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An integrative multivariate approach for predicting 
functional recovery using magnetic resonance imaging 
parameters in a translational pig ischemic stroke model
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Abstract  
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and 
severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, 
the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine 
model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed 
focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral 
abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. 
Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait 
performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between 
lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have 
the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter 
composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) 
Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 
2017.
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Introduction 
Projections show that within the next 10 years an additional 
3.4 million Americans over the age of 18 will suffer a 
stroke (Ovbiagele et al., 2013). With limited Food and Drug 
Administration (FDA)-approved therapies, stroke has quickly 
become one of the leading causes of long-term disability. 

Statistics show that > 50% of stroke survivors experience a 
reduction in mobility of which 25–50% require some degree 
of assistance and ~50% experience long-term dependency 
(Benjamin et al., 2019; Miller et al., 2010). Early predictions 
of long-term functional recovery are therefore critical for 
determining patient prognosis and realistic rehabilitation goals 
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Graphical Abstract Graphical lasso and sparse canonical correlation analyses identify acute 
lesion volume and white matter integrity as magnetic resonance imaging 
biomarkers for long-term functional deficits in a pig ischemic stroke 
model



NEURAL REGENERATION RESEARCH｜Vol 16｜No.5｜May 2021｜843

as well as informing patients and caregivers of potential home 
adjustments and necessary community support (Kwakkel et 
al., 2011). Expected functional recovery projections could 
also be utilized to group patient populations enrolled in 
clinical trials in order to improve the accuracy in which novel 
therapeutic interventions are assessed (Young et al., 2005; 
Menaa, 2013). Neuroimaging modalities including magnetic 
resonance imaging (MRI) are widely used for diagnosing acute 
ischemic stroke and could provide important insight into 
identifying key stroke pathologies that influence optimal post-
stroke motor recovery (Campbell et al., 2012). 

Multiplanar MRI has significant potential to reliably predict 
post-stroke recovery as it can provide high-resolution 
structural information post-stroke. In particular, diffusion 
tensor imaging (DTI)-derived fractional anisotropy (FA) values 
have been used to estimate motor function in patients (Puig et 
al., 2011; Schulz et al., 2012; Groisser et al., 2014). Although 
differing prediction potentials have been reported between 
specific stroke phases (e.g., acute, chronic), FA reductions in 
the subacute phase (24 hours to 5 days post-stroke) have been 
identified as the best predictor of poor motor outcomes (Puig 
et al., 2011; Groisser et al., 2014; Jin et al., 2017). Diffusion 
weighted imaging (DWI) lesion volumes have also been 
shown to have predictive value when estimating functional 
outcomes showing strong correlations with the Modified 
Rankin Scale (mRS) and National Institutes of Health Stroke 
Scale (NIHSS) scores (Tong et al., 1998; Attyé et al., 2012). 
These correlations are important as the mRS and NIHSS scales 
are regularly used in hospitals to assess patients at acute and 
chronic stroke stages and are themselves gross predictors 
of motor recovery and mortality (Sun et al., 2014; Kandiah 
et al., 2016). However, these scales show limited precision 
in estimating long-term functional deficits. DWI-determined 
swelling is an independent predictor of poor outcome, with 
a cerebral swelling ≥ 11 mL identified as the threshold with 
greatest sensitivity and specificity for predicting poor outcome 
in patients (Battey et al., 2014). By potentially combining 
key MRI metrics such as lesion volume and FA, it may be 
possible to develop a robust model to more accurately predict 
functional outcomes. 

Recently, there have been advances in integrative data 
analysis as multivariate methods have displayed advantages 
over univariate methods due to the high dimensionality and 
latent structure within neuroimaging (Fan et al., 2008; Shamy 
et al., 2011; Xie et al., 2020) or more specifically, structural 
MRI datasets (Grosenick et al., 2013; Sabuncu and Van 
Leemput, 2011). These complex datasets make it possible 
to relate two separate multivariate patterns such as MRI 
outcomes (e.g. lesion, swelling) and post-stroke phenotypes. 
These datasets may be best analyzed with methods such as 
canonical correlation analysis (CCA), which is closely related 
to multivariate regression and partial least squares (Avants 
et al., 2014). CCA can be viewed as identifying basis vectors 
for two sets of variables such that the correlation between 
the projections of the variables onto these basis vectors 
are mutually maximized (Hardoon et al., 2004). The main 
difference between CCA and other commonly used MRI 
analytical approaches like partial least squares, principal 
component analysis (PCA), and independent component 
analysis is that CCA captures mutual information between 
datasets (Borga, 1998). Another appropriate statistical 
approach, a Gaussian graphical model, is based on modeling 
the precision matrix (i.e., the inverse of the covariance matrix) 
(Marrelec et al., 2006). Under a Gaussian assumption, zero 
elements of the precision matrix represent an absence of 
direct connections. Regularization approaches based on the l1-
norm, such as the graphical lasso (GL), allow for identification 
of the zero elements in the precision matrix. This sparsifies 
connections and consequently, eliminates indirect functional 
connections between MRI and recovery variables (Friedman 

et al., 2008; Vidaurre, 2013). As a result, this sparse network 
enables interpretation of tissue damage from a functional 
point of view and thus permits fundamental insights into 
potential disease biomarkers (Huang et al., 2010; Coloigner et 
al., 2016).

To further examine these correlations, the present study 
utilized these multivariate analysis methods in a clinically 
relevant pig model of ischemic stroke. Pigs exhibit strong 
similarities to humans in cerebral size, gyrification, vasculature, 
and white-to-gray matter ratios (Gralla et al., 2006; Kobayashi 
et al., 2012). Similarities in size enable the use of human MRI 
modalities leading to higher clinical predictability. Gyrification 
is a key architectural feature that correlates with cerebral 
connectivity and the complexity of stroke pathological 
processes (Sun and Hevner, 2014). Preservation of white-
to-gray matter ratios in an animal model is also essential in 
modeling stroke as white matter (WM) possesses a unique 
susceptibility to ischemia compared to gray matter due to 
differences in vascularization (Borowsky and Collins, 1989; 
Nonaka et al., 2003; Peters et al., 2004). Additional evidence 
suggests that edema accumulation, which is associated with 
poor patient outcome, is more prevalent in WM versus gray 
matter compartments (Stokum et al., 2015). Collectively, these 
shared neuroanatomical features corroborate the importance 
of assessing potential MRI biomarkers in a representative 
animal model to improve the probability of predicting post-
stroke functional prognosis in clinical applications.  

Therefore, the objective of this study was to utilize GL and 
sparse CCA to identify potential MRI diagnostic biomarkers 
that could predict a broader range of stroke severity in terms 
of functional deficits in a pig middle cerebral artery occlusion 
(MCAO) model. This study provides novel characterization 
of the relationships between acute swelling, lesion volumes, 
diffusivity, and WM damage and quantifiable deficits in 
novel exploration and gait performance using integrative 
multivariate analytic techniques. The present study provides 
compelling evidence that select MRI parameters could serve 
as a valuable tool to predict longitudinal functional deficits in 
stroke patients. 
 
Materials and Methods 
Animals
All work performed in this study was approved by the 
University of Georgia (UGA) Institutional Animal Care and 
Use Committee (IACUC; Protocol Number: A2014-07-021-
Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017 and 
in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals guidelines. The 
minimum sample size for this study was determined by a 
power calculation based on our routine use of the MCAO 
model with lesion volume changes by MRI imaging being the 
primary endpoint. The power analysis was calculated using 
a two-tailed anlysis of variance test, α = 0.05, and an 80% 
power of detection effect size of 1.19 and a standard deviation 
of 44.63. A total of 11 animals were included in this study. 
Specifically, five sexually mature, castrated male Landrace 
pigs (body weight 72–104 kg, aged 5–6 months) as well as 
four sexually mature, castrated male and two ovariectomized 
female Yucatan miniature pigs (body weight 68–98 kg, aged 
≥ 1 years) were purchased from the University of Georgia 
Swine Unit and Exemplar Genetics, respectively. Pigs were 
individually housed in a Public Health Service and Association 
for Assessment and Accreditation of Laboratory Animal Care 
approved facility at a room temperature approximately 27°C 
with a 12-hour light/dark cycle. Pigs were given access to 
water and fed standard UGA grower 1 diets with provision of 
enrichment through daily human contact and toys.

MCAO surgical procedures
All pigs were administered antibiotics (ceftiofur crystalline free 
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acid, 5 mg/kg intramuscular (IM) in the cervical muscle groups, 
Zoetis, Parsippany, NJ, USA) and analgesia (Fentanyl patch, 100 
mg/kg per hour. transdermal along the thoracic vertebrae, 
Mayne Pharma, Salisbury, Australia) the day prior to MCAO 
induction. Two pigs were randomly assigned to each surgical 
day. Pre-operative analgesia and sedation were administered 
to facilitate intubation (xylazine, 2 mg/kg, IM, VetOne,  Boise, 
ID, USA; midazolam, 0.2 mg/kg, IM, Heritage, Eatontown, NJ, 
USA; propofol, to effect (0–4 mL) intravenously (IV) in the 
lateral auricular vein, Zoetis; prophylactic 2% lidocaine, 1.0 
mL topically to the laryngeal folds, VetOne). Anesthesia was 
maintained (1.0–2% isoflurane, Abbott Laboratories, Chicago, 
IL, USA) in oxygen and air with vitals including temperature, 
respiration, heart rate, and blood pressure continuously 
monitored and maintained within normal parameters.

Ischemic stroke was induced via permanent right-sided 
MCAO as previously described (Additional Figure 1) (Platt et 
al., 2014). In short, an incision from the auricle to the orbit 
was made. The temporal fascia and muscle were elevated to 
permit resection of the zygomatic arch.  Utilizing a craniotome 
air drill (3M C100), a craniectomy exposed the local dura 
mater and the distal middle cerebral artery (MCA). The MCA 
and associated branches were permanently occluded using 
bipolar cautery forceps while the exposed cerebrum was 
covered with sterile biograft made of porcine small intestine 
submucosa (MatriStem, ACell, Columbia, MD, USA). The 
temporalis muscle and epidermis were re-apposed and 
anesthesia was discontinued. The mean surgery time was 2 
hours per pig with no intraoperative mortality observed. Once 
extubated, pigs were monitored every 15 minutes until vitals 
(temperature, heart rate, and respiratory rate) returned to 
normal parameters; every 4 hours for 24 hours; and every 
12 hours thereafter until epidermal sutures were removed 
approximately 10 days post-surgery. Like patients, all animals 
demonstrated thermoregulation abnormalities, elevated 
heart/respiration rates, and the inability to independently 
ambulate or feed within the first 24 hours post-stroke. 
Banamine (2.2 mg/kg, IM; Merck) was utilized every 12 hours 
for the first 24 hours and every 24 hours for 72 hours post-
stroke for post-operative pain and fever management. 

MRI acquisition and analysis
MRI was performed 24 hours post-stroke on a Siemens 
(Erlangen, Germany) or General Electric (Boston, MA, USA) 3.0 
Tesla Magnetom Avanto system (Additional Table 1). Utilizing 
the previously described surgical anesthesia protocol, MRI 
was performed with pigs positioned in supine recumbency. 
Standard multiplanar sequences were acquired including 
T2 fluid attenuated inversion recovery, T2 weighted (T2W), 
DWI, apparent diffusion coefficient (ADC), DTI, and FA. All 
sequences were analyzed using Osirix software (Version 
10.0.5, Pixmeo, Bernex, Switzerland) at default thresholds. 

To confirm the presence of ischemic stroke, hyperintense 
regions of interest (ROI) in T2 fluid attenuated inversion 
recovery and DWI sequences were compared to hypointense 
ROIs in ADC maps. Ischemic infarction often spanned from the 
most caudal aspect of the frontal lobe to significant areas of 
the temporal lobe and to regions of the parietal and occipital 
lobes. Changes in diffusivity were assessed via DWI-derived 
ADC maps. ADC hypointense ROIs in the ipsilateral hemisphere 
were identified and an identical ROI was directly copied to 
the contralateral hemisphere for each axial slice. The mean 
ADC values of the ipsilateral and contralateral hemispheres 
were compared and reported as a percent change from 
contralateral.

Hemisphere volumes were calculated using T2W sequences 
for each axial slice by manually outlining the ipsilateral and 
contralateral hemispheres. To control for the space-occupying 
effect of brain edema, ischemic lesion volumes were calculated 
via DWI-generated ADC maps as previously described by 

Gerriets et al (Gerriets et al., 2004). Corrected lesion volumes 
were calculated according to the following formula modified 
from Loubinoux et al. where LVc and LVu indicate corrected 
and uncorrected lesion volume, respectively, and HVc and 
HVi indicate volume of the contralateral and ipsilateral 
hemisphere, respectively (Loubinoux et al., 1997):

LVc = HVC+HVi–(HVC+HVi–LVu)·(HVC+HVi)/2HVC

DTI-derived FA maps were utilized to evaluate changes in WM 
integrity. FA values of the internal capsules (ICs) and corpus 
callosum (CC) were calculated on the same representative 
slice per pig and were expressed as a percent change in 
the ipsilateral hemisphere relative to the contralateral 
hemisphere.

Gait analysis
Gait data was collected using an automated GAITRite® 
pressure-sensitive mat (CIR Systems, Franklin, NJ, USA) to 
assess changes in motor function. The mat was 7.01 × 0.85 m2 
with an active area of 6.10 × 0.61 m2 (480 × 48 sensors). At 2 
weeks prior to stroke induction, pigs were trained to ambulate 
across the gait mat at a consistent, 2-beat pace. Once trained, 
pre-stroke gait data was collected on 3 separate days for each 
pig and averaged together. Gait data was then collected 4 
weeks post-stroke and was represented as a percent change 
relative to each pig’s pre-stroke performance to control for 
individual variability. 

Gait data was semi-automatically analyzed using GAITFour® 
Software (Version 4.9X9i, CIR Systems) to provide quantitative 
measurements of the left front (LF), right front (RF), left hind 
(LH), and right hind (RH) limbs. Additional measurements were 
specifically quantified for the hemiparetic front left limb as 
quadrupeds inherently distribute approximately 60% of their 
body weight to the forelimbs (versus 40% to the hindlimbs) 
and the contralateral side of the body (relative to the MCAO) 
is generally the most affected post-stroke. 

Behavior testing
As an additional measure of functional outcome, pigs 
underwent open field (OF) and novel object recognition 
(NOR) behavior testing pre- and 4 weeks post-stroke. Behavior 
testing took place in a 2.7 × 2.7 m2 arena and curtains were 
hung around the perimeter to reduce visual distractions. All 
trials were automatically recorded using EthoVision video 
tracking software (Version 11.5, Noldus Systems, Wageningen, 
Netherlands) to obtain objective and quantifiable measures of 
behavioral characteristics including velocity, distance traveled, 
and object exploration. For NOR testing, personnel secured 
two similar objects in the open field arena and allowed pigs to 
explore the objects. Pigs were then removed from the arena 
for a 10-minute inter-phase interval, while one of the similar 
objects was replaced with a novel object (NO). Finally, pigs 
were returned to the arena and exploration of the familiar and 
NOs was recorded. 

Study design
Al l  endpoints  and  funct iona l  measurements  were 
prospectively planned and underwent blinded analysis. 
Predefined exclusion criteria from all endpoints included 
instances of infection at the incision site, self-inflicted injuries 
that required euthanasia, uncontrolled seizure activity, and/or 
respiratory distress. 20% of pigs met the predefined exclusion 
criteria and were euthanized prior to the conclusion of the 
study. Pigs were euthanized at the conclusion of the study 
via lethal IV injection of euthanasia solution (1 mL/4.5 kg; 
VetOne; pentobarbital sodium and phenytoin sodium). No 
outliers were removed from the data.  

Statistical analysis
Gaussian graphical models and CCA were used to evaluate 
the predictive relationship between MRI and functional 
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recovery parameters (Table 1) (Hotelling, 1936; Whittaker, 
1991). R statistical software (Version 3.6.2, R Core Team, , 
Vienna, Austria) was used for all analyses. First, unsupervised 
dimension reduction (i.e., MRI biomarkers were not utilized 
to guide the dimension reduction) was performed for the 
gait variables as some gait parameters inherently measured 
similar motor deficits, thus resulting in highly correlated 
and redundant variables. Specifically, stride length, stance 
time, and cycle time showed an exceptionally high degree of 
correlation among the four paw measurements. In addition, 
stance time was nearly perfectly correlated with cycle time 
and therefore, stance time was dropped from the analysis. 
Stride length and cycle time were averaged across the fore 
and hind limbs.

Following simple dimension reduction, PCA was employed to 
further consolidate the gait variables. The principal component 
(PC) loadings from PCA were used to construct linear 

combinations of the original gait variables (gait PC variables) 
that retained a large proportion of the total variation. The gait 
PC variables were interpreted as latent variables describing 
the dominant modes of variation within the data with the 
first five gait PCs accounting for 95.54% of the total variation. 
These gait PC variables were used in both GL and sparse CCA 
analyses rather than the original gait variables. The gait PCs 
were interpreted by examining the correlations between 
each of the original gait variables with each of the five gait PC 
variables (Additional Table 2). The variables that were highly 
correlated with a gait PC contributed most to the mode of 
variation captured by the gait PC. These correlations were 
used to interpret how post-stroke tissue-level injury impacted 
the mode of variation captured by a gait PC.

Gaussian graphical models described the conditional 
dependence between two variables, given all the others. 
Under a Gaussian assumption, the inverse covariance matrix, 

Table 1 ｜ Definitions of assessed magnetic resonance and functional outcome variables

Abbreviation Variable Description

Swelling Right hemisphere volume (cm3)/left hemisphere volume (cm3) Change in hemisphere volume as assessed by T2 weighted sequences
%Lesion Lesion volume (cm3)/right hemisphere volume (cm3) Portion of the ipsilateral hemisphere affected by lesion as assessed by 

T2 weighted and diffusion weighted imaging sequences
ΔADC Mean ADC value of the right hemisphere/mean ADC value of the left 

hemisphere
Change in diffusivity as assessed by apparent diffusion coefficient (ADC) 
maps

ΔCC FA Mean fractional anisotropy (FA) value of the right corpus callosum/
mean FA value of the left corpus callosum

Change in white matter integrity as assessed by FA maps

RCC FA FA value of the right corpus callosum White matter integrity as assessed by FA maps
LCC FA FA value of the left corpus callosum White matter integrity as assessed by FA maps
ΔIC FA Mean FA value of the right internal capsule/mean FA value of the left 

internal capsule
Change in white matter integrity as assessed by FA maps

RIC FA FA value of the right internal capsule White matter integrity as assessed by FA maps
LIC FA FA value of the left internal capsule White matter integrity as assessed by FA maps
Distance 
traveled

Distance traveled (m) Distance traveled during open field (OF) testing as assessed by 
Ethovision XT software

Velocity Distance traveled (m)/time (s) Velocity during OF testing as assessed by Ethovision XT software
%Exploration (Time pig spent exploring (s)/time pig spent not exploring (s) ) × 100% Percentage of time spent exploring during OF testing as assessed by 

Ethovision XT software
NO exploration (Time pig spent exploring the novel object (NO) (s)/total time pig spent 

exploring objects (s) ) × 100%
Percentage of time spent exploring the NO during novel object 
recognition testing as assessed by Ethovision XT software

NO visits Number of instances the NO is explored The cumulative number of instances the  NO was investigated during 
NOR testing as assessed by Ethovision XT software

FO exploration (Time pig spent exploring the familiar object (FO) (s)/total time pig 
spent exploring objects (s) ) × 100%

Percentage of time spent exploring the FO during novel object 
recognition testing as assessed by Ethovision XT software

FO visits Number of instances the FO is explored The cumulative number of instances the  FO was investigated during 
NOR testing as assessed by Ethovision XT software

Velocity Distance traveled (cm)/ambulation time (s) As assessed by GAITFour® software
Cadence Number of strides/time (min) As assessed by GAITFour® software
Step length Length (cm) between the heel center of the current hoof print to the 

heel center of the previous hoof print on the opposite hoof (i.e., left 
front to right front, right hind to left hind)

As assessed by GAITFour® software

Stride length Length (cm) between the heel points of two consecutive hoof prints of 
the same hoof (i.e., left front to left front, right hind to right hind)

As assessed by GAITFour® software

Swing time The swing phase is the non-weight-bearing portion of each gait cycle; 
the time elapsed (s) between the last contact and the first contact of 
one identified hoof

As assessed by GAITFour® software

Stance time The stance phase is the weight-bearing portion of each gait cycle; the 
time elapsed (s) between the first contact and the last contact of one 
identified hoof

As assessed by GAITFour® software

#Sensors Number of sensors activated by contact of each hoof As assessed by GAITFour® software
TSP Total scaled pressure shows sum of peak pressure values (arbitrary 

units) recorded from each activated sensor by a hoof during gait mat 
contact

As assessed by GAITFour® software

Hind reach Length (cm) measured from the heel center of the hind hoof to the 
heel center of the previous forehoof on the same side (i.e., left hind to 
previous left front)

As assessed by GAITFour® software

%TPI Total pressure index shows weight distribution (%) of all four hooves As assessed by GAITFour® software

Cycle time Time elapsed (s) between the first contacts of two consecutive hoof 
strikes of the same hoof (i.e., left front to left front)

As assessed by GAITFour® software
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or the precision matrix, contained information regarding 
the conditional dependencies among variables. Variables 
corresponding to zero elements in the precision matrix were 
conditionally independent given the other variables, whereas 
variables corresponding to nonzero elements in the precision 
matrix were conditionally dependent given the others. The GL 
(Friedman et al., 2008), a regularized version of the Gaussian 
graphical model, was implemented in the R package “glasso” 
(R package version 1.10, , Stanford, CA, USA). This method 
produced a sparse estimate of the precision matrix, thus 
identifying which variables were conditionally dependent 
versus independent. Here, conditional independence did 
not imply marginal independence (i.e., a sparse covariance 
matrix). 

While the GL involved the inverse covariance matrix and 
addressed conditional dependencies between variables, 
CCA involved the covariance matrix and addressed marginal 
dependencies among variables.  CCA was uti l ized to 
characterize the relationship between MRI parameters (X) and 
functional recovery (Y) by finding linear combinations Xu and 
Yv such that the correlation ρ = Cor(Xu, Yv) was maximized. 
The solution to CCA required the singular value decomposition 
of the matrix:

K = Σ̂XX
–1/2 ΣX̂Y ΣŶY

–1/2

where Σ̂XX, Σ ̂YY, and Σ̂XY denoted the sample within- and 
between-covariance matrices of X and Y, respectively. Because 
the total number of variables in our analysis exceeded the 
sample size, it was necessary to use a regularized version 
of CCA. Specifically, the sparse CCA method of Witten et al. 
(2009) was employed in the R package “Penalized Multivariate 
Analysis” (R Core Team, 2019). This method standardized X 
and Y and assumed Σ̂XX and Σ̂XY were identity matrices, which 
was equivalent to working with the sample correlation matrix 
between X and Y. Furthermore, this sparse CCA method 
incorporated sparsity constraints into the singular value 
decomposition of the sample correlation matrix:

R = [diag(ΣX̂X)]
–1/2  ΣX̂Y [diag(ΣŶY)]

–1/2

The final estimates produced by sparse CCA were two vectors 
û and v̂ in which a large proportion of the elements were 
estimated as zero. In the present analysis, the estimate u ̂ 
was applied to construct a linear combination Xû, which was 
interpreted as a composite MRI score. As the vector was 
sparse, the MRI score utilized information only from the most 
relevant biomarkers. Similarly, the estimate v ̂ was used to 
construct a linear combination Yv ̂, which was interpreted as 
a composite recovery score utilizing only the most important 
variables relevant to the pattern of recovery. By construction, 
the correlation between Xû and Yv̂ was maximized and 
therefore the MRI score possessed strong predictive capacity 
for the functional recovery score. The sparse CCA method 
was utilized to rank the variables according to importance as 
defined by the number of instances in which the variable was 
selected (i.e., the canonical vector loading was nonzero) as 
the amount of regularization was adjusted to achieve a variety 
of levels of sparsity.

Results
MCAO induces acute ischemic infarction, decreases 
diffusivity, and WM loss with chronic decreases in 
exploratory behavior and motor function
To characterize and confirm ischemic stroke pathology, MRI 
was performed 24 hours post-stroke. T2W images revealed 
the formation of hyperintense lesions (Figure 1A, white 
arrows), increased hemispheric swelling, and midline shift. 
T2F (Figure 1B) and DWI (Figure 1C) sequences exhibited 
territorial hyperintense lesions (white arrows), while 
corresponding hypointense lesions indicative of restricted 
diffusion and cytotoxic edema were observed on ADC maps 

(Figure 1D, white arrow), thus confirming ischemic stroke. FA 
maps (Figure 1E) derived from DTI sequences revealed a loss 
of WM integrity in the right IC and CC (white arrows). 

Open field testing revealed a decrease in distance traveled 
and velocity between pre- (Figure 2A) and 4 weeks post-stroke 
(Figure 2B). Differences in NOR performance were observed 
as pigs spent more time exploring the NO (yellow circle) 
compared to the familiar object (pink circle) pre-stroke (Figure 
2C) compared to post-stroke (Figure 2D). Key spatiotemporal 
gait parameters were collected using a pressure mat pre- 
(Figure 2E) and 4 weeks post-stroke to detect potential 
impairments in left front (blue circle), right front (red circle), 
left hind (green circle), and right hind (black circle)motor 
function. Deficits in the measured gait parameters indicated 
stroke led to substantial motor impairments in pigs. 

GL analysis reveals acute WM integrity has the strongest 
conditional dependency with chronic recovery parameters
To investigate whether any of the gait parameters could be 
eliminated due to highly overlapping information, Pearson 
correlations between the gait parameters were calculated. A 
heatmap including the gait variables (Figure 3) stride length, 
stance time, and cycle time showed an exceptionally high 
degree of correlation among the four paw measurements. 
Stance time was dropped from the analysis and stride 
length, stance time, and cycle time were averaged across 
the four limbs. Even after eliminating a subset of redundant 
gait parameters from the originally assessed 36 variables, 
an additional reduction step was required for gait to be 
included in GL and CCA as the number of gait parameters 
was more than two times the sample size. To consolidate, yet 
still capture the complexity of these gait variables, PCA was 
performed and gait PC1-5 were used in downstream GL and 
CCA.

GL analysis was performed to determine which MRI 
parameters evaluated at 24 hours showed dependent 
relationships with functional outcomes captured at 4 weeks 
post-stroke. The results from GL analysis were represented as 
a network in which conditionally dependent variables share 
a line, while conditionally independent variables do not. The 
GL utilized a regularization parameter λ that controlled the 
number of connections in the network; larger values of λ 
resulted in fewer connections, while smaller values resulted in 
more connections. GL analysis at λ = 0.600 showed dependent 
relationships between MRI and functional outcomes (pink 
lines) between % lesion and NO visits and gait PC5; ΔIC FA 
and gait PC3; RCC FA and gait PC4; and LCC FA and gait PC3 
(Figure 4A). Interestingly, 24-hour WM FA parameters showed 
the largest number of dependent connections with 4-week 
functional outcomes. Upon increasing the tuning parameter 
to λ = 0.616 (Figure 4B) and 0.640 (Figure 4C), a decreasing 
number of dependent relationships were observed with the 
ΔIC FA showing the strongest dependent relationship with gait 
PC3 at λ = 0.820 (Figure 4D).

GL analysis also showed several conditionally dependent 
relationships between MRI parameters at 24 hours (green 
lines) and functional outcomes at 4 weeks post-stroke (Figure 
4A–D; blue lines). At the highest tuning parameter level of 
λ = 0.820, MRI parameters showed dependent relationships 
between ΔCC FA and LCC FA, while functional outcomes 
showed dependent relationships between of distance 
traveled, velocity, and %exploration (Figure 4D).    

%Lesion and RIC FA predict the functional variables NO 
visits, gait PC5, and gait PC2 in the best candidate CCA 
models 
Sparse CCA was also performed on 9 MRI biomarkers and 12 
recovery variables to identify the most important variables 
with importance being determined by the number of times 
the variable was selected as the amount of regularization was 
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Figure 1 ｜ Magnetic resonance imaging confirms permanent middle 
cerebral artery occlusion results in ischemic stroke. 
Pathological changes including hyperintense lesion formation was observed 
in T2 weighted (T2W; A), T2 fluid attenuated inversion recovery (T2F; B), and 
diffision weighted imaging (DWI; C) sequences (white arrows). Corresponding 
hypointensities indicative of decreased diffusivity and cytotoxic edema were 
observed on apparent diffusion coefficient (ADC; D) maps (white arrow). 
Loss of white matter integrity was observed in the internal capsule (IC; white 
arrow) and corpus callosum (CC) utilizing fractional anisotropy (FA) maps (E).

Figure 2 ｜ Ischemic stroke results in functional impairments as assessed 
by behavior testing and spatiotemporal gait analysis. 
Ethovision XT tracking software was utilized during open field (OF; A and B) 
and novel object recognition (NOR; C and D) testing to automatically assess 
differences in distance traveled, velocity, moving percent, and exploration 
of novel (yellow circles) and familiar objects (pink circles); representative 
movement tracings (blue lines) are shown pre- (A and C) and post-stroke 
(B and D). Additional motor function data was automatically analyzed 
using GAITFour® software to provide quantitative measurements of 36 gait 
variables; representative gait tracings shown for the left front (blue circles), 
right front (red circles), left hind (green circles), right hind (black circles) 
hooves (E).  

adjusted to achieve a variety of levels of sparsity. Sparse CCA 
indicated that %lesion, swelling, RIC FA, ∆IC FA, and LIC FA 
ranked the highest within the set of MRI parameters, while NO 
visits, gait PC2, gait PC5, distance traveled, and NO exploration 
ranked the highest within the set of functional recovery 
variables (Table 2). 

In order to build a predictive model for functional recovery 
variables based on MRI parameters identified in Table 2, 
standard CCA was performed using all possible combinations 
of these variables, total (25–1)2 CCA models to be exact. 
Among those, the three most predictive models utilized 

the MRI parameters %lesion and RIC FA and the functional 
recovery variables NO visits, gait PC5, and gait PC2 (Table 3). 
The estimated canonical variates reveal the directions and 
weights of the relationships within each model, while the 
corresponding canonical correlations signify the prediction 
powers. Model 1 was found to be the most predictive with the 
canonical correlation 0.920, thus suggesting that an increase 
in %lesion and a decrease in RIC FA resulted in decreased NO 
visits, Gait PC2, and Gait PC5.

Figure 3 ｜ Heat map of Pearson correlations between gait variables. 
Gait parameters exhibited a high degree of overlapping information, as 
indicated by the presence of many large magnitude Pearson correlations. 
Overlapping information is caused by small variability across the four paws 
(e.g., cycle time) or redundancy between parameters (e.g., stance time with 
cycle time). %TPI: Total pressure index; TSP: total scaled pressure; LF: left 
front; LH: left hind; RF: right front; RH: right hind.

Figure 4 ｜ Estimated precision matrix visualized as a network for a 
sequence of values of the graphical lasso regularization parameter λ.
Connections among magnetic resonance imaging variables 24 hours post-
stroke (green lines). Connections among behavior and gait variables 4 weeks 
post-stroke (blue lines). Connections between MRI variables and behavior and 
gait variables across time points (pink lines). λ = 0.600 (A), 0.616 (B), 0.640 
(C), 0.820 (D). See Table 1 for definitions of assessed magnetic resonance and 
functional outcome variables.
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Discussion
The results of this study demonstrate that GL and CCA 
statistical approaches can be used to identify clinically 
relevant acute MRI outputs that can be used to predict 
functional outcomes at chronic time points in a porcine 
model of ischemic stroke. GL results revealed IC FA and gait 
PC3 possessed the strongest conditional dependence among 
all the between-set variable pairs. CCA showed that %lesion 
and RIC FA predicted NO visits, gait PC2, and gait PC5 and 
consequently could serve as potential biomarkers indicative 
of future functional deficits. Interestingly, both GL and CCA 
showed that WM IC FA values were an important component 
of predicting 4-week functional outcomes. 

The IC is a subcortical WM structure that is highly involved in 
the complex communication and feedback loops between the 
cerebral cortex and the brainstem (Ng et al., 2007; Patterson 
et al., 2008). As a result, stroke patients with IC lesions often 
demonstrate persistent motor deficits including decreased 
swing phases and mean pressure of the hemiplegic limb 
(Titianova and Tarkka, 1995; Roth et al., 1997; Lee et al., 2017). 
This pig MCAO model closely replicated patient outcomes as 
GL analysis revealed Gait PC3 positively correlated with ∆IC 
FA in which smaller ipsilateral IC FA values correlated with 
more severe gait deficits. Specifically, TPI RF was the greatest 
negative correlation associated with gait PC3, followed by 
positive correlations with TPI LF, swing time LF, #sensors LF/
LH, and TSP LF/LH. This suggests increased WM damage 
within the RIC stimulated a shift in weight from the affected LF 
contralateral limb to the RF ipsilateral limb. This asymmetric 
weight distribution is believed to arise from the loss of tissue 
integrity in the striato-capsular area with IC and basal ganglia 
involvement resulting in reduced neural signaling from the 
right IC to the left side of the body (Alexander et al., 2009; 
Biesbroek et al., 2017). In a comparable clinical study utilizing 
the analogous GAITRite system, WM lesions corresponded 
with poorer gait performance as patients shifted their weight 
from the contralateral to the ipsilateral leg in response to 
muscle weakness and dynamic instability (Srikanth et al., 
2009). These similarities reinforced the importance of utilizing 
an animal model with comparable cerebral WM volumes 
to humans like the pig in order to more accurately identify 
acute biomarkers that are indicative of patient recovery 
(Tanaka et al., 2008; Nakamura et al., 2009). Furthermore, 
understanding the relationship between acute IC WM damage 
and subsequent gait compensatory strategies may improve 
patient motor recovery by providing a specific target in which 
novel therapeutic interventions can be assessed.

In clinical applications, acute lesion volume is also a frequently 
utilized predictor of patient prognosis due to its high 
correlation with functional outcomes (Schiemanck et al., 
2006; Borsody et al., 2009; Huisa et al., 2014). Interestingly, 
a clear correlation between lesion volume and motor deficits 
was also observed in the present study. Pigs with positive 

%lesion loadings demonstrated negative gait PC2 and gait PC5 
loadings. For gait PC5, #sensors LF possessed the greatest 
positive correlation, thus indicating increased lesion volumes 
led to decreased contact between the hemiparetic LF limb 
and the gait mat. In the context of clinical applications, this 
possesses important implications as many studies confirm 
similar impairments in the contralateral hemiparetic limbs 
of acute ischemic stroke patients (Hidler et al., 2007). In 
addition, RH swing time exhibited the greatest negative 
correlation with gait PC5 providing evidence that increased 
lesion volumes correlated with increased suspension of 
the compensatory RH limb. The stronger ipsilateral RH limb 
was likely utilized to initiate propulsive forces and thus 
manifested as increased swing time. These observations are 
likely due to lesioning of the IC, putamen, and basal ganglia, 
thus supporting evidence that hemiplegic patient functional 
outcomes correlate with stroke lesion profiles (a combination 
of delimiting lesion sizes and primary locations) (Chen et al., 
2000). Additionally, negative forelimb and positive hind limb 
correlations in %TPI and #sensors for gait PC2 revealed a shift 
in pig weight distribution from the forelimbs to the hind limbs 
relative to increased lesion volumes. Further understanding 
of this correlation is critically important as patients have 
also demonstrated imbalance in terms of both static (e.g., 
weight distribution, foot-pressure) and dynamic (e.g., weight 
shifting) postural control (Dickstein et al., 1984; de Haart 
et al., 2004). Specifically, weight-shifting correlations have 
revealed unique post-stroke recovery patterns as the ability 
to initiate and control voluntary weight shifts is an important 
prerequisite for independent ambulation in patients (de Haart 
et al., 2005). Consequently, continued understanding of the 
correlation between acute lesion volumes and locomotion is 
of considerable importance as it may facilitate the merging of 
clinical observations and neuroimaging data to provide more 
targeted rehabilitation programs for patients (Brunnstrom, 
1965). 

The identification of quantitative MRI biomarkers at 
acute time points may also assist in improving cognitive 
prognosis. Cognitive dysfunction is considered one of the 
most common consequences of stroke, often leading to a 
reduction in quality of life in 10–82% of patients (Rasquin et 
al., 2004). Interestingly, NOR testing in pigs revealed similar 
cognitive dysfunction in nonspatial learning and memory. 
Further CCA demonstrated that the number of NO visits 
were negatively correlated with %Lesion, thus indicating 
increased lesion volumes at 24 hours induced a reduction 
in spontaneous exploratory behavior 4 weeks post-stroke. 
Although the pathogenesis of cognitive decline is not well 
understood, larger stroke lesions that span both gray and 
WM compartments predict cognitive decline and correlate to 
the level of cognitive impairment in patients (Pantoni, 2010). 
Moreover, the majority of damage caused by larger lesions 
is often located in subcortical regions and, remarkably, WM 
occupies nearly half of these volumes (Wang et al., 2016). A 

Table 2 ｜ Sparse canonical correlation analysis  variable ranking based on 
importance

Rank MRI parameters Functional recovery variables

1 %Lesion NO visits
2 Swelling Gait PC5
3 RIC FA Gait PC2
4 ΔIC FA Distance traveled
5 LIC FA NO exploration

The 5 most important 24-hour magnetic resonance imaging biomarkers and 
4-week post-stroke recovery variables. RIC FA: FA value of the right internal 
capsule; LIC FA: FA value of the left internal capsule; NO visits: number of 
instances the novel object is explored; ΔIC FA: mean FA value of the right 
internal capsule/mean FA value of the left internal capsule.

Table 3 ｜ Variables and estimated canonical loadings and correlations for 
the best candidate models

Models
Canonical variates 
of MRI parameters

Canonical variates of functional 
recovery variables

Canonical 
correlation

1 0.775 × %lesion – 
0.336 × RIC FA

–0.643 × NO visits – 0.381 × gait 
PC2 – 0.676 × gait PC5

0.92

2 1.000 × %lesion –0.648 × NO visits – 0.375 × gait 
PC2 – 0.675 × gait PC5

0.90

3 1.000 × %lesion –0.722 – 0.643 × NO visits – 
0.720 × gait PC5

0.84

The best candidate models using 3, 4 and 5 total variables for canonical 
correlation analysis (CCA). The loading vectors suggest that an increase in 
percent lesion (%lesion) and a decrease in the mean fractional anisotropy 
value of the right internal capsule (RIC FA) result in decreased novel object 
(NO) visits, gait PC2, and gait PC5.
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comparative clinical study in a broad cohort of ischemic stroke 
patients demonstrated that quantitative thresholds applied 
to MRI parameters could be used to predict poor functional 
outcome with high specificity when initial DWI lesion volumes 
exceeded 72 mL (Yoo et al., 2010). Although similar thresholds 
existed for baseline NIHSS scores, researchers reported 
neuroimaging provided additional prognostic information over 
NIHSS alone. Consequently, early reperfusion interventions 
could mitigate cognitive impairment by decreasing acute 
stroke lesioning (National Institute of Neurological Disorders 
and Stroke rt-PA Stroke Study Group, 1995; Rha and Saver, 
2007). 

Conclusion 
A s  a n  e f fe c t i v e  m o d e l  o f  a c u t e  i s c h e m i c  s t ro ke 
pathophysiology, the pig is an excellent translational platform 
that can be utilized to identify potential MRI biomarkers and 
test predictive correlations using clinically relevant, integrative 
data analysis. The results from this study suggest acutely 
measured MRI parameters including lesion volume and IC 
WM integrity have the potential to improve accuracy of stroke 
prognosis, provide valuable insights into the pathophysiology 
of stroke injury, and provide biomarkers to test the efficacy 
of putative therapies on functional recovery. These results 
must be interpreted while considering the limitations of 
this study including the relatively small sample size. Future 
studies should include larger cohorts of animals as well as 
additional MRI diffusion metrics to further expand upon these 
findings. Nevertheless, these multivariate projection models 
may be used in the future to generate individually targeted 
rehabilitation programs to moderate patient cognitive and 
motor function disabilities post-stroke. 
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Additional Table 1 Magnetic resonance imaging collection protocol

Siemens General Electric

T2FLAIR T2W DWI/ADC DTI/FA T2FLAIR T2W DWI/ADC DTI/FA

Slice thickness (mm) 3 3 3.5 4 3 3 3 2
FOV (mm) 200 200 202 200 20 20 26.6 25.6
TR 9070 115 4644 3400 9072 6260 6000 10000
TE 97 6260 97 92 120 124 96.1 99.2
B-value 1 (s/mm2) N/A N/A 0 0 N/A N/A 0 0
B-value 2 (s/mm2) N/A N/A 500 1000 N/A N/A 1000 1000
B-value 3 (s/mm2) N/A N/A 1000 N/A N/A N/A 10000 N/A

Magnetic resonance imaging was performed 24 hours post-stroke on a Siemens or General Electric 3.0 Tesla Magnetom
Avanto system according the following parameters. ADC: apparent diffusion coefficient; DTI: diffusion tensor imaging; DWI:
diffusion weighted imaging; FA: fractional anisotropy; FOV: field-of-view; TE: echo time; TR: repetition time; T2FLAIR: T2
fluid attenuated inversion recovery; T2W: T2 weighted.
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Additional Table 2 Correlation between the original gait parameters and gait principal component variables

Variable Gait PC1 Gait PC2 Gait PC3 Gait PC4 Gait PC5

Velocity -0.96 -0.02 -0.24 0.07 0.04
Cadence -0.94 0.12 -0.27 -0.05 0.06
Cycle time 0.94 -0.06 0.32 0.06 0.04
Stride length -0.90 -0.28 -0.17 0.24 -0.13
Hind reach
L
R

0.85
0.77

-0.13
-0.08

-0.30
-0.34

0.04
0.31

0.09
-0.03

Step length
LF
RF
LH
RH

-0.88
-0.90
-0.85
-0.87

-0.38
-0.21
-0.41
-0.13

-0.14
-0.21
-0.14
-0.20

0.21
0.26
0.07
0.36

-0.12
-0.16
-0.04
-0.19

Swing time
LF
RF
LH
RH

0.66
0.77
0.90
0.80

-0.44
-0.22
-0.29
-0.30

0.52
0.45
0.16
0.23

0.25
0.21
0.23
0.20

0.03
-0.29
-0.09
-0.37

#Sensors
LF
RF
LH
RH

-0.62
-0.73
-0.70
-0.56

-0.47
-0.49
0.42
0.34

0.46
0.17
0.48
0.35

-0.03
-0.23
-0.26
0.61

0.39
0.07
-0.00
0.06

TSP
LF
RF
LH
RH

-0.80
-0.88
-0.82
-0.78

-0.35
-0.44
0.22
0.14

0.48
0.10
0.47
0.32

0.05
-0.04
-0.13
0.50

0.01
-0.08
-0.16
0.06

%TPI
LF
RF
LH
RH

0.37
0.04
-0.40
0.15

-0.72
-0.73
0.67
0.51

0.49
-0.60
0.34
-0.16

-0.06
-0.24
-0.43
0.78

0.15
-0.03
-0.25
0.20

The relative correlations between the original gait variables and the gait PC variables can aid in interpreting the modes of
variation captured by each PC. PC1 is highly correlated with velocity, cadence, cycle time, and stride length, and moderately
correlated with many others. The large number of variables correlated with PC1 suggests it is capturing general aspects of
movement, such as the size of an animal’s steps and how quickly it is walking. PC2 is most correlated with the total pressure
index (%TPI) followed by number of sensors (#sensors). The front paws are negatively correlated with PC2 and the hind paws
are positively correlated, suggesting that PC2 is capturing a shift in the distribution of weight between the front and hind. PC3
is most correlated with %TPI of the right front (RF), followed by several variables measured from the left front (LF) and left
hind (LH) paws. The correlation with %TPI RF is in the opposite direction as the others, suggesting that PC3 captures a shift in
the distribution of weight between the left and right sides. Gait PC4 is positively correlated with %TPI, #sensors, and total
scaled pressure (TSP) measured on the right hind (RH) paw, suggesting it is capturing how weight is distributed onto that paw.
Gait PC5 is only moderately correlated with #sensors LF and swing time of the right paws; it may be capturing variability in
the length of time animals take to move their right-side limbs.
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Additional Figure 1 Experimental timeline.
Animals underwent pre-stroke gait and behavior testing to control for individual variability between pigs. 24 hours following
middle cerebral artery occlusion (MCAO) stroke induction, magnetic resonance imaging (MRI) was collected to evaluate
changes in hemispheric swelling, lesion volume, diffusivity, and white matter. Gait and behavior testing was conducted at 4
weeks post-stroke as diagramed.


