed in Table 4. Compared to
non-polarization decomposition feature combinations, the average R2 and RMSE values
of SVR, GRNN, and CNNR with polarization decomposition feature combination were
obviously better. Through further calculating, we could conclude that the R2 of SVR,
GRNN, and CNNR increased by 0.1028, 0.1524, and 0.1524, respectively, and the RMSE of
SVR, GRNN, and CNNR decreased by 0.0027, 0.0012, and 0.0019 cm3/cm3, respectively.
Undoubtedly, the polarization decomposition features are beneficial to raising the accuracy
of SMC retrieval.

Table 4. Comparison of the average of SVR, GRNN, and CNN under six selected combinations.

Model
Non-Polarization Decomposition

Feature Combination
Polarization Decomposition Feature

Combination

R2 RMSE MRE R2 RMSE MRE

SVR 0.6084 0.0281 14.93% 0.7112 0.0254 14.08%
GRNN 0.5201 0.0292 16.13% 0.6725 0.0280 15.12%
CNNR 0.7578 0.0251 12.48% 0.8419 0.0232 10.02%

5.2. Differences from Existing Work

During this paper, different input features in all possible combinations were analyzed
to confirm and consider the main features applicable to farmland areas. It is difficult to
effectively estimate vegetation in the process of inversing farmland surface SMC using
remote sensing data. Different from other literatures considering the effect of vegetation
cover on SMC [25,26], one contribution of this paper is that it applied vegetation index and
polarization decomposition features to characterize vegetation contribution. Among the
three indexes, MSAVI shows good linear correlation with SMC. After adding the polar-
ization decomposition feature to the input vector, the accuracy had been improved, so it
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is possible to consider SAR phase information when retrieving SMC in the future. Over-
all, when the model input has sufficient parameters, statistical results display that these
algorithms show good performance and prediction effects, especially the CNNR model.

Meanwhile, this paper defined an equivalent number to evaluate the relative impor-
tance of each characteristic parameter, which can better reflect the differences between
groups, so it is more objective and reasonable than simply counting. The results verify the
important effects of the radar backscatter coefficient, altitude, local incidence angle, and veg-
etation index on the retrieval of farmland surface SMC by counting its equivalent number.

Another contribution of this paper was that regression convolutional neural networks
were constructed to SMC retrieval with the fusion of SAR and optical data. This proposed
CNNR model could fully consider the spatial distribution of features and extract advanced
features reflecting the spatial and temporal differences of SMC. Meanwhile, the pooling
layer commonly used in the traditional convolutional neural network structure was re-
moved, which not only ensured the integrity of the extracted feature information but also
accelerated the network training and predicting speed. In addition, the method employed
does not require evaluating the impact of vegetation, thus avoiding errors in the process of
estimating vegetation.

Furthermore, in the same dataset, this CNNR model could better fuse satellite data of
different observation modes and types, which made the utilization of satellite images more
efficient. Test results confirmed that CNNR has higher applicability to retrieve SMC in our
experimental area than the traditional Oh model, SVR, and the GRNN model.

The results proved that merging the intensity information and phase information
of SAR data can effectively raise the accuracy of SMC. Under similar scenarios and data
sources, the overall accuracy of the proposed approach shows good performance in com-
parison to other methods in the literature, and some main methods for retrieving SMC are
listed in Table 5.

Table 5. Comparison of different approaches for estimating SMC.

Authors Data Accuracy Methods

SMC retrieval over bare areas

Paloscia [16] Sentinel-1 R2 = [0.59–0.88] ANN
Balenzano [21] Airborne SAR R2 = [0.5–0.7] Change detection technique
Hajnsek [52] POLSAR R2 = [0.4–0.7] Polarimetric decomposition
Hachani [53] Sentinel-1 R2 = 0.77 ANN

Zribi [54] ALOS-2 RMSE = [6.7–16.1%] Backscattering model
Pierdicca [55] AirSAR R2 = [0.59–0.79] Bayesian method
Satalino [56] ERS-SAR RMSE = [3.01–3.14%] MLP and IEM

SMC retrieval over vegetated areas

Baghdadi [23] Sentinel-1/2; Landsat-8 RMSE = 6% NNs
Kong [25] Radarsat-2/GF-1 R2 = [0.82–0.87] AIEM and WCM

Attarzadeh [28] Sentinel-1/2 RMSE = [4.94–6.41%] SVR
Mattia [57] Sentinel-1/2 R2 = 0.5 Change detection technique
Han [58] GF-3/GF-1 RMSE = [0.0271–0.0321 cm3/cm3] Optimal solution method

Adab [59] SMAP/Landsat 8 R2 = 0.73 Machine learning
Wang [60] Sentinel-1/2; Landsat-8; GF-1 R2 = [0.51–0.623] AIEM and LUT

Proposed Method Sentinel-1/2 R2 = [0.72–0.89] and
RMSE = [0.0208–0.0259 cm3/cm3] CNN

5.3. Limitations and Future Work

Firstly, since the Sentinel-1 data used in this paper were limited to dual-polarized
data, only the H/A/α decomposition model was employed to investigate and verify the
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influences of SAR phase information to SMC. Actually, there have been several polarimetric
decomposition techniques used in inverting SMC, so further research could be carried out
together with other common polarization decomposition methods to improve the retrieval
accuracy. Secondly, vegetation indices vary with plant growth stage and vegetation type,
and the original band that involved better versatility and consistency than vegetation
indices could be applied in future work. Thirdly, although Sentinel-1 SAR imaging is
not affected by environmental factors such as clouds and fog, the red and near-infrared
bands used in this model are sensitive to weather. Thus, the application of this method is
occasionally restricted by the availability of Sentinel-2 optical imagery.

6. Conclusions

This paper aimed at evaluating the capability of using Sentinel multi-source data to
retrieve SMC over farmland areas by regression convolutional neural networks. In our
proposed approach, the H/A/α decomposition method was firstly implemented to extract
polarization decomposition features that are merged with other feature parameters to form
the input vector. Then various retrieval methods were employed to estimate surface SMC.

The experimental results confirmed that vegetation index and polarization decompo-
sition features could characterize vegetation contribution effectively over farmland areas.
The addition of polarimetric decomposition features is effective to improve the accuracy of
soil moisture retrieval results. Among these retrieval models, CNNR performed the best
compared to the traditional Oh model, SVR, and GRNN, whose R2 and RMSE reach up
to 0.8947 and 0.0208 cm3/cm3, respectively. These results indicated that CNNR has great
potential for estimating soil moisture from Sentinel multi-source data and could provide
good prospects for local farmland irrigation and water conservation.
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