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Abstract

The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox
stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR
regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the
DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude
that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth
states in a dynamic environment.
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Introduction

Mycobacterium tuberculosis is a remarkably successful pathogen that

causes ,9 million new cases of active tuberculosis (TB) disease

every year [1]. However, this pool of patients with clinical disease

is dwarfed by a vast reservoir of latently infected individuals

estimated to consist of ,1/3 of the world’s population [2]. A

prominent model of TB pathogenesis argues that a heterogeneous

bacterial population within latently infected individuals enters into

a reversible state of non-replicating persistence or dormancy,

induced by diverse stimuli including nutrient deprivation, nitric

oxide and hypoxia [3]. In vitro study of the latter condition has

demonstrated that hypoxia can drive M. tuberculosis in to a viable

but bacteriostatic state with concomitant substantial remodeling of

the transcriptional and metabolic profile of the cell [4]. One of the

earliest mediators of this transcriptional shift is induction of the

two-component response regulator, Rv3133c [5].

Rv3133c was initially identified as a regulator differentially

expressed in a virulent strain M. tuberculosis (DevR) [6].

Subsequently this transcription factor was shown to be induced

in response to hypoxia [5], nitric oxide [7], or redox stress [8], and

was renamed dormancy survival regulator (DosR) [9]. Induction of

DosR results in the expression of ,49 genes under its direct

control. Furthermore, because each of these conditions is

associated with aspects of bacterial dormancy in vitro and clinical

latency, it was hypothesized that DosR induction initiated a

genetic program that prepared M. tuberculosis for survival of

bacteriostasis [7]. It appears, however, that DosR regulon

induction during the initial hypoxic response is not absolutely

required for survival during bacteriostasis (dormancy), as a dosR

knock-out shows a modest survival defect upon exposure to short-

or long-term defined hypoxic conditions [10]. In models of gradual

oxygen depletion, genetic disruption of dosR or the three-gene dosR

operon led to larger decreases in viability in M. tuberculosis and M.

bovis BCG [9,11], though it is unclear to what extent nutrient

depletion or toxic metabolic by-products impact these observa-

tions. Despite uncertainty about the role of DosR in the natural

history of TB disease, expression of DosR regulon genes is

sometimes cited as evidence of impending in vitro dormancy, with

implications for the management of clinical latency [12]. This

association persists despite the observation that M. tuberculosis

strains of the W-Beijing lineage constitutively express the DosR

regulon [13].

In this work we directly address the question of M. tuberculosis

growth rate following DosR regulon expression. We demonstrate

that under aerobic conditions, ectopic induction of DosR is

sufficient to induce the DosR regulon to near wild-type levels, even

in the absence of its usual cues. However, this induction does not

cause bacteriostasis or otherwise alter the growth kinetics of

replicating M. tuberculosis.

Materials and Methods

Strains and Culturing Conditions
All experiments were performed using an Rv3133c/DosR

knockout M. tuberculosis strain, H37Rv:DdosR, generated in our lab

and described previously [14]. In the present work, H37Rv:DdosR

was transformed with an episomal plasmid containing Rv3133c/

DosR under the control of the smyc, anhydrotetracycline-

inducible, promoter described by Ehrt, et al [15]. This vector

contains a hygromycin B-resistance cassette and was modified to a

contain Gateway RecombinationTM (Invitrogen) cassette (kind gift

of Eric Rubin). We further adapted this destination vector to

contain an in-frame N-terminal FLAG epitope tag to create the

vector pDTNF (plasmid Destination Tet. N-terminal Flag Tag).
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The dosR gene was transferred from the appropriate stock in an

entry clone library (PFGRC, contracted by the NIAID) in to

pDTNF to create the plasmid, pEXNF-3133c (EXpression N-

terminal Flag Tag). Successful recombination was confirmed by

sequencing (data not shown). The resulting ATc-inducible DosR

complement strain, H37Rv:DdosR::pEXNF-3133c, was cultured in

Middlebrook 7H9 with the ADC supplement (Difco),0.05%

Tween80, and 50 mg/mL hygromycin B at 37uC with constant

agitation. All experiments were performed under aerobic condi-

tions and growth was monitored by OD600. Expression of

pEXNF-3133c was induced using an ATc concentration of 10 ng/

mL or 100 ng/mL culture. For uninduced controls, an equivalent

volume of sterile DMSO was added to cultures. ATc-dependent

expression of DosR was confirmed by a-DosR/a-FLAG western

blot (data not shown) as well as by microarray transcriptional

profiling.

RNA Preparation
RNA was isolated as described previously [10]. Briefly, pellets in

Trizol were transferred to a tube containing Lysing Matrix B

(QBiogene, Inc.), and vigorously shaken at max speed for 30 sec in

a FastPrep 120 homogenizer (Qbiogene) three times, with cooling

on ice between steps. This mixture was centrifuged at max speed

for 1 min and the supernatant was transferred to a tube containing

300 mL chloroform and Heavy Phase Lock Gel (Eppendorf North

America, Inc.), inverted for two minutes, and centrifuged at max

speed for five minutes. The aqueous phase was then precipitated

with 300 mL isopropanol and 300 mL high salt solution (0.8 M Na

citrate, 1.2 M NaCl). RNA was purified using an RNeasy kit

following manufacturer’s recommendations (Qiagen). Total RNA

yield was quantified using a Nanodrop (Thermo Scientific).

Microarray analysis
RNA was converted to Cy dye-labeled cDNA probes as

described previously [10]. For all experiments described here,

1 mg of total RNA was used to generate probes. Sets of fluorescent

probes were then hybridized to custom NimbleGen tiling arrays

consisting of 135,000 probes spaced at ,100 bp intervals around

the M. tuberculosis H37Rv genome (NCBI Geo Accession #:

GPL14896). Three biological replicate experiments of both

induced and uninduced cultures were hybridized to arrays. Arrays

were scanned and spots were quantified using Genepix 4000B

scanner with GenePix 6.0 software. These data were exported to

NimbleScan for mask alignment, and ArrayStar for robust

multichip average (RMA)[16] normalization and statistical

analysis (NCBI GEO Accession #: GSE33752). Altered gene

expression was considered significant if it produced a moderated t-

test P,0.05 after Benjamini Hochberg multiple testing correction.

Results

Aerobic ectopic induction of DosR results in expression
of the DosR regulon

The DosR regulon was originally described as those M.

tuberculosis genes induced following 2 hours of hypoxic gas

treatment (0.2% O2) [5], a condition thought to mimic aspects

of the granuloma during latent infection that results in

bacteriostasis in vitro. Because expression of the DosR regulon

represents the first broad transcriptional adaptation to hypoxia, it

has been thought to play a critical role in driving a survival

adaptation during this stress condition. To determine the growth-

rate implications of aerobic DosR expression, we used a DdosR M.

tuberculosis genetic background previously generated in our lab

[14], and created a complement strain in which DosR could be

conditionally expressed with the addition of anhydrotetracycline

(ATc). We first established if the addition of ATc was sufficient to

induce the DosR regulon in rolling culture. Early log phase

cultures were diluted to OD600 of 0.04 and incubated

independently for 24 hours prior to chemical induction of DosR.

At T0 cultures were treated with 10 ng ATc (dissolved in DMSO)

per mL of culture, or a volume-matched amount of sterile DMSO,

and RNA was collected at 12 and 24 hours post-induction. Three

biological replicates of induced and three uninduced samples were

processed and hybridized to genome-wide tiling microarrays.

Focused transcriptional changes were apparent at 12 hours (data

not shown), and by 24 hours of ectopic DosR induction under

aerobic conditions, 50 genes were significantly induced, including

44 genes of the traditionally-defined DosR regulon (Figure 1).

Interestingly, these genes were induced under conditions in which

neither of the histidine kinases known to interact with DosR have

documented activity – log phase aerobic growth. Two DosR

regulon genes, Rv3126c (conserved hypothetical) and Rv3132c

(DosS) approached but did not reach statistical criteria for

significant induction. Rv3841, a gene noted previously to be

mildly induced during early hypoxia and considered part of the

DosR regulon but without a canonical DosR binding motif [14],

was moderately repressed under these conditions, raising the

possibility this gene is not a member of the DosR regulon, but

rather is correlatively induced in hypoxia by another factor not

under the control of DosR. Along with ,90% of the DosR

regulon, 6 additional genes (Rv0085, Rv0086, Rv0087, Rv1519,

Rv1735c, and Rv2386c) were found to be significantly upregu-

lated in response to this treatment. With the exceptions of Rv1519

and Rv2386c, all of these genes are located in operons with, or

adjacent to, genes of the DosR regulon with known DosR binding

sites.

Figure 1. Ectopic expression of DosR induces the DosR regulon.
Scatterplot displaying transcript levels of all M. tuberculosis genes after
24 hours of treatment with either 10 ng/mL Atc (induced) or an
equivalent volume of sterile DMSO (uninduced). Three biological
replicates were RMA-normalized and the median pixel intensity data
are plotted on a log2 scale. Genes of the DosR regulon are represented
as dark gray circles. Significantly induced genes (moderated t-test with
Benjamini-Hochberg FDR correction, p,0.05) not part of the DosR
regulon are presented as black diamonds, and the dosR transcript is
indicated with a star.
doi:10.1371/journal.pone.0035935.g001

DosR Expression and MTB Replication
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To examine the ectopic response more closely we next asked

whether the aerobic induction of DosR and the DosR regulon

produced an overall transcriptional landscape similar to that of

bacilli after 2 hours of hypoxic gas treatment. To do this, we

performed a meta-analysis comparing the aerobic/ectopically

induced DosR regulon expression profile to the earlier reported

DosR transcriptional data [14]. We found a significant correlation

between the expression levels observed under ectopic/aerobic

conditions and native DosR/DosR regulon expression under

hypoxic conditions (Spearman r = 0.672, P,0.0001). We thus

conclude that ectopic/chemical induction of Rv3133c from the

ATc-inducible plasmid pEXNF-3133c under aerobic conditions

results in expression of the DosR regulon comparable to that of the

initial hypoxic response.

Ectopic induction of the DosR regulon does not alter
growth kinetics of M. tuberculosis

Having established conditions in which DosR regulon induction

is uncoupled from its traditional signals, we next sought to

determine the impact on the growth kinetics of replicating M.

tuberculosis. Using the induction conditions described for transcrip-

tional profiling above, Figure 2A shows a growth curve in which

expression of the DosR regulon was induced in early log phase

(T0). Over the entire time course it is apparent that DosR regulon

expression had no impact on the doubling time or entrance into

stationary phase when compared with the uninduced control. To

investigate if replication rate was more sensitive to DosR regulon

induction at different growth phases, we also assessed the impact of

chemical DosR induction during mid-log phase. Using bacteria at

OD600 of 0.4 and ten times more ATc (100 ng/mL) than before,

growth rate was again unaffected (Figure 2B). We conclude that

induction of the DosR regulon does not by itself establish a

bacteriostatic phenotype, or alter M. tuberculosis growth kinetics.

Discussion

In this work we investigated the impact of DosR regulon

expression on replicating M. tuberculosis under aerobic conditions.

Utilizing an M. tuberculosis H37Rv dosR knockout strain comple-

mented with an ATc-inducible copy of dosR, we found that ectopic

expression of DosR under aerobic conditions resulted in a

transcriptional pattern strikingly similar to that found when wild-

type M. tuberculosis is exposed to 0.2% oxygen for 2 hours – a

condition that results in bacterial growth arrest. However,

expression of the DosR regulon to these near-physiological levels

had no effect on growth rates after induction compared to DosR-

uninduced cultures. Over a period of several days, these cultures

replicated with nearly identical kinetics and displayed no

differences as they entered stationary phase. Previous studies

indicate that disruption of dosR can produce a range of hypoxic

survival phenotypes, with survival defects of ,1.5 log to ,4 log

reported under long-term hypoxic conditions [9,10,11]. However,

we have demonstrated that deletion of dosR had little impact on

the long-term transcriptional adaptation of M. tuberculosis to

hypoxic environments [10]. Thus, the precise role of DosR

regulon induction remains an open question, but the data reported

here lead us to conclude that it is not sufficient to initiate

bacteriostasis.

Results reported here differ from a study performed using M.

bovis BCG in which a constitutively-expressed merodiploid copy of

DosR induced fewer members of the DosR regulon, and resulted

in a moderate growth defect [17]. Perhaps the difference in species

used accounts for this discrepancy. In addition, we cannot exclude

the possibility that DosR-dependent growth arrest requires precise

induction of a particular ‘‘native’’ transcriptional profile not

reproduced in the ectopic system described here. However, as

noted above, the transcriptome generated by ectopic DosR

expression is remarkably similar to that produced after 2 hours

of hypoxia, and those few genes demonstrating the greatest

expression differences in this system do not have functions clearly

associated with growth arrest.

The observation that M. tuberculosis replication is not affected by

expression of the DosR regulon does not preclude the possibility

that genes from this regulon are expressed during periods of

clinically latent disease. This scenario is consistent with recent

hypotheses that the term ‘‘latent infection’’ is a broad classifier

describing a number of different states [4,18]; however, that these

genes are expressed during active replication strongly argues that

Figure 2. DosR regulon expression does not alter M. tuberculosis
growth kinetics. A) Growth curves of cultures in which DosR was
either ectopically induced with 10 ng/mL ATc (gray circles connected
by solid line) or treated with an equivalent volume sterile DMSO
(uninduced, black triangles connected by dashed line). OD600 of three
biological replicates were tracked for 6 days following chemical
treatment. Displayed are mean OD600 +/2 standard deviation.
Doubling times for induced (21.97 hours) and uninduced (21.54 hours)
cultures were calculated using exponential growth equation from
nonlinear regression fit of un-/induced OD600 data points. Time points
included in doubling time calculation were T0, T24, and T48. B) Growth
curves of M. tuberculosis in which DosR was either ectopically induced
with 100 ng/mL ATc or treated with an equivalent volume of sterile
DMSO. OD600 of three biological replicates were tracked for 48 hours
following chemical treatment. Strain identifiers as described in 2a.
Doubling times for induced (21.19 hours) and uninduced (20.33 hours)
cultures calculated as above.
doi:10.1371/journal.pone.0035935.g002
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DosR regulon expression is not an explicit marker of latent

infection. Indeed, it appears that expression of the DosR regulon

correlates with multiple stages of infection and disease in a

dynamic host environment.
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