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Abstract

Cancer is a heterogeneous disease, and patient-level genetic assessments can guide ther-

apy choice and impact prognosis. However, little is known about the impact of genetic vari-

ability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome.

Current approaches using bulk tumor specimens can suggest the presence of ITH, but only

single-cell genetic methods have the resolution to describe the underlying clonal structures

themselves. Current techniques tend to be labor and resource intensive and challenging to

characterize with respect to sources of biological and technical variability. We have devel-

oped a platform using a microfluidic self-digitization chip to partition cells in stationary vol-

umes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-

cell volumes is obtained and subject to a variety of relevant quality control assessments

such as allele dropout, false positive, and false negative rates. We demonstrate single-cell

genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid

leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity dis-

tribution than would be predicted via bulk analysis.

Introduction

Clonal evolution in cancer–the selection for and emergence of increasingly malignant clones

during progression and therapy–has been highlighted as an important phenomenon in the

biology of leukemia and other cancers.[1–9] While emerging evidence shows that tumors can

be composed of multiple cancer cell clones, it is unclear how the relative fitness imparted by

genetic variation between individual cells (clonality) contributes to the evolutionary race

between these cancer cell clones. Expanded access to next generation sequencing (NGS) plat-

forms, as well as sensitivity improvements, have broadened our understanding of intratumoral

heterogeneity (ITH), as we are now able to describe genetic variability within diseases.[10]

However, our ability to deduce the clonal composition of individual patient samples has been

limited by the use of DNA sequencing data from bulk tumor samples. Current methods typi-

cally rely upon the extrapolation from mutant variant allele frequencies (VAF) of DNA from
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the metagenome of bulk tumor samples. This approach requires a set of assumptions about the

possible zygosity distribution among the single cells that comprise the admixture tumor sam-

ple. The basic evolutionary framework into which these assumptions fit is the idea of a linear

sequence of clonal expansions in which each mutation occurs only once, driving a new clonal

expansion in which all further mutational events occur heterozygously. While studies have

demonstrated these “linear” models of clonal evolution in certain cases, with new clones and

sub-clones clearly arising serially, complex “branching” tree models have also been described,

contributing to evidence of convergent evolution.[11,12]

Acute myeloid leukemia (AML) has previously been considered a clonal disease, assuming

a common genetic precursor cell, though it has been more recently understood that clonal

relationships in AML can be far more complex.[13] When loci exist with ITH structures or

evolutionary patterns that do not match the bioinformatic model employed, we will inevitably

describe an incorrect, and typically oversimplified, clonal structure.[10] We have previously

published evidence of this complex clonality in AML using a targeted single-cell genotyping

approach focused on common mutations that correlate with outcome.[14–17] Based on bulk

patient sample data, the predicted clonal structures with respect to these two mutations for

patients 1 and 2 in our cohort are shown in (Fig 1A), however, the underlying clonal structures

determined via single-cell targeted genotyping were significantly more complex than predicted

(Fig 1B).[10] This study used macro-scale PCR reactions and capillary electrophoresis to iden-

tify zygosities of individual cells. Though this study was critical to clarifying our understanding

of ITH, the approach proved infeasible to apply in a clinical context as an assay for AML ITH

assessment. The results from this study suggested that a targeted, single-cell genotyping

approach with higher throughput of cells per sample, lower cost per cell, and reduced process

Fig 1. Genetically distinct clonal population frequencies in AML with respect to FLT3-ITD and NPM1. (a) Using

the assumptions of heterozygosity and serial clonal expansions, bulk data for patients 1 and 2 from our previous study

would suggest fairly simple clonal structures with either 2 or 3 clonal populations (circle area is proportional to the

contribution to the total population of that clone). (b) However, when analyzing these patient samples using single-cell

genotyping for these two loci, clonal distributions of NPM1 and FLT3-ITD insertions are very different than the

predicted structure (W: wild type, H: heterozygous, or M: homozygous mutant for the locus, bubble area is

proportional to the percentage of cells in the total population of analyzed cells with the indicated joint NPM1/FLT3-

ITD genotype). Via our previous approach to targeted single cell genotyping via macro-scale fragment analysis, we

demonstrated with high statistical confidence that all possible zygosity combinations occur, though at variable

frequencies.

https://doi.org/10.1371/journal.pone.0196801.g001
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complexity would be ideal for future integration of this type of targeted approach into clinical

laboratories.

The field of single-cell genetics promises to tweeze apart the heterogeneity we now appreci-

ate in bulk samples, but this work is still in its infancy with respect to its relevance to under-

standing human disease. NGS based DNA sequencing of single cells, while providing some

degree of refinement of clonal distributions based on bulk data, is still subject to challenging

technical and statistical issues common to all single-cell analyses. A detailed description of the

statistics and failure modes of various approaches to single-cell sequencing and genotyping

have been reviewed in detail by Wang and Navin,[18,19] which highlights the unique chal-

lenges to even identifying how to approach the single-cell assay validation process itself. While

the particular failure rates of single-cell assays tend to be very platform- and molecular biology

workflow-specific, the main types of single-cell assay quality control (QC) statistics fall into the

six categories described in Fig 2. While a variety of approaches for single-cell analysis have

been demonstrated, most have not completely addressed the unique statistical challenges of

single-cell assays nor is the approach for validating them straightforward for potential users of

the technologies.

Many single-cell genomic technologies aim to provide wide genome coverage (whole

genome, whole exome, or large panels of loci), however, in some instances it is preferred to

Fig 2. Single-cell analysis quality control statistic types. Single-cell sequencing or genotyping platforms are subject

to multiple types of errors that are far more challenging to address than more traditional, bulk approaches. Single-cell

assays thus require significant, specialized validation with these issues in mind. The general categories into which these

statistics fall include: true positive (accurate data from one cell), false positive (data is erroneously obtained from an

assay volume that does not contain a cell), false negative (a cell is present, but data is not obtained), doublet+ rate

(more than one cell is present in an assay volume, but data is indistinguishable from that obtained from a single cell),

allele dropout (an allele is present in an assay volume yet erroneously not detected in the data), and finally locus

dropout (failure of a genetic locus to be represented in the dataset from a given cell). The impact of the failure rates in

particular on the interpretation of the resulting single-cell data can be significant when describing the clonal

composition in an unknown human specimen.

https://doi.org/10.1371/journal.pone.0196801.g002
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perform a targeted analysis on a small number of loci if the trade-off is for higher data quality.

Panel-based sequencing approaches are designed to generate data from a defined region of the

genome from single cells to identify concurrent mutations, but tend to suffer from high rates

of locus dropout, and it is infeasible to determine the allele dropout rate for all the loci in the

panel.[20–25] Thus they require post-processing of the results, such as assuming allele dropout

to be balanced for each allele and the same rate for all loci (which is unlikely to be universally

true), and using consensus calling for cell genotypes (for example requiring at least 3–5 cells to

have the same genotype in order for it to be identified as a valid clone). Beyond statistical limi-

tations, these high-throughput single-cell genetics approaches can have a high cost per cell and

long bioinformatics lead times, affecting their utility. In contrast, targeted approaches can

allow for increased quality statistical descriptions, including allele dropout rate measurement

for every locus, and can be performed more quickly and at lower cost, but at the expense of the

ability to identify co-occurrence of mutations.[10]

Given these relative strengths, the choice of panel-based or targeted single-cell genomic

approaches depends on whether there are recurrent mutations in the disease that can be

directly targeted, or if the genetics are far more variable and the single-cell analysis approach is

mainly exploratory. In AML, most patients do not appear to have large numbers of mutations

in their leukemia that are recurrent in the population, thus ultimately describing the intratu-

moral clonal distribution will require targeted, patient-specific genomic approaches. Thus in

cancers with limited numbers of mutations per tumor, using bulk sequencing data to identify

specific loci of interest, followed by single-target assays that produce less genome coverage but

at higher confidence, is an appealing approach for hypothesis-driven ITH studies for many

cancers.

In order to perform single-cell genotyping in a way that simultaneously produces relevant

statistics but also provides us an understanding of a patient’s intratumoral clonal distribution,

we have developed a targeted single-cell genotyping platform using the microfluidic self-digiti-

zation chip (SD chip). This device allows us to perform both cell imaging and genotyping in

stationary, nanoliter (nL)-scale volumes, generating data that provide additional descriptions

of uncertainty as well as identify the population zygosity distribution. Many of the genetic

assessments of ITH performed on bulk cancer specimens will require the final description of

ITH to be informed by single-cell data rather than solely relying on computational deconvolu-

tion of the bulk sequencing data to describe the clonal structure. Targeted single-cell genetic

analysis tools such as those presented here can be used to test ITH hypotheses with statistics

describing technical and biological variability. This will extend our ability to assess ITH

beyond only descriptive data collection methods.

Results and discussion

SD-genotyping chip device design and molecular workflow

The structure and characterization of the SD chip has been described previously, and this

device has been used for digital PCR detection of both mRNA and DNA.[26,27] The SD chip

device mechanism and workflow for single-cell genotyping are illustrated in Fig 3. Our assay

for single-cell genotyping for the NPM1 mutation consisted of a single set of PCR primers spe-

cific for the region in NPM1 where the mutation occurs, a low-concentration intercalating dye

to image single nuclei, and three hydrolysis probes (one amplification control probe specific to

the gene, and two specific to either the wild-type or mutant allele). Imaging of the digitized vol-

umes before PCR allowed us to identify the specific well locations of single cells, empty wells,

or wells containing more than one cell (doublet+). Post-PCR imaging of the device using a

laser scanner was used to identify PCR. A single-cell genotype was only reported when the

SD chip for single-cell genotyping
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presence of a single cell was confirmed in a filled well, amplification probe signal was detected,

and at least one of the wild-type or mutant probe signals were detected. Analyses of cell and

post-PCR images of the arrays in concert allowed us to not only determine the NPM1 genotype

of single cells, but also to calculate error rates for every array, including false-negative, false-

positive rates and doublet+ rates, which are typically challenging or impossible to generate

from existing single-cell analysis approaches.

Single-cell genotyping molecular assay development

The NPM1 type A mutation is an insertion mutation consisting of a four base-pair repeat.

Allele-specific hydrolysis probes specific to the wild-type or mutant allele containing locked

nucleic acids around the insertion site were designed and validated. A third hydrolysis probe

located within the amplicon but outside the region of the mutation served as an amplification

control to verify successful amplification of the NPM1 locus in a given cell, allowing for evalua-

tion of QC statistics independent of the zygosity of the individual cell. Plasmids with inserts

containing the amplicon with the wild-type or mutant allele as well as wild-type or heterozy-

gous cell line DNA were used to confirm the specificity of the probe designs in bulk PCR.

To extend our assessment of specificity for single-cell genotyping, we validated the three-

probe suite in bulk PCR conditions that mimicked the conditions seen by cells in wells of the

SD chip. We used concentrations of viable cells input directly into the PCR reaction volume to

give an effective cell concentration commensurate with a single cell in an 8 nL volume as seen

on-chip. Both wild-type cells (KG1a) and a cell line with the NPM1 mutation (OCI-AML3)

(bulk VAFNPM1 of 50%) were used in validation. All reactions in bulk were run with the ther-

mal profiles used in the chip, which required using slower ramp rates and a modified hot start.

[28] We confirmed that the target amplicon was produced under these conditions (S1 Fig).

The bulk model PCR readout was the total PCR endpoint fluorescence of wells with input sam-

ple, compared to that of the no template control wells, or the probe fluorescence differential.

We optimized probe concentration, nuclear stain concentration, salt concentrations, and

surfactants to maximize the endpoint probe fluorescence differential and maintain specificity

in this bulk model. A low concentration of the DNA intercalator EvaGreen (0.5x) was used for

Fig 3. Overview of the single-cell SD genotyping chip workflow. (a) The chip is composed of PDMS bonded to a microscope slide with a bonded

glass coverslip over the array and surrounding oil channel to prevent sample evaporation. (b) Cell-PCR mix suspension is pipetted directly into the

inlet reservoir flows into the wells of the array by applying vacuum to the outlet port. Once the sample volume is loaded into the wells, the main

channel is flushed with oil to fully digitize each 8nL volume. The arrays are imaged to identify wells containing single (or more) cells. PCR is

performed in the digitized volumes by thermalcycling of the entire chip, and fluorescence is quantified at endpoint in three fluorescence channels

(FAM for the amplification probe, HEX for the mutant allele-specific probe and Cy5 for the wild-type-specific probe). In wells containing a single-

cell and with amplification probe fluorescence above a set threshold, as well as allele-specific probe fluorescence above their respective thresholds,

we can generate QC statistics for the array and determine zygosities of single cells.

https://doi.org/10.1371/journal.pone.0196801.g003
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imaging cells prior to PCR; this was found to have no impact on the specificity of allele-specific

probes (S2 Fig). Increasing PCR buffer to 1.5X and MgCl2 concentration to 3 mM contributed

to improved fluorescence differentials from plasmids, DNA, and cells. We observed no notice-

able change in specificity or endpoint fluorescence at various concentrations of the surfactant

Triton X-100 (S3 Fig). Cell imaging in PCR buffer was performed to verify that the buffer or

surfactant additives did not cause premature lysis of the nucleus which would contribute to

false positive amplification (S4 Fig). For single-cell experiments in the SD chip, we found that

PCR buffer with added 0.02% Triton X-100 minimized false positive and false negative rates

compared to other buffer conditions tested (S5 and S6 Figs).

Image processing and analysis

We evaluated on-chip PCR results from control templates from multiple replicates to deter-

mine appropriate fluorescence thresholds, to reduce potential bias in the evaluation of QC sta-

tistics and zygosities from single cells. Details regarding the imaging processes and data

reduction are described in the Materials and Methods section and S7 Fig. A self-contained

example containing all the raw data and scripts required to process the raw data and generate

plots included in the manuscript is available via GitHub (see Methods). After image process-

ing, the resulting data from individual wells in an array is the integrated fluorescence intensity

normalized to the well area (adjusted integrated density, or AID). The distributions of these

values for the three fluorescence channels are analyzed to determine which wells are consid-

ered positive or negative. In order to determine platform-specific thresholds, we first analyzed

no template control replicates (N = 2) to determine the expected distribution of AID of PCR-

negative wells in the amplification probe channel. We found that when a threshold was set at

three standard deviations above the mean, all well AID’s of the no template control replicate

arrays fell below the threshold. A similar analysis was performed, using wild-type or mutant

plasmids as the template material, to set a threshold value for the two allele-specific probes.

Due to differences in the fluorescence signal distribution for each fluorescent probe in on-chip

wells, ideal thresholds were six standard deviations above the mean for the mutant-allele probe

and five standard deviations above the mean for the wild-type allele probe. We calculated a

false allele rate, defined as the number of false alleles (mutant calls in an array of wild-type plas-

mid template, or wild-type calls in an array of mutant plasmid template) divided by the total

data points from the replicates. We found a mutant false allele rate of 0.3% (2 false mutant

alleles out of N = 610 wild-type plasmid data points) and a wild-type false allele rate of 0.2% (2

false wild-type alleles out of N = 885 mutant plasmid data points). From this, we concluded

that these thresholds were sufficient to assign PCR positivity while minimizing false-positive

allele calls (additional detail in Methods).

Allele dropout validation

Allele dropout (ADO) is a phenomenon which occurs in many PCR methods, but is uniquely

challenging to identify and mitigate in the context of single-cell analysis. For the SD-chip, we

address the issue of allele dropout by employing a heterozygous plasmid template to assess the

frequency at which amplification occurs but one allele is not detected. Bias occurs in genotyp-

ing results when the ADO rate is not balanced between two alleles at a locus, or uniformly dis-

tributed across all loci.

To perform analysis of ADO on the SD-chip, the input concentration of heterozygous plas-

mids was adjusted to maximize the likelihood that amplification-positive digitized volumes

would have single-plasmid occupancy (and thus only two copies of the amplicon). Data from

heterozygous plasmids from 6 individual array replicates, on two separate days (run from

SD chip for single-cell genotyping
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different reagent mixes on different days) was combined with Poisson statistics (described in

detail in Methods) to generate a most conservative estimate of the number of allele-dropout

events for each of the two alleles. The ADO rates observed were 5.4% ± 2.3 for the wild-type

allele (events where heterozygous plasmids were genotyped as mutant), and 8.5% ± 2.1 for the

mutant allele (error is standard deviation between 6 array replicates with total zygosity calls

included of 1095). Similar ADO rates were observed when using allele-specific probes with the

specific fluorophores conjugated to them swapped (details in S1 Text). These rates are consis-

tent with those previously calculated using limiting dilution of heterozygous NPM1 plasmids

in 384-well plate using fragment analysis as the readout for this same locus,[10] and are much

lower than other published single-cell assays.[19]

Single-cell quality control statistics

An inability to quantify uncertainty in single-cell assays has historically been a challenging

aspect to validating and interpreting the data produced by these assays. Due to the fundamen-

tal limitations of single-cell analysis (i.e., one can only assay an individual cell once, replicates

are challenging, nucleic acid amplification is always required), generating single-cell specific

QC statistics requires validation of both the platform itself as well as run-specific metrics. With

combined cell imaging and allele-specific PCR results, we are able to identify wells that do not

meet minimum quality criteria (Fig 4). After image analysis and filtering of un-filled wells

(<50% area), wells are categorized into four types, true positive (TP), false positive (FP), false

negative (FN) or true negative (TN), (Fig 4A). As our method measures a single locus, a false

negative event is equivalent to a locus dropout event. We can then calculate a variety of QC sta-

tistics such as the false negative rate (FNR) and the false positive rate (FPR), as proportions of

relevant wells across arrays analyzing OCI-AML3 or KG1a cells (Fig 4). False positives, which

could be due to premature lysis of cell nuclei or incomplete cell staining, and false negatives,

which could come from failure to amplify or false identification of single cells, might be

improved with further optimization of surfactant additives and thermalcycling protocols.

We have observed during this validation that when cells are manipulated in buffer mixes

suitable for molecular biological assessments, a wide range of degrees of cell lysis occurs simply

by exposure to the reagents necessary. The possibility of cell lysis prior to digitization and PCR

amplification is a very context-dependent phenomena and an important source of possible

PCR contamination and false positives in single-cell datasets. Because all single-cell analysis

techniques require a significant amplification of genetic material, not surprisingly these assays

are also uniquely sensitive to contamination beyond what is typical for NGS and other molecu-

lar assays, making the rate of false positives in single-cell methods especially important.

For single-cell analysis systems without imaging capabilities, the assumption of a random

distribution of cells in the sample volume is used to estimate the number of doublet data points

in a sample. To test the randomness of cell isolation in our system, we generated an estimate of

expected cell occupancy counts using the Poisson distribution from 1649 OCI-AML3 cells and

797 KG1a cells across all arrays containing cells (12 arrays of OCI-AML3 cells, 4 arrays of

KG1a cells). As shown in Fig 4D, even for this suspension cell line, we found that the number

of doublet+ containing wells was consistently higher than that predicted from the Poisson den-

sity function. Possible causes for this include cell-cell adhesion or filtering effects from defects

in microstructures. These results indicate that for methods that do not use imaging, but instead

assume a Poisson distribution of cells, the rate of doublet+ measurements could be

underestimated.

SD chip for single-cell genotyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0196801 May 2, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0196801


Single-cell genotyping

We determined genotypes of single OCI-AML3 and KG1a cells based on wells where we could

confirm the presence of a single cell, and could identify as positive for the amplification probe

and at least one of the allele-specific probes. Genotyping results indicated that all 467 KG1a

cells were wild-type as expected; results from 847 OCI-AML3 show a mix of wild-type, mutant,

and heterozygous cells. Fig 5A and 5B shows the genotyping results from the 12 replicates, and

Fig 5C and 5D shows a representative map of the well-specific results for a single replicate.

Using this single-cell data from OCI-AML3 cells to calculate a VAF for the bulk sample, as

VAF = (1NMutant + 1/2NHeterozygous + 0NWild-type)/NTotal, where N is the count of single cells

for each genotype, we arrive at a VAF of 54% ± 7 (mean +/- standard deviation across 12 repli-

cates), which is consistent with the bulk VAF (50%) we have observed in this cell line. If we fol-

low typical assumptions for using VAF to determine clonality, a bulk VAF of 50% corresponds

to a single population of cells that are all heterozygous mutant. Single-cell genotyping in the

SD chip revealed that the population distribution of OCI-AML3 cells was significantly

Fig 4. Method quality statistics. (a) Based on cell and endpoint PCR imaging, wells can be categorized as true positive (TP), false positive (FP),

false negative (FN), and true negative (TN). These counts allow us to calculate a false positive and false negative rate for each array to assess

performance. (b) Images show two wells of the SD chip before (top) and after (bottom) PCR. A single OCI-AML3 cell was identified in the right

well, and the well was PCR positive after thermalcycling. The scale bar is 100 μm. (c) For the 12 SD chip arrays used for genotyping single

OCI-AML3 cells, colored bars represent the fraction of filled wells that fall into each category described in panel A. Wells with more than one

cell (doublet+) are also reported. (d) False positive rates and false negative rates were calculated for each OCI-AML3 or KG1a single-cell

genotyping SD chip array. The average rate between arrays is reported for arrays with KG1a cells (blue) and arrays with OCI-AML3 cells

(yellow). Scale bar represents standard deviation (N = 12 arrays with OCI-AML3 cells, N = 4 arrays with KG1a cells). (e) The fraction of wells

containing no cells, one cell, or more than one cell (doublet+) was quantified from images of cells in arrays of the SD chip. Using Poisson’s

equation, we calculated a predicted number of wells (black circle) that would be expected to contain one cell or more than one cell using the

number of wells containing zero cells. For arrays containing either KG1a cells (blue) or OCI-AML3 cells (yellow), the actual number of wells

with one cell was below the predicted number while the number of multiple cell wells was higher.

https://doi.org/10.1371/journal.pone.0196801.g004

SD chip for single-cell genotyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0196801 May 2, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0196801.g004
https://doi.org/10.1371/journal.pone.0196801


different from that expected based on this bulk model, even when accounting for the known

rates of allele dropout (p-value < 1e-5), as shown in Fig 6. We have previously observed this

deviation from a homogeneous heterozygous population via another approach, thus regardless

of the method employed, we can confirm that the bulk assumption of heterozygosity is not

accurate for this cell line.[10]

Conclusions

We have developed the SD genotyping platform which employs an SD chip and allele-specific

PCR “suites” of locked nucleic acid (LNA), multiplexed, hydrolysis-probes to simultaneously

and specifically detect locus amplification and both wild-type and mutant alleles. Alongside

these locus specific assay “suites,” we have identified the critical types of reference materials

and controls for validating new single-cell assays. A critical strength of the SD chip genotyping

approach is the ability to image the cells prior to PCR and retain their physical location infor-

mation throughout the data analysis. Imaging allows us to address multiple aspects of uncer-

tainty that have previously been left unaddressed in nearly all single-cell genetic analysis

techniques. Our technique allows for a straightforward approach to identification of false

Fig 5. Single-cell genotyping results. (a) Scatterplots for each SD chip replicate containing OCI-AML3 cells are shown as 12 panels. The

fluorescence intensity in the mutant probe channel is plotted vs. the wild-type channel intensity for single-cell containing wells. Thresholds

in each channel (green) separate single-cell wells into mutant, heterozygous, wild-type, or false negative (FN). (b) For the same twelve SD

chip replicates, bar plots show the frequency of single cells in the population that were assigned as wild-type, heterozygous, or mutant. (c) A

representative map of wells in a single replicate shows the results from cell imaging for each well. Each dot represents one well of the device,

which are categorized as having no cells, a single cell, or multiple cells (doublet+). (d) For the same array, a map of zygosity shows the

location of wells categorized as wild-type, heterozygous, mutant, empty of aqueous solution (Empty), no amplification probe fluorescence

(NonAmp), or having positive amplification probe fluorescence but negative allele-specific probe fluorescence (UNCALLED).

https://doi.org/10.1371/journal.pone.0196801.g005
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positives as well as multi-cell wells in such a way that when these artifacts occur, we can iden-

tify them and remove them from the analysis.

While bulk approaches are providing much needed insight into the inter-patient variability

present in cancer, it will be crucial to, in parallel, foster the development of approaches to

refine our understanding of the underlying intra-patient heterogeneity.[10,29,30] The ability

to track clonal diversity over the course of therapy would allow us to determine what impact

clonal dynamics have on outcomes and would be a useful tool in designing therapies informed

by the possibility of clonal evolution. One could apply clonal deconvolution models to bulk

DNA sequencing data to propose clonal structures and identify variants for which the zygosity

distribution in the population is predicted to be most relevant to therapy. Single-cell targeted

genotyping could then be used as a hypothesis testing tool to further refine our understanding

of bulk DNA sequencing deconvolution and zygosity distributions of loci of interest to leuke-

mia and cancer more broadly. The integration of this technique downstream of bulk analysis

will allow us to analyze up to three loci per run for a given patient sample. This three-array

chip design could be scaled up as needed when more than three loci are mutated in a given

patient specimen. By using the single-cell data to reduce or confirm complexity in predictive

models rather than to “discover” it, we could employ hypothesis testing using single-cell popu-

lation statistics to address the unavoidable range of artifacts in any single-cell analysis that

make resolving technical and biological variability challenging. The combination of larger

scale sequencing efforts and targeted, refining single-cell technologies will allow us to better

integrate conclusions from ITH studies into a clinically actionable understanding of how can-

cer evolves.

Fig 6. Mean actual observed zygosity of OCI-AML3 cells compared to zygosity predicted from variant allele

frequency. Colored bars represent the mean zygosity frequency measured in single cells (847 single-cell measurements

total). White bars with black outline represent the predicted mean zygosity frequency we expect our method to report

for a sample for which all single cells are heterozygous. Actual genotype data is for N = 12 arrays of OCI-AML3 cells.

Predicted genotype data is from measurements of single plasmids with one copy of each wild-type and mutant allele.

Predicted genotype data are for N = 6 arrays of these heterozygous plasmids. In each case, genotype frequencies were

quantified in each array; reported means were calculated between arrays. Error bars represent standard deviations of

these measurements.

https://doi.org/10.1371/journal.pone.0196801.g006
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Materials and methods

Cell lines and template reference materials

OCI-AML3 cells (DSMZ) and KG1a cells (ATCC) were cultured in 20% FB Essence (VWR

Life Science) in RPMI media (Gibco). Genomic DNA was extracted from cell line lysates using

Qiagen Gentra PureGene Cell Kit (Cat No./ID: 158745), according to the manufacturer’s pro-

tocol. Reference sequence plasmids for NPM1 alleles were lab-designed and purchased from

Life Technologies. Single-zygosity plasmids (homozygous mutant or homozygous wild-type)

contained one copy of the amplicon region per plasmid. Heterozygous plasmids contained

one copy of wild-type and one copy of mutant amplicon region inserted in series. All plasmids

were sequence-validated by Life Technologies and in house. OCI-AML3 cells and all muta-

tion-containing plasmids had the “Type A” NPM1 insertion, which is the TCTG tetranucleo-

tide duplication in position c.860_863dupTCTG (NM_002520.6), the sequence of the

insertion that is present in ~80% of AML patients positive for the NPM1 insertion.

Gene and allele discrimination primers and probes

Primers were designed to amplify a 162 base-pair (166 bp with insertion) stretch of genomic

DNA spanning the location of the NPM1 4-bp insertion. Locked nucleic acid (LNA) allelic dis-

crimination hydrolysis probes were designed with guidance from You et al.,[31] though the

specific detection of an indel is not specifically described. The probe designs were validated

and optimized for application to single-cell genotyping and their ability to specifically detect

the mutant and wild-type alleles prior to application on chip. LNA-containing probes were

single-quenched fluorescent probes with non-fluorescent quenchers purchased from IDT

(Integrated DNA Technologies). A FAM-labeled hydrolysis probe was designed outside the

insertion site as a positive control to confirm amplified product. Cy5-labelled wild-type-spe-

cific and HEX-labelled NPM1-Type A insertion-specific probes were designed for genotyping.

The same probe sequences for the allele-specific probes were also labeled with the alternate

fluorophore (i.e., wild-type probe with HEX and mutant specific probe with Cy5) to evaluate

the impact of fluorescence channel specific bias as opposed to allele-specific bias. Fluorophores

for each probe were chosen to minimize spectral overlap and for optical compatibility with the

Biorad CFX PCR system, our Olympus microscope filter set, as well as the available channels

on our Typhoon Trio. Primer and probe sequences are listed in S1 Table.

PCR conditions and sample preparation

PCR reagents were purchased from Invitrogen except where indicated. Primers and probes

were ordered from IDT. Optimized reagent concentrations in the PCR were as follows: 1.5x

PCR Buffer (from 10X PCR buffer), 5 mM MgCl2, 600 nM each dNTP, 750 nM each primer,

600 nM amplification control probe, 600 nM wild-type probe, 600 nM mutant probe, 0.1%

BSA (Sigma part no. 10711454001), 0.5x EvaGreen (Biotium 20X EvaGreen), 0.02% Triton X-

100 (Sigma part no. T8787), and 3 U/10 μL Platinum Taq. For each reaction, 2μL of template

(cells, plasmid, or PBS) was added for 10μL reactions in bulk PCR. Cultured cells were centri-

fuged at 200 rcf for 3 minutes and resuspended in PBS (Thermo Fisher no. 10010023) to a con-

centration of 1000 cells per μL. PCR was run on a CFX384 Touch Real-Time PCR Detection

System (BioRad). Typical PCR hot start protocols were modified to enhance cell lysis and

began with 3 cycles of 3 minutes at 95˚C and 1 minute at 60˚C, followed by 40 cycles of 15 sec-

onds at 95˚C and 45 seconds at 60˚C (S1 Fig). Ramp rates were adjusted to 1.5˚C/s increasing

and 0.9˚C/s decreasing to match the inherently slower ramp rates experienced when using the

thermal cycler flat plate adapter for SD chip samples.
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SD chip PCR reagent, cell, and plasmid concentrations were the same as for bulk PCR.

Samples were prepared by adding 4μL of template (cells, plasmid, or PBS) per 20μL of PCR

buffer, and then transferring 15μL of this sample to inlet reservoir of the device. Filled SD

chips were cycled on an ABI 2720 Thermal Cycler (Thermo Fisher) fitted with a Techne in situ
Hybridisation Adapter (Fisher Scientific part no 13245153). A thin film of light mineral oil

(Sigma part no. M8410) was placed between the device and the plate to improve contact dur-

ing cycling. The thermal cycling profile for cycling SD chips was adjusted such that measured

temperatures between the plate and device where as intended. Programmed cycling conditions

were 3 cycles of 3 minutes at 95˚C and 1 minute at 60˚C, followed by 40 cycles of 15 seconds at

97˚C, 5 seconds at 50˚C and 45 seconds at 60˚C.

SD chip fabrication and loading

Details of SD chip fabrication have been described previously.[32] The desired micro-scale fea-

tures were drafted using CAD software (AutoCAD) and printed in high-resolution on trans-

parent film (Fineline Imaging). Masters were constructed from transparencies using

photolithography of SU-8 photoresist (Microchem) on silicon wafers according to manufac-

turer protocol. PDMS (Dow Corning) was spin coated at 300 rcf for 60 seconds on these sili-

con/SU-8 masters and cured at 65˚C for 3 hours. Oil reservoirs were created for the device

inlets and outlets by punching through-holes in additional PDMS blocks of approximately 10

mm thickness. Glass slides were cleaned by boiling one hour in 1:1:1 ammonium hydroxide:

35% hydrogen peroxide: MilliQ water, then rinsed with water followed by ethanol, dried

under nitrogen, and spin coated with PDMS at 4000 rcf for 60 seconds. Final device construc-

tion occurred in two oxygen plasma bonding steps; first the master replica was bonded to the

spin coated glass slide, and then the inlet/outlet reservoirs and coverglass vapor barrier were

bonded. Devices were baked in a 115˚C oven for 24–72 hours, then used immediately or stored

at room temperature for up to two weeks.

In this design, well dimensions are 400 μm x 200 μm x 100 μm, for an individual well capac-

ity of 8 nL. Oil drainage channels (10μm x 25μm) connect the top of each chamber to the main

channel. A main channel 100 μm wide and 25 μm tall bifurcates from an inlet reservoir for 16

channels in parallel, each channel addressing 64 wells. Each device contained 3 arrays and was

bonded to a 75mm x 50 mm microscope slide.

Devices were primed with an oil mixture prior to sample loading. This mixture was com-

posed of 0.006% Abil WE 09 (Evonik), 93% Tegosoft DEC (Evonik), and 7% light mineral oil

(Sigma part no. M8410). Oil mixtures were used for up to one week before being disposed. The

oil mixture was added to the inlets and outlets of the device such that each reservoir was half-

filled. The device was placed in a sealed chamber and vacuum was applied to a pressure of -23

inches of mercury. The device was held under vacuum for 5–30 minutes. The pressure was then

released and was inspected under the microscope to ensure no air pockets remained in the

device channels or chambers. Infrequently, devices would be found to still contain air after five

minutes at atmospheric pressure. These devices were placed under vacuum for an additional

five minutes. Any devices containing air at this point were considered defective and not used.

Devices were placed on a cooling block on ice during loading (XT Cooling Core, BioCision

BCS-511). The aqueous PCR samples were pipetted directly into the device inlet-reservoir

under the surface of the residual oil from device priming. A vacuum gasket was aligned with

the device outlet reservoirs and attached using double-sided Kapton tape (Ted Pella part no.

16087–19). Vacuum was applied at a regulated -8 in Hg from a bench-top diaphragm vacuum

pump, pulling the sample through the device and digitizing the sample. When no remaining

aqueous sample was visible in the device inlet, after approximately 8 minutes, remaining oil in
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the inlet was exchanged for a mixture of 99.97% 50 cSt Silicone oil and 0.03% Abil. This mix-

ture was allowed to flow into the device for 4 minutes before vacuum was released. Any aque-

ous sample in the device outlet was removed by pipet. Oil reservoirs were filled with the

silicone oil and Abil mix.

Imaging platforms and analysis

After loading, but prior to thermal cycling, arrays were imaged using the Olympus MVX10

macro zoom microscope to generate images of cell nuclei in wells for downstream cell count

analysis. The microscope was outfitted with a 2X objective and a 0.63X demagnifying camera

adapter, and was used at zoom 1.25X, for a total image magnification of 1.6X. A Hamamatsu

Orca R2 camera and automated stage (Prior OptiScan III) both controlled by Nikon Elements

BR were used to capture twelve images per array. For fluorescence images, illumination was

provided by an X-Cite LED light source (Excelitas Technologies) using filter set for FITC

(Semrock) at 100ms exposure. Devices were imaged post-PCR using a Typhoon Trio (GE) at

25μm resolution. Channel PMT voltages were 500V for FAM and 600V for both HEX and

Cy5. Typhoon and Olympus image analysis was performed with the open source software Ima-

geJ (https://imagej.nih.gov/ij/) and R (www.r-project.org). A link to custom ImageJ macros

and R scripts used to analyze images is available through GitHub (https://github.com/

FredHutch/SDGenotypingAnalysis), and contains the executable scripts and images used dur-

ing the generation of the data presented in Results.

Aqueous area and fluorescence intensity thresholds were used to identify filled vs. non-

filled and PCR amplification positive vs. negative wells. Only data from those wells that had an

aqueous area at least half of the maximum area were used for further analysis. Fluorescence

thresholds were determined using wild-type, mutant, and no template control samples in

which the zygosity and PCR-positivity were known a priori, the calculations for which are

described in detail in the following paragraphs. For images obtained using the Olympus scope

prior to thermal cycling, a threshold was applied above the measured background, the ImageJ

particle finder function was used to determine the position of EvaGreen stained cells meeting

size and shape criteria within each well boundary after the background regions were identified

with the threshold. Large and non-circular particles were counted as two cells. Images were

manually inspected to check the accuracy of cell counts as determined by the script. An erro-

neous cell count value was discovered in ~1% of wells and that value was corrected. PCR status

and cell imaging data were matched to determine zygosities in wells with only single cells.

Fluorescence intensity thresholds for calling wells PCR positive or negative were established

based on data from arrays containing wild-type or mutant plasmids or no template controls.

These thresholds were then applied to heterozygous plasmids and whole-cell samples to pre-

vent bias during analysis. Thresholds were drawn at 3 (amplification probe), 5 (wild-type

probe), and 6 (mutant probe) standard deviations above the measured mean intensity of the

negative wells. To minimize this error from weakly-positive well intensities, this standard devi-

ation was calculated only for arrays for which the template was off-target for that probe. By

this method, no template control and wild type plasmid arrays were used to calculate the nega-

tive well standard deviation of the mutant probe, no template control and mutant plasmids

were used to calculate the standard deviation for the wild-type probe, and no template control

arrays were used to calculate the standard deviation for the amplification probe. A total of 4–5

arrays of data were used to calculate standard deviations (SD’s) for each probe. We calculated

the standard deviation by drawing a density curve of the well intensities and measuring the

full-width at half-maximum. We then used the formula for standard deviation for a normal
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distribution, SD = FWHM/2.355. From the 4–5 arrays of data for each probe, we used the

maximum standard deviation for thresholding all the subsequent data for that probe.

We noticed small amounts of HEX fluorescence in wells with only FAM and Cy5 positive

signal. For example, for runs containing wild-type plasmids (for which HEX fluorescence

should be negative), a small amount of HEX fluorescence would occur in FAM+, Cy5

+ wells. The amount of HEX signal was much smaller than HEX+ signal in mutant template

arrays. This artifact made thresholding in the HEX channel challenging because the distri-

bution of HEX- wells was broad (S7 Fig). We found a positive correlation between FAM sig-

nal and HEX signal in these arrays without HEX-specific template. From 5 arrays of control

plasmids, we determined a HEX correction factor from the best-fit line of FAM vs. HEX

well intensities in wells with templates non-specific to HEX probes. The average best-fit

slope was 0.46 I(FAM)/I(HEX). Corrected HEX intensities were calculated for all arrays as

I(HEX, corrected) = I(HEX, initial)–slope�I(FAM). S7 Fig shows control template data before and

after this correction.

We also performed an analysis to determine if our thresholds were drawn inappropriately

high for one or both allele-specific probes. For appropriately drawn fluorescence thresholds

across all three probe channels, we expect that all wells positive for amplification-specific probe

fluorescence should also carry positive fluorescence for one or more allele-specific probe. We

quantified events where wells were found to be amplification probe positive but allele-specific

probe negative. Thresholds unbiased towards one of the allele-specific probes would have simi-

larly low rates of these events. In arrays with wild-type template, 1% of wells were found to be

positive for amplification probe signal but negative wild-type probe signal (8/891 wells). In

arrays with mutant template, 3% of wells were positive for amplification probe signal and nega-

tive for mutant probe signal (19/628 wells). In both cases, many wells were found to be negative

for all three probes (1245 in mutant template arrays and 1305 in wild-type template arrays). We

concluded that our method of drawing thresholds did not generate meaningful bias towards

identification of one specific allele for our assay.

Allele dropout and failure rates

The thresholds determined from wild-type and mutant plasmids and no template controls

were applied to arrays containing a digitized dilution of heterozygous plasmids containing one

of each allele. These plasmids were used to assess allele dropout, which for each allele was

defined as the number of calls of where that allele was not detected divided by the total number

of wells called wild-type, heterozygous, or mutant. Thus, the mutant allele dropout rate (ADO-

MUT) was equal to the number of heterozygous plasmids classified as wild-type divided by the

total number of plasmids genotyped, and the wild-type allele dropout rate (ADOWT) was equal

to the number of heterozygous plasmids classified as mutant divided by the total number of

plasmids genotyped.

To make the most conservative calculation of ADO rates, data from wells containing only

one copy of plasmid was included, by assuming that wells containing more than one heterozy-

gous plasmid would always be heterozygous. Using the Poisson probability mass function (Eq

1) and the number of negative wells in the arrays, we calculated the expected number of wells

containing more than one plasmid, subtracted these from our heterozygous well total, and

used the result as the denominator for our ADO calculations. In our ADO and cell occupancy

calculations (Fig 4D), we used the fraction of PCR negative wells in an array as the probability

that the number of events in that well volume, k, equaled zero (Eq 2) to determine the experi-

mentally observed concentration of events in the original volume (λ). Using this experimen-

tally determined λ we calculated the expected single and multi-event containing wells using
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Eqs 3 and 4 respectively, for each array.

Pðx ¼ k eventsÞ ¼
l

ke� l

k!
ðEq1Þ

Pðx ¼ 0 eventsÞ ¼
Count of PCR negative wells

Total well count
¼ e� l ðEq2Þ

Pðx ¼ 1 eventÞ ¼
Count of single plasmid or cell wells

Total well count
¼ le� l ðEq3Þ

Pðx > 1 eventÞ ¼
Count multiple plasmid

Total well count
¼ 1 � Pðx ¼ 0 eventsÞ � Pðx ¼ 1 eventÞ ðEq4Þ

Supporting information

S1 Fig. Comparison of PCR product generation and yield using various thermal profiles.

On-chip ramp rates are slower than conventional thermalcycler rates due to increased thermal

mass. Additionally, Mercier et al. (ref 28) found that a modified hot start could increase PCR

yield from whole cells. To determine whether these factors impact product generation and

yield in bulk PCR, we ran three thermalcycling conditions with the following templates: A:

extracted OCI-AML3 DNA 2 ng/rxn, B: whole OCI-AML3 cells 2x103/rxn, C: PBS, and D:

water. Reactions were stopped after 33 cycles and products were run on 2% agarose gel. The

standard thermal profile consisted of 95˚C for 9 min, then 33 cycles of 95˚C 15 sec, 60˚C 30

sec, and 72˚C 30 sec with default ramp rates; the on-chip thermal profile consisted of three

cycles of 95˚C for 3 minutes and 60˚C for 1 minute, then by 30 cycles of 95˚C for 15s, and

60˚C for 45s with ramp rates of +1.5˚C/s and -0.9˚C/s; and the standard hot start, slow ramp

profile consisted of 95˚C for 9 minutes followed by 33 cycles of 95˚C for 15 seconds and 60˚C

for 45 seconds with ramp rates of +1.5˚C/s and -0.9˚C/s. Ladder bands 100–500 at 100 bp

increments are shown. Expected products are at 200 bp (wild-type) and 204 bp (mutant).

These results show that using the on-chip thermal profile with slower ramp rates and modified

hot start we do get the intended target in bulk-scale PCR. As a bulk PCR cannot directly repli-

cate conditions in a microfluidic well, validation of probe specificity and negative controls

were carried out on the microfluidic chip.

(PDF)

S2 Fig. Effects of EvaGreen intercalating dye on probe specificity and endpoint fluores-

cence intensity. Because the SD chip genotyping method used 0.5X EvaGreen for cell-staining,

we tested the contribution of this dye to endpoint fluorescence in the FAM channel using stan-

dard 10 μL PCR with various templates with and without the FAM probe. Scatter plots of HEX

channel (mutant probe) endpoint fluorescence vs. FAM channel (amplification control probe

and EvaGreen) endpoint fluorescence in bulk PCR are shown. Compared to samples without

FAM probe (only EvaGreen), the change in endpoint signal between positive and negative

samples from reactions with both FAM probe and EvaGreen were 1.4 times higher on average.

Given this results, we were confident that strongly positive FAM signals would be coming pri-

marily from the FAM probe. This ensures that the FAM signal in the well is coming from

amplification specific to the gene of interest and not non-specific products.

(PDF)
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S3 Fig. Effects of various Triton X-100 concentrations on yield and specificity in bulk-scale

PCR. To optimize the endpoint probe signal form cells, we tested the effects of three concen-

trations of Triton X-100 additive (0%, 0.01%, 0.02%, and 0.05%) on endpoint fluorescence

intensity in standard 10 μL PCR. Endpoint fluorescence from mutant and wild-type plasmid

templates indicate no change in probe specificity for the three conditions. For samples with

OCI-AML3 cells (HET CELLS), we observed no obvious change in the amount of fluorescent

signal with increasing Triton X-100 concentration. A decrease in endpoint fluorescence signal

for plasmid templates was seen at 0.05%.

(PDF)

S4 Fig. Effects of PCR surfactant additives on cell and nuclear membrane integrity deter-

mined by fluorescence microscopy. To test the effects of various buffer additives on cell mem-

branes, we observed cells using both a cytoplasm stain and a nuclear stain. We stained cells

with calcein violet AM, a cytoplasm stain that is only fluorescent upon enzymatic cleavage in

live cells. Because the dye is located in the cytoplasm, cells stained with calcein AM become

non-fluorescent upon cell membrane lysis. As a nuclear stain we used EvaGreen, which only

stains cells with compromised cell membranes. Calcein signal is preserved in the cells in all the

buffers tested. EvaGreen stains cells in PCR buffer with 0.02% and 0.05% Triton X-100, indi-

cating cell death but an intact nucleus. Scale bar is 50μm. No change was seen in cell or nucleus

integrity after 30 minute incubation (data not shown). Cell movement may have occurred dur-

ing filter switching.

(PDF)

S5 Fig. SD chip single-cell genotyping quality control well counts for various PCR additive

conditions. The SD chip single-cell genotyping method was used with various surfactant con-

centrations to determine the effect of these additives on the observed frequency of false posi-

tives and false negatives in an array. Arrays were loaded with OCI-AML3 cells in one of five

buffer conditions: the base PCR buffer as reported in the main text without Triton X-100,

buffer with addition of Triton X-100 at 0.01%, 0.02%, or 0.05%, and the base buffer with 0.05%

Tween 20 but no Triton X-100. Colored bars represent the fraction of filled wells that fall into

each of the four QC categories based on cell imaging data and PCR endpoint fluorescence

results (true positive, false positive, false negative, true negative). For each surfactant condition,

the fraction of analyzed wells reported is the average across N arrays of that surfactant type

(No Surfactant N = 2, 0.05% Tween 20 N = 3, 0.01% Triton X-100 N = 3, 0.02% Triton X-100

N = 2, 0.05% Triton X-100 N = 2). For mixes with 0.02% or 0.05% Triton, 0.5X EvaGreen was

added to the PCR buffer for use as a cell stain. In all other conditions, the live-cell stain

Vybrant Green was used to stain the cells before adding them to the PCR mix. For Vybrant

staining, cells were pelleted and resuspended in 1X PBS containing 5 μM Vybrant Green and

incubated at room temperature for 7 minutes. Cells were pelleted again and resuspended in 1X

PBS. The proportions of oils for SD chip priming varied with the surfactant content of the

aqueous sample. For aqueous samples without added Triton X-100 or Tween 20, a mixture of

0.030% Abil, 93% Tegosoft, and 7.0% light mineral oil was used. For aqueous samples includ-

ing Triton X-100, the ratio was 0.006% Abil, 93% Tegosoft, and 7% light mineral oil. SD chips

were incubated on an Eppendorf Mastercycler with in situ adapter and imaged on a Typhoon

FLA 9000. Since instrumentation differed from that used in the main text, single-cell genotyp-

ing data from 0.02% Triton X-100 buffer was not included in the main text single-cell genotyp-

ing data.

(PDF)
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S6 Fig. False negative and false positive rates. Well count results from experiments reported

in S5 Fig are here reported as false negative and false positive rates, reported as proportions for

each array. For each buffer condition, N = 2 or 3 arrays, with a false positive rate (green) and a

false negative rate (orange) for each array. A dramatic decrease in the false negative rate is seen

in buffers containing 0.02% or 0.05% Triton X-100 compared to other tested conditions. We

found that false-positive and false-negative rates were dependent on the concentration of sur-

factant additives in the PCR buffer. Low amounts of surfactant produced a high number of

false negatives and low false positives, indicating incomplete cell lysis; while high amounts of

surfactant resulted the majority of cells producing PCR data. Of the conditions tested, buffers

containing 0.02% and 0.05% Triton X-100 proved to be the most optimal for reducing both

false positives and false negative rates. In bulk reactions, buffer containing 0.05% Triton X-100

decreased endpoint fluorescence (S3 Fig), and thus buffer containing 0.02% Triton X-100 was

selected as the optimal buffer for SD chip single-cell genotyping experiments.

(PDF)

S7 Fig. Comparison of well intensity distributions before and after HEX bleed-through

correction. Each facet represents a single arrays with its template input listed at the top and

each point represents a single well of the array. Fluorescence intensity in wells before (Panel A)

and after (Panel B) bleed-through correction in the HEX channel. In wild-type samples, HEX

channel correction results in a tighter distribution of mutant probe well intensities. Post-HEX

correction, fewer false-mutants were found in wild-type plasmid samples. The correction has

little effect on mutant and no-template control (NTC) arrays.

(PDF)

S1 Table. Primer and allele-specific probe sequences. Nucleotides are listed 5’ to 3’. Locked

nucleic acid (LNA) bases are indicated with a “+” before the base. Primers and probes were

ordered from IDT DNA. Probes were purified by HPLC. In this table, “FLUOR” designates

either HEX or Cy5, as both combinations were used in this manuscript. “Q” designates 3’ Iowa

Black1 FQ for FAM- and HEX-labeled probes or 3’ Iowa Black1 RQ for Cy5-labeled probes.

(PDF)

S1 Text. Alternate probe scheme results.

(PDF)
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