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Abstract

Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symp-

toms have a long history of diagnostic confusion. It is unclear what their differ-

ences at a brain level are. Here, we propose a multimodality fusion classification

approach to investigate their divergence in brain function and structure. Using

brain functional network connectivity (FNC) calculated from resting-state fMRI

data and gray matter volume (GMV) estimated from sMRI data, we classify the

two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased

10-fold cross-validation pipeline, and also validate the classification generalization

ability on an independent cohort (120 SZ and 349 ASD patients). The classifica-

tion accuracy reached up to 83.08% for the testing data and 72.10% for the inde-

pendent data, significantly better than the results from using the single-modality

features. The discriminative FNCs that were automatically selected primarily

involved the sub-cortical, default mode, and visual domains. Interestingly, all dis-

criminative FNCs relating to the default mode network showed an intermediate

strength in healthy controls (HCs) between SZ and ASD patients. Their GMV dif-

ferences were mainly driven by the frontal gyrus, temporal gyrus, and insula.

Regarding these regions, the mean GMV of HC fell intermediate between that of

SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was

associated with both functional and structural differences. In summary, our work

reveals the unique neuroimaging characteristics of SZ and ASD that can achieve

high and generalizable classification accuracy, supporting their potential as

disorder-specific neural substrates of the two entwined disorders.
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1 | INTRODUCTION

Schizophrenia (SZ) and autism spectrum disorder (ASD) share a long

history of diagnostic confusion (Trevisan et al., 2020). The term

“autism” was first introduced as a symptom of SZ rather than as an

independent disorder. In the DSM-II (the second edition of the Diag-

nostic and Statistical Manual of Mental Disorders), autism was

referred to as a childhood type of SZ (called childhood-onset SZ), and

ASD was first proposed as a distinct clinical diagnosis in the release of

the DSM-III. Although SZ and ASD are currently recognized as sepa-

rate disorders, they have overlapping clinical symptoms. Undeniably,

both SZ and ASD share cognitive impairments (Sasson et al., 2011),

including notable impairment in theory of mind (Frith, 2004; Pilowsky

et al., 2000), deficits in processing emotion (Kohler et al., 2010;

Wallace et al., 2011), and language and learning disabilities (Stone &

Iguchi, 2011). The basic problem is that the two disorders are defined

by clinical symptoms and not by biology. There is thus a great need to

reveal the neural difference between the two related disorders

because a deeper understanding of each disorder would lead to better

treatments. Although recent studies have investigated the association

between ASD and SZ (King & Lord, 2011; Lanillos et al., 2020;

Veddum et al., 2019), it is still largely unknown what their differences

are on both brain function and structure and whether multimodal neu-

roimaging measures can effectively differentiate them.

Advanced brain functional measures derived from resting-state

functional magnetic resonance imaging (fMRI) data and brain struc-

tural information estimated from structural magnetic resonance imag-

ing (sMRI) data have been used to explore SZ and ASD, however,

most of the early studies worked on them separately (Anderson

et al., 2011; Brent et al., 2013; Du, Fryer, et al., 2018; Du, Fu,

et al., 2018; Greimel et al., 2013). Recently, increasing studies found

an association between the two disorders (Krieger et al., 2021;

Lanillos et al., 2020), raising a compelling demand to investigate their

shared and unique abnormalities in the brain.

Based on brain structural measures, some previous studies

(Cauda et al., 2017; Cheung et al., 2010; Zheng et al., 2018) evaluated

SZ and ASD using meta-analysis, revealing their similar changes in

many aspects such as lower limbic-striato-thalamic gray matter vol-

ume (GMV) relative to healthy controls (HCs). In our recent work, we

performed statistical analyses to investigate inter-group differences

among HC, SZ, and ASD in whole-brain GMV of 3148 subjects (1661

HCs, 517 SZ patients, and 970 ASD patients) and gray matter density

of 3374 subjects (1789 HCs, 555 SZ patients, and 1030 ASD

patients), consequently disclosing substantial commonality and speci-

ficity of SZ and ASD in brain gray matter (Du et al. 2021). Neverthe-

less, in the study whether their differences in gray matter impairments

can effectively differentiate the two disorders was not discovered.

Another recent study (Yassin et al., 2020) used 97 patients with SZ

spectrum, 36 patients with ASD, and 106 HCs to explore the ability of

measures including cortical thickness (150 regions), surface area

(150 regions), and subcortical volume (36 regions) in distinguishing

the three groups or any two groups. The best results were 69% accu-

racy for the three-class classification and 85% accuracy for the SZ

versus ASD classification using cortical thickness. Although they

achieved good classification performance, the features extracted by

principal component analysis (PCA) could not reflect the most impor-

tant features relating to classification.

By using brain functional connectivity as features, some studies

applied a classification strategy to explore differences between ASD

and SZ. Chen et al. (2017) used a support vector machine (SVM) to

distinguish SZ or ASD patients from HCs, resulting in a good perfor-

mance on a small sample size of data (80% accuracy in the 22 ASD

patients vs. 21 HCs and 83% accuracy in the 35 SZ patients

vs. 31 HCs). Relative to HCs, they found alterations of ASD primarily

in intra-salience network connectivity, and changes of SZ primarily in

functional connectivity between the default mode and salience net-

works and functional connectivity within the sensorimotor network.

Andriamananjara et al. (2018) employed SVM to distinguish individ-

uals with SZ or ASD from HCs, showing an improved classification

accuracy using dynamic connectivity (82% for 31 ASD vs. 23 HCs and

76% for 70 SZ patients vs. 74 HCs) compared to using static connec-

tivity (78% for ASD datasets and 74% for SZ datasets). They revealed

the discriminative connectivity involving the posterior cingulate gyrus,

superior, and middle temporal gyrus, however, the used sample size

was still small. Inspired by a prior study (Yahata et al., 2016) that sepa-

rated ASD from HC with an accuracy of 85% but also found that the

ASD-derived classifier can moderately distinguish SZ from HC,

Yoshihara et al. (2020) conducted dual classifiers that discriminated

SZ or ASD from HC, and then quantified the relationship between SZ

and ASD by evaluating the classification certainty using the dual clas-

sifiers on all SZ, ASD, and HC subjects. Their study suggested that SZ

and ASD tended to show an overlapping relationship. All the above-

mentioned studies focused on classifying patients from HCs, and

Mastrovito et al. (2018) conducted the first study classifying SZ and

ASD directly using brain measures. They performed SVM on effective

connectivity of 72 SZ and 37 ASD patients and yielded a 75% SZ ver-

sus ASD classification accuracy for a small test dataset (5 SZ and

27 ASD patients). In their work, the features used in distinguishing SZ

and ASD were drawn from the features that separated SZ or ASD

from HCs, thus those features may not accurately represent the most

important differences between the two disorders. In our recent work

(Du et al., 2021), we also performed statistical analyses to investigate

inter-group differences among HC, SZ, and ASD in brain functional

networks and connectivity of 2980 subjects (1665 HCs, 537 SZ

patients, and 778 ASD patients) and found the disorder-common and

disorder-specific impairments relative to HC. Based on the disorder-

unique connectivity measures and the ASD-weaker connectivity

measures within the disorder-common changes, SZ and ASD were distin-

guished well (i.e., the mean classification accuracy reached 75% across

12 classifications that employed different datasets as the testing data).

However, the used features also came from the results of comparing dis-

order (SZ or ASD) with HC, rather than the results of directly linking SZ

and ASD. Being different from using a two-class classification strategy,

Rabany et al. (2019) performed a three-class classification based on mea-

sures derived from dynamic functional network connectivity, resulting in

an accuracy of 81.8% for SZ, 50% for ASD, and 41.2% for HC using
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33 SZ patients, 33 ASD patients, and 34 HCs. Since the study used

dynamic measures including the fraction and dwell time of connectivity

states as the features for the classification, no brain region or connectiv-

ity was directly linked to the disorder differences.

In summary, there are only a few studies that performed a direct

comparison or classification between SZ and ASD. Although some

studies have successfully classified ASD and SZ using brain functional

or structural features, the used features cannot reflect their most

important differences with each other, and no multimodal characteris-

tics were used. Because there is a large overlap and complex relation-

ships between SZ and ASD, it is particularly important to investigate

what brain differences underline the neural substrate to make their

diagnoses valid. Our other study made an effort in this area by pro-

posing a new deep learning fusion model to combine brain functional

and structural features for distinguishing SZ and ASD (Du, Li,

et al., 2020). However, the elucidation of explicit features (reflecting

the essential differences between the two disorders) in a deep learn-

ing model is often difficult. Also, although an unbiased five-fold cross-

validation was employed for the evaluation, no fully independent

dataset was used to verify the generalization ability of classification in

our previous work (Du, Li, et al., 2020). Taken together, the diver-

gence between these two related disorders at a brain level, especially

on different modalities, is still not well understood.

In our present study, we aim to explore the difference between

ASD and SZ based on both brain functional and structural characteristics

by performing a straightforward classification between the two disor-

ders. Specifically, our first goal is to investigate if the two disorders for

which there has been a growing debate on their overlap and heterogene-

ity can be effectively distinguished by only using brain functional and

structural measures. Going further, we are also interested in whether

combining different functional and structural measures would improve

classification performance. To achieve this, we propose a new fusion

classifier that can effectively leverage information from different modali-

ties. Our second goal is to explore what brain measures are different

between the two disorders and what relationships exist between multi-

modal features. In this study, we tested the reliability of the trained clas-

sifier and identified differences using 715 individuals as the main

training/testing data with unbiased 10-fold cross-validation, and also

examined the generalization ability on 469 individuals as the fully inde-

pendent data (collected at different sites) for evaluation. Furthermore,

regarding the important features that were used to differentiate SZ and

ASD, we investigated how each disorder differed relative to HCs to iden-

tify whether the two disorders show overlapping or specific abnormali-

ties. We believe that our work will further the understanding of the

mechanisms differentiating SZ and ASD.

2 | MATERIALS AND METHODS

2.1 | Data and preprocessing

The main training and testing data for the SZ-ASD classification were

from four datasets, including SZ patients from the Bipolar-

Schizophrenia Network for Intermediate Phenotypes-1 (BSNIP-1), SZ

patients from the Function Biomedical Informatics Research Network

(FBIRN), SZ patients from the Centers of Biomedical Research Excel-

lence (COBRE), and ASD patients from the Autism Brain Imaging Data

Exchange I (ABIDE I). For further validation, we also used the indepen-

dent data from two datasets, including SZ patients from the Maryland

Psychiatric Research Center (MPRC) and ASD patients from the

Autism Brain Imaging Data Exchange II (ABIDE II) to evaluate the

trained classifiers and the automatically selected features.

Both fMRI and sMRI datasets were included. All data was

processed in the same preprocessing pipeline, using the statistical

parametric mapping toolbox. For fMRI data, we removed the first few

time points and then performed the rigid body motion correction to

correct the subject's head motion, followed by the slice-timing correc-

tion to account for timing difference in slice acquisition. fMRI data

were subsequently warped into the standard Montreal Neurological

Institute space using an echo planar imaging (EPI) template and were

then resampled to 3 � 3 � 3 mm3 isotropic voxels. The resampled

fMRI images were further smoothed using a Gaussian kernel with a

full width at half maximum (FWHM) = 6 mm. For sMRI data, the

T1-weighted images were first segmented into gray matter, white

matter, and cerebrospinal fluid by using the standard unified segmen-

tation model (Ashburner & Friston, 2005). The Diffeomorphic Ana-

tomical Registration Through Exponentiated Lie Algebra (DARTEL)

algorithm (Goto et al., 2013) was employed to create a group template

for spatial normalization of the segmented images of each subject.

Then, the flow fields generated by DARTEL were used to estimate

individual-subject images. After that, individual-subject gray matter

images were spatially normalized to the MNI space, modulated,

resliced (1.0-mm isotropic voxels), and smoothed (6-mm FWHM

Gaussian kernel). Finally, the obtained GMV was used as voxel-based

morphometry (VBM).

After selecting fMRI and sMRI data with good quality (such as

slight head motion in fMRI), we preserved 335 SZ and 380 ASD

patients for the main training/testing data and 120 SZ and 349 ASD

patients for the independent data. We also investigated the brain

changes of each disorder group relative to the healthy group to iden-

tify the most discriminative features classifying the SZ and ASD

patients. For this goal, 851 HCs from the BSNIP-1, FBIRN, COBRE,

and ABIDE I datasets were used. Tables 1 and S1 include the demo-

graphic and motion information and the scanning information of the

selected data, respectively.

2.2 | Methods

In this study, we first estimated brain functional network connectivity

(FNC) and voxel-based GMV for each subject to reflect brain function

and structure. Next, the SZ and ASD groups were classified using the

single-modality method and our proposed multimodality fusion

method, respectively. For both methods, SVM in combination with an

automatic feature selection algorithm was applied to the main

datasets under a 10-fold cross-validation framework to evaluate the
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classification performance. Additionally, the independent data were

used to validate the generalizability of the constructed classifiers and

selected features. Finally, we investigated the features that played a

key role in distinguishing SZ and ASD to address if the two disorders

showed unique abnormalities.

2.2.1 | Computation of brain functional and
structural measures

In the work, brain functional networks were first estimated using the

NeuroMark method and software (Du, Fu, et al., 2020) (see the shared

resources on www.yuhuidu.com for the NeuroMark software), and

then FNC (Jafri et al., 2008) was computed based on the time courses

of brain functional networks. NeuroMark utilizes group information

guided ICA (GIG-ICA) (Du & Fan, 2013; Du, et al., 2015; Du, Fryer,

et al., 2018) with reliable network templates as references to the

preprocessed fMRI data to estimate subject-specific functional net-

works. Our method can easily compute comparable network measures

for individuals while maximally optimizing the unique network prop-

erty for each subject. The unbiased spatial network templates were

estimated using two large independent groups of HCs, that is, 1005

HCs from the Human Connectome Project (HCP) and 823 HCs from

the Genomics Superstruct Project (GSP), with the number of indepen-

dent components (ICs) in ICA set to 100, followed by the selection

of 53 reliable, reproducible, and meaningful networks as templates.

The network templates can be downloaded at the shared resources

on www.yuhuidu.com. Guided by the 53 network templates,

53 corresponding networks were obtained for each subject using the

multiple-objective optimization in GIG-ICA. Each resulting functional

network reflects brain regions having high intra-network connectivity.

Using NeuroMark, the temporal fluctuation of each subject-specific

network can be reflected by the component-associated time course.

We calculated FNC of each subject by computing the Pearson correla-

tion among the postprocessed time courses of 53 networks. Each time

course was processed by converting to a Z-score, regressing six

motion parameters, de-trending, de-spiking, and band-filtering (0.01–

0.15 Hz) before computing correlations (Allen et al., 2011). It should

be pointed out that motion has systematic effects on fMRI measures

(Van Dijk et al., 2012), so in our study we carefully dealt with this

issue by performing head motion correction in the preprocessing

steps, selecting subjects with small head motions for analyses, remov-

ing the artifacts by applying ICA to decompose data into ICs including

motion-related components, and regressing six motion parameters on

the time series of brain functional networks before computing FNC

measures. Since each element of FNC matrix (size: 53 � 53) repre-

sents the connectivity between a pair of functional networks, this

resulted in 1378 connectivity features for each subject due to the

symmetrical property of FNC matrix.

From sMRI data, we obtained the GMV measures represented by

a 3D image (size: 121 � 145 � 121) for each subject. Next, we down-

sampled each 3D image to a smaller one to decrease computation

load. In our work, a 3 � 3 � 3 window was used to transform the

original matrix into a 40 � 45 � 40 matrix. We then concatenated the

voxel-level GMV values within the brain mask into a vector (size:

1 � 15,342) as the brain structural measures. As such, we obtained

two types of neuroimaging measures including FNC and GMV, which

were taken as possible features for the classification between SZ and

ASD so as to be indicators disclosing brain differences between the

SZ and ASD groups and were also used for the investigation of their

brain changes relative to HC. A summary of the above-mentioned

neuroimaging measure computation is shown in Figure 1.

Since neuroimaging measures could be affected by age (Giorgio

et al., 2010), gender (Filippi et al., 2013), and MRI acquisition

TABLE 1 The demographic and motion information of ASD, SZ, and HC groups used for classification and statistical analysis.

Subject
number

Mean age of
subjects

Gender of subjects
(male/female number)

Motion

transition:
mean/SD

Motion

rotation:
mean/SD

The main training

and testing data

ASD patients (ABIDE I) 380 17.80 331/49 0.20/0.13 0.21/0.14

SZ patients (BSNIP-1,

COBRE, and FBIRN)

335 (159, 53,

123)

36.38 (34.65,

35.09, 39.15)

185/150 (42/117, 47/6,

96/27)

0.16/0.14 0.15/0.14

The independent

data

ASD patients (ABIDE II) 349 15.89 298/51 0.19/0.15 0.21/0.16

SZ patients (MPRC) 120 38.08 82/38 0.10/0.11 0.08/0.11

HC (ABIDE I, BSNIP-1, COBRE and FBIRN) 851 (443, 195,

79, 134)

27.59 (18.03,

38.34, 37.89,

37.47)

621/230 (360/83,

106/89, 57/22,

98/36)

0.17/0.12 0.18/0.13

Note: For the main data, the p-value of age difference between SZ and ASD is 2.84 � 10�96 tested by two-sample t-test, and the p-value of their gender

difference is 0 tested by Chi-square test. For the independent data, the p-value of age difference between SZ and ASD is 8.38 � 10�62 tested by two-

sample t-test, and the p-value of their gender difference is 3.96 � 10�05 tested by Chi-square test. Among the three groups in main data (ASD, SZ, and

HC), the p-value of age difference is 2.78 � 10�78 tested by ANOVA, and the p-value of gender difference is 0. The motion translation measure of each

subject was computed by averaging translation parameters across time points as well as x, y, and z axes. The motion rotation measure of each subject was

computed by averaging rotation parameters across time points as well as pitch, yaw, and roll. The motion differences among HC, ASD, and SZ were

computed using ANOVA. For the main data, the p-value is 7.11�10�05 for motion transition and is 5.10�10�08 for motion rotation. For the independent

data, the p-value is 4.92�10�09 for motion transition and is 1.57�10�14 for motion rotation.
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(Streitburger et al., 2014), we carefully regressed out their effects

from each neuroimaging measure (e.g., GMV in one voxel) in advance

by performing two-stage linear regression analyses that are as same

as our previous work (Du, Fu, et al., 2020; Du et al., 2021) to mini-

mize the effects of age, gender, and site on the classification and

group difference analyses. First, for each dataset (e.g., FBIRN), we

regressed out the age, gender, site information, the interaction

between age and site, and the interaction between gender and site

for all subjects using a multiple linear regression model. In particular,

for one specific neuroimaging measure, we constructed a model

y¼ β0þβ1X1þβ2X2þβ3X3þβ4X4þβ5X5þe. Here, y�Rn�1 denotes

the predicted value of the dependent variable, corresponding to the

neuroimaging-derived values of all n subjects in the dataset

(e.g., FBIRN). X1, X2, X3, X4, and X5 are the explanatory variables,

corresponding to the age, gender, site information, the interaction

between age and site, and the interaction between gender and site of

all n subjects. It should be noted that since there are multiple sites for

each dataset, we included all the site information in our study. β0 is a

constant term, and β1, β2, � � �, β5 are coefficients relating the explana-

tory variables. We assume that the error term e has a mean value of

0. Using the model, the relationship between the dependent variable

and explanatory variables, reflected by β0, β1, β2, � � �, β5, was esti-

mated. Then, for the neuroimaging measure of each subject, we

removed the effects of the age, gender, site information, the interac-

tion between age and site, and the interaction between gender and

site, thus resulting in new neuroimaging values of all n subjects in the

dataset, denoted by ynew. Since the above-mentioned regression was

performed on each dataset (e.g., FBIRN) separately, we further han-

dled the data variations across different datasets. To address this, we

estimated the dataset effect by only using the new neuroimaging

values of HCs (in ynew) from all six datasets. Based on the

concatenated new data of all HCs, denoted by yHC, we constructed

another linear regression model yHC ¼ α0þα1DþeHC. Here,

yHC �Rm�1 represents the new data of m HCs of all six datasets, D

includes the dataset information, and eHC is the error term. From the

model, α0 and α1 were obtained. After that, for each of all subjects

(including both HCs and patients), we further regressed out the

dataset effect from the neuroimaging value that were already

removed the age, gender, and site effects (i.e., the data from ynew). In

our study, we used dummy variables for the category-related explana-

tory variables (i.e., gender, site information, the interaction between

age and site, the interaction between gender and site, and dataset

information). The above processing was performed for each neuroim-

aging measure separately. As such, we obtained the final data relating

all neuroimaging measures for all subjects, which were used for the

classification and group difference analyses.

F IGURE 1 The pipeline for
computing brain functional
connectivity and structural
features. (a) The computation of
functional network connectivity
(FNC). (b) The computation of
gray matter volume (GMV).
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2.2.2 | Classification between SZ and ASD using
single-modality neuroimaging features

We separately investigated the performance of the functional connec-

tivity and gray matter measures in differentiating SZ and ASD. As

mentioned above, we computed FNC and GMV measures for the clas-

sification process. SVM was used in our work since it has shown satis-

factory performance in classifying many mental disorders (Mwangi

et al., 2012, Chen et al., 2017; Du, Fu, et al., 2018; de Filippis

et al., 2019). In addition, features can be selected and represented

more straightforwardly in SVM compared to complex techniques such

as deep learning. We evaluated the classification performance using

both the testing data in the main data and additional independent

data for a comprehensive assessment.

Figure 2 shows the classification framework with the single-

modality measures (FNC or GMV) as input. As shown in Figure 2a,

335 SZ and 380 ASD patients from four different datasets were used

as the main training/testing data under a 10-fold cross-validation

framework. The 10-fold random partition process was implemented

for 100 runs to maximize reliability. Within each run, all 715 subjects

were divided into 10 folds equally, in which one randomly selected

fold was used as the testing data, and the remaining nine folds were

used as the training data. It should be noted that we kept the sample

partitions consistent between the two modalities to facilitate further

comparison and fusion. To automatically select optimal features, we

applied two-tailed two-sample t-tests followed by SVM with recursive

feature elimination (SVM-RFE) technique in inner 10-fold cross-

validation using the training data (Du et al., 2015; Zhou & Tuck,

2007). In SVM-RFE, each iteration process removed the least signifi-

cant 10% features. After each time of iteration, an SVM classifier was

trained using the updated features on the nine inner-training folds,

and then the constructed SVM classifier was tested on one remaining

inner-testing fold. The above feature sorting and removal process was

repeated 10 times, consequently resulting in 10 feature subsets each

of which corresponded to the maximum classification accuracy (of the

inner-testing fold) of each time. Subsequently, the features with

F IGURE 2 Classification flowchart using single-modality features. The classification was performed on both the (a) main and (b) independent
datasets. Figure 2c represents the detailed process of “selecting features” in Figure 2a. For the main training/testing data, a 10-fold cross-
validation framework was used for evaluating the classification performance. The features extracted from the training data were regarded as the
intergroup differences and then validated by using the independent data. The used single-modality measures are functional network connectivity
(FNC) or gray matter volume (GMV).
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greater than 50% occurrence frequency in the 10 feature subsets

were taken as the final selected features. We chose 50% as the

threshold to guarantee a sufficient number of features remained as

well as good classification performance. Next, using those features, an

SVM classifier was built using the (main) training data. In our experi-

ments, the radial basis function (RBF) kernel was used in SVM, and

the c (within the range of 2�21,221
h i

) and gamma (within the range of

2�21,221
h i

) parameters were optimized via a nested five-fold cross-

validation procedure using grid search with a step size of 23. In our

work, we choose a relatively large range for both c and gamma

2�m,2m,herem¼21Þ½ �ð and a small optimization grid with 15 points

for both c and gamma to optimize the parameters of the SVM classi-

fier. That means we searched for optimal setting among many possible

settings of 2�21,2�18,2�15, � � �,215,218,221
� �

for both c and gamma,

consequently maximizing the capability of achieving good classifica-

tion performance. Finally, we examined the classification ability of the

well-constructed classifier on the (main) testing data. This resulted in

100 classification evaluations across different runs.

As the main data was randomly shuffled and partitioned into

10 folds, the classifiers should adapt to different data. For further vali-

dation, we evaluated the generalization ability of the constructed clas-

sifiers and selected features using the independent data including two

additional datasets that were totally separated from the main data.

Figure 2b shows this basic pipeline. Since 100 classifiers and feature

sets were obtained from the training processing in the single-modality

related classification, we also obtained 100 classification results using

the independent data.

To assess the classification performance for the testing (in the

main data) and independent data, a series of metrics including the

accuracy, sensitivity, specificity, precision, F-measure, and G-mean

were computed (Cuadros-Rodríguez et al., 2016). Accuracy is com-

puted as the ratio of correctly classified subjects of all classes to the

total number of subjects of all classes. The proportions of correctly

classified subjects in the positive class (SZ here) and negative class

(ASD here) are measured using sensitivity and specificity, respectively.

Precision describes the proportion of actually being positive out of all

the subjects that are predicted to be positive. F-measure is a compre-

hensive reflection of the ability to distinguish positive and negative

subjects and describes the robustness of the classification model. G-

mean describes an equilibrium between agreements and errors in clas-

sification. These measures are computed using the following

equations.

Accuracy¼ TPþTN
TPþFPþTNþFN

Sensitivity¼ TP
TPþFN

Specificity¼ TN
FPþTN

Precision¼ TP
TPþFP

F�measure¼ 1þβ2
� ��Sensitivity�Precision

β2�SensitivityþPrecision
, here,β¼1ð Þ

G�mean¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity�Specificity

p

Here, TP denotes the number of subjects that are judged to the

positive class and that judgments are correct; TN denotes the number

of subjects that are judged to the negative class and that judgments

are correct; FP denotes the number of subjects that are judged to the

positive class and that judgments are wrong; FN denotes the number

of subjects that are judged to the negative class and that judgments

are wrong. In our work, regarding each metric, 100 runs of 10-fold

cross-validation resulted in 100 values for both the (main) testing and

independent data, and we summarize and visualize the 100 values of

each metric using one boxplot.

2.2.3 | Classification between SZ and ASD using
multimodality features by our fusion method

In this section, we propose a new fusion method to effectively take

advantage of both functional and structural measures for the classifica-

tion goal. As shown in Figure 3a, the basic idea is to combine the classi-

fiers' outputs from different modalities by using a linear weighting

method and then generate the final predicted label. The weights were

determined based on how well each modality worked in the distinction

using preexisting data. To generate the weights we normalized the accu-

racy of the FNC and GMV classifications. For the testing data (see

Figure 3b), the accuracy was the maximum classification accuracy

corresponding to the optimal parameters within the training data. For

the independent data (see Figure 3c), the accuracy was the classification

accuracy on the testing data. As we computed 100 classifiers for each

modality, we also had 100 results for both testing and independent data

using our fusion method. Note: the features used in the fusion method

were as same as that in the single-modality methods because we only

combined the classifiers but not the features. Therefore, the two kinds

of features can be easily presented as the disorder divergence using their

original values, without the need for complex inversion.

Similar to the single-modality method, we computed six metrics

to assess the classification results from the fusion classifier and

showed the details in boxplots. Furthermore, we performed a paired

t-test between the fusion method and the single-modality (FNC or

GMV) method for each metric to quantify whether there is a signifi-

cant improvement in using the fusion method relative to the single-

modality method or not.

2.2.4 | Investigation of brain changes in SZ and
ASD relative to HC

Through the two-class classification, we revealed the neuroimaging

markers representing the primary brain differences of the two inter-

twined disorders, and going further we also investigated whether the
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two disorders have similar or divergent changing trends relative to the

healthy group in terms of these biomarkers. To do this, we summa-

rized the common features resulting from different classification runs

and investigated them across three groups (851 HCs, 335 SZ, and

380 ASD patients) using statistical analyses, aiming to illuminate what

brain changes differ in the two disorders and further if brain func-

tional and structural differences show associations in common brain

regions.

Regarding the FNC features, we took those which were present

in all 100 FNC feature sets across 100 classification runs as the impor-

tant FNCs. For each important FNC, we comprehensively investigated

the group differences between SZ and ASD by performing two-tailed

two-sample t-tests. After that, we chose the FNCs that had the most

significant differences in SZ versus ASD (with the smallest p-values)

to evaluate if the two disorders showed similar or disparate changing

trends relative to HC in those FNCs (p-value <.05 with Bonferroni

correction).

Regarding the GMV features, considering that the number of

voxels taken as features was relatively large, we summarized the fea-

tures at the brain region level by using the automated anatomical

labeling atlas 3 (AAL3) for a brain parcellation (Rolls et al., 2020) to

simplify the subsequent analyses. We included the voxels rep-

resenting more than 10% overlapping features (across 100 runs) to

form important brain regions. The overlap degree of GMV features

was set to a smaller threshold (10%) relative to that of FNC features

because there were more optional features in GMV compared to FNC

and the final selected features were relatively few for both modalities.

For each important brain region, we investigated the group differ-

ences between SZ and ASD by performing two-tailed two-sample t-

tests. Then, we chose the important regions that had the most signifi-

cant differences in SZ versus ASD (with the smallest p-values) and a

relatively large number of voxel features (including more than

100 voxels) to evaluate if the two disorders showed similar or dispa-

rate changing trends relative to HC in those brain regions. For each

important brain region that we selected, we calculated the mean of

voxel features within it for each subject and summarized the group

differences using two-tailed two-sample t-tests (p-value <.05 with

Bonferroni correction) on any pair of groups.

3 | RESULTS

3.1 | Performance of classification between SZ
and ASD

Figure 4 shows the classification results obtained from the single-

modality method (using FNC or GMV) and our fusion method for

both the (main) testing and the independent data. For each metric,

the mean value across all 100 classification runs is displayed in

Table 2. Regarding the (main) testing data, the mean values of all

metrics were greater than 75% from using FNC, furthermore, our

fusion method greatly outperformed the single-modality methods.

The results from the paired t-tests (see Table S2) between the clas-

sification using our fusion method and that using the single-

F IGURE 3 Fusion classification framework by using both modalities (i.e., FNC and GMV). (a) Shows how individual subject from the testing
(of the main data) and independent data is classified by combining the use of FNC and GMV features. Basically, the predicated group scores are
sum-weighted to obtain updated scores which are then used to determine the final label. (b) and (c) demonstrate how the weights corresponding
to different modalities are computed for the testing and independent data, respectively.
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modality method also support that the fusion method achieved sig-

nificantly better results. Regarding the independent data, the classi-

fication accuracy was lower than that of the testing data, probably

due to the varied data property (from different sites). As expected,

our proposed fusion method still improved the classification perfor-

mance (see Table 2 for the accuracy and Table S3 for the paired t-

test results), compared to single-modality methods. The low preci-

sion and F-measure of the independent data resulted from the

uneven size of subjects between the two groups (120 SZ and

349 ASD patients). In sum, our method generally performed better

than the single-modality methods for both the (main) testing data

and the independent data.

F IGURE 4 Evaluated metrics of the
classification results using the FNC, GMV
measures, and our fusion method. We
show the results obtained using the
testing data of the main datasets and the
independent datasets in (a) and (b),
respectively. For each metric, 100 values
from 100 classification runs are shown in
one boxplot.

TABLE 2 Evaluated metrics computed based on the classification results of the (main) testing data and independent data by using the FNC
measures, GMV measures, and our fusion method.

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-measure (%) G-mean (%)

FNC using testing data 80.00 77.30 82.34 79.69 78.17 79.58

GMV using testing data 70.65 68.03 72.92 68.91 68.25 70.23

Our fusion method using testing data 83.08 80.58 85.26 83.00 81.52 82.73

FNC using independent data 69.58 62.43 72.04 43.47 51.23 67.04

GMV using independent data 63.07 62.00 63.44 36.95 46.27 62.67

Our fusion method using independent data 72.10 64.60 74.67 46.78 54.24 69.43

Note: Here, the mean value across all 100 classification runs is summarized for each of the six metrics.
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3.2 | Divergence between SZ and ASD in both
FNC and GMV

Since the features were selected by maximizing the classification

accuracy via inner cross-validation within the training data and as

expected those features yielded high classification accuracy for both

testing and independent data in distinguishing SZ and ASD, those fea-

tures should be able to reflect primary group differences in the brain

between the two disorders.

In terms of the FNC measures, there were a total of 33 important

FNCs (see details in Table S4) that were present in all 100 feature sets

of 100 classification runs. Here, we only show the top 10 FNCs

corresponding to the smallest p-values of the two-sample t-test

between SZ and ASD. Table 3 includes the detailed information of the

top 10 FNCs, including the related brain networks, the mean FNC

strength in each group, and the group difference of SZ versus ASD.

Figure S1 shows the two-sample t-test results of the 10 FNCs using

boxplots. The 10 FNCs were mainly related to sub-cortical networks

(including the connectivity between sub-cortical networks and DMN,

between sub-cortical networks and cerebellar networks, between

sub-cortical networks and cognitive control networks, as well as

between sub-cortical networks and visual networks), and also

included the connectivity within visual networks as well as between

DMN and visual networks. To be more concise, we separated the

10 FNCs into SZ-higher FNCs (see Figure 5a1) and SZ-lower FNCs

(see Figure 5a2), compared to ASD. In particular, there were four of

ten FNCs presenting higher strengths in SZ than ASD, and they were

located between the caudate and precuneus, thalamus and calcarine

gyrus, caudate and posterior cingulate cortex, thalamus and right

middle occipital gyrus. The remaining six FNCs had lower strengths in

SZ than ASD, including the connectivity between subthalamus and

cerebellum, caudate and middle frontal gyrus, middle occipital gyrus,

and precuneus as well as cuneus and lingual gyrus. As shown in

Figure 6, within the top 10 FNCs, four FNCs in HC were located inter-

mediate between SZ and ASD. Remarkably, for all the four FNCs that

were related to default mode network (DMN), including the connec-

tivity between DMN and subcortical networks as well as between

DMN and visual networks, SZ and ASD showed the opposite changing

direction (relative to HC). More interestingly, regarding the remaining

six FNCs, SZ, and ASD showed the same changing direction (relative

to HC), but the changing strengths of SZ generally were greater than

ASD, indicating a more severity in SZ.

Regarding the GMV measures, since we summarized the voxel

features by assigning them to brain regions, more meaningful informa-

tion can be provided. Table S5 shows detailed information for all

77 brain regions that were identified by our method. Because some

brain regions only had a few voxels overlapping, we only selected the

regions with more than 100 voxels and the smallest p-values in SZ

versus ASD to show their group differences here. A total of 15 brain

regions were retained, and their region locations, mean GMV of each

group, and group differences (from two-sample t-tests between SZ

and ASD) are listed in Table 4. We also show the two-sample t-test

results of the 15 brain regions in Figure S2 using boxplots. These

regions mainly included the frontal gyrus, temporal gyrus, and insula.

Remarkably, all 15 regions presented higher GMV values in ASD than

SZ. See Figure 5b for representative brain regions. More surprisingly,

the mean GMV value of HC was located between ASD and SZ for all

those regions, as shown in Figure 7.

TABLE 3 The top 10 important FNCs used in the classification.

Brain network 1 Brain network 2

Mean FNC
strength of
HC group

Mean FNC
strength of
ASD group

Mean FNC
strength of
SZ group

p-value of two-

sample t-test
between SZ
and ASD

T-value of two-

sample t-test
between SZ
and ASD

Caudate (SC-IC 99) Precuneus (DM-IC 40) �0.369 �0.381 �0.291 1.82 � 10�15 8.136

Subthalamus (SC-IC 53) Cerebellum (CB-IC 7) 0.176 0.141 0.035 1.18 � 10�13 �7.568

Caudate (SC-IC 99) Middle frontal gyrus (CC-

IC 88)

0.173 0.168 0.095 3.11 � 10�10 �6.384

Thalamus (SC-IC 45) Calcarine gyrus (VI-IC 16) �0.307 �0.263 �0.176 1.05 � 10�09 6.185

Caudate (SC-IC 99) Posterior cingulate cortex

(DM-IC 94)

�0.190 �0.198 �0.130 3.14 � 10�09 6.000

Thalamus (SC-IC 45) Right middle occipital

gyrus (VI-IC 12)

�0.193 �0.165 �0.090 5.06 � 10�09 5.918

Middle occipital gyrus

(VI-IC 5)

Precuneus (DM-IC 40) �0.107 �0.069 �0.144 1.04 � 10�08 �5.792

Middle occipital gyrus

(VI-IC 5)

Precuneus (DM-IC 51) 0.036 0.050 �0.025 2.02 � 10�08 �5.675

Subthalamus (SC-IC 53) Cerebellum (CB-IC 18) �0.145 �0.182 �0.264 2.42 � 10�08 �5.642

Cuneus (VI-IC 15) Lingual gyrus (VI-IC 8) 0.811 0.805 0.731 2.69 � 10�08 �5.623

Note: For each FNC, we included the relevant brain networks, the mean FNC strength of each group, and the p-value and T-value in SZ versus ASD (tested

by two-sample t-test). We sorted the important FNC features (in Table S4) according to the p-values obtained in the SZ versus ASD comparison. Here, we

only include the top 10 FNCs with the lowest p-values.
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4 | DISCUSSION

SZ and ASD were historically considered to be the same disorder,

emphasizing their complex relationship (Chisholm et al., 2015;

Veddum et al., 2019). The underlying biological basis of neither disor-

der is currently known. In recent years, many studies have suggested

an important association between the two disorders in the gene, clini-

cal symptoms, and brain (Dominguez-Iturza et al., 2019; Veddum

et al., 2019; Yoshihara et al., 2020; Zheng et al., 2018), hence, there is

a great interest in understanding their distinct aspects at a brain level

using neuroimaging analysis methods (Cauda et al., 2017; Chen

et al., 2017; Zheng et al., 2018). Yet most of the studies to date have

applied a statistical analysis or meta-analysis approach to investigate

the two disorders. Although some studies applied a machine learning

method (classification) to investigate the brain abnormality of two dis-

orders (relative to HC), there is rare work that revealed what brain

F IGURE 5 The top 10 functional network connectivity (FNC) features and the top 15 brain regions with important gray matter volume
(GMV) features used in the classification. For the top 10 FNCs, we show each FNC's mean strength of HC, SZ, and ASD groups in (a1) and (a2).
(a1) Includes the connectivity in which the mean functional connectivity strength of SZ patients was higher than ASD patients. (a2) includes the
connectivity in which the mean functional connectivity strength of SZ patients is lower than ASD patients. Regarding the top 15 brain regions,
the mean GMV voxel values across subjects in HC, SZ, and ASD groups are displayed in (b). It should be noted that all 15 regions presented
higher GMV values in ASD than SZ
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measures can directly and effectively distinguish the two disorders.

Furthermore, to the best of our knowledge, all existing studies

included a relatively small number of subjects, and few studies utilized

both brain functional and structural measures.

In the article, we studied the two disorders from a classification

perspective, aiming to explore whether they can be effectively differ-

entiated using brain functional connectivity and gray matter measures,

and going further to disclose what brain measures are significantly dif-

ferent between them. In particular, we proposed a new approach to

jointly take advantage of multimodality features. An unbiased strategy

was conducted to guarantee the reliability of classification and feature

selection by using the 10-fold cross-validation within the main data,

and the independent data collected from separate sites were used for

validation of generalization capability.

The results showed that our proposed fusion method that effec-

tively utilized FNC and GMV obtained a high classification accuracy

and significantly outperformed the single-modality methods. Our

fusion method resulted in 83.08% and 72.10% mean accuracy for the

testing data (in the main datasets) and the fully independent data,

respectively, however, FNC yielded 80.00% mean accuracy for the

testing data and 69.58% mean accuracy for the independent data and

GMV obtained 70.65% mean accuracy for the testing data and

63.07% mean accuracy for the independent data. To sum up, through

the optimal feature selection, both brain functional connectivity and

gray matter features can efficiently distinguish SZ and ASD subjects,

and our fusion method further improved the classification perfor-

mance. Our work supports that combining different modalities would

be a more powerful way for the diagnosis of brain disorders, and the

selected important features worked well in distinguishing the two

disorders.

Given the effectiveness of the selected features in differentiating

SZ and ASD for both the out-of-sample testing data and independent

data, the important features that were consistently presented across

multiple classification runs may reflect primary differences between

the two disorders. Based on the important features, we comprehen-

sively summarized the differences between the two disorders, and

also highlighted their specific changes relative to the healthy

population.

FNCs showing between-disorder differences were mainly related

to sub-cortical networks, including the connectivity between sub-

cortical networks and DMN, between sub-cortical networks and cere-

bellar networks, between sub-cortical networks and cognitive control

networks, and between sub-cortical networks and visual networks. In

the meantime, there were also significant between-disorder differ-

ences in FNCs within visual networks as well as FNCs between DMN

and visual networks.

Among the top 10 FNCs reflecting differences between SZ and

ASD, seven FNCs were associated with sub-cortical networks (primar-

ily including the thalamus and caudate regions), providing clear evi-

dence of disorder divergency in the subcortical regions that are

related to cognitive, affective, and social functions. Among the seven

FNCs, five presented the same changing direction in SZ and ASD (rel-

ative to HC), and the remaining two showed an intermediate situation

in HC (between SZ and ASD). Moreover, regarding the five FNCs

showing a similar changing trend in SZ and ASD, SZ changed to a

greater extent. In a series of higher cognitive and sensory processes,

the thalamus coordinates the transmission of information across mul-

tiple functional circuits (Sugranyes et al., 2011). The cortical–

subcortical dysconnectivity of SZ has been found in previous studies

(Damaraju et al., 2014; Woodward et al., 2012). Some studies have

shown the occurrences of ASD (Fu et al., 2019) and SZ (Sugranyes

et al., 2011) are related to the abnormality of the thalamus. In addi-

tion, there is evidence that the caudate is impaired in ASD (Acevedo

et al., 2018; Pereira et al., 2019) and SZ (Acevedo et al., 2018; Mueller

et al., 2015). In summary, our results provide further evidence that SZ

differs from ASD in terms of the interaction between the subcortical

system and other systems.

Our work also highlights the important role of DMN in underlying

the connectivity differences between SZ and ASD. In our finding, all

four FNCs that were associated with DMN (i.e., two FNCs between

DMN and sub-cortical networks as well as two FNCs between DMN

and visual networks) showed an intermediate strength in HC (relative

to the two disorders). In particular, relative to HC, the interaction

between DMN and subcortical regions was diminished in ASD but

F IGURE 6 Differences between disorder group (SZ or ASD) and
HC group for the top 10 FNCs. The difference of each FNC was
calculated by the mean FNC strength across subjects in disorder
group minus the mean FNC strength across subjects in HC group
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was enhanced in SZ; relative to HC, the interaction between DMN

and visual regions was decreased in SZ but was increased in ASD. It is

known that one of the main clinical symptoms of ASD and SZ is cogni-

tive difficulty and DMN makes a significant contribution to cognitive

activity (Andrews-Hanna et al., 2010; Jenkins, 2019). In previous stud-

ies, Nomi and Uddin (Nomi & Uddin, 2015) demonstrated dys-

connectivity between DMN and sub-cortical regions in adolescents

with ASD compared to HC, and Hyatt et al. suggested shared neural

deficits might correspond to different dimensional social deficits

between ASD and SZ in mentalizing-associated DMN regions (Hyatt

et al., 2020). Therefore, our finding manifests the disparity of DMN

between SZ and ASD.

Although visual impairment has been observed in ASD (Simmons

et al., 2009) and SZ (Butler et al., 2008) alone, our study discloses

more about how the two disorders differ in visual function. As men-

tioned above, the interaction relation between visual networks and

DMN showed different changes (with an increase in ASD but a

decrease in SZ). We also found that SZ and ASD showed a similar

increasing trend (relative to the healthy group) in the connectivity

between visual networks and sub-cortical networks, and SZ changes

to a greater extent (than ASD). In addition, the interaction within

visual regions was decreased for both SZ and ASD (relative to HC),

with a greater change in SZ. A work from Yamamoto et al. showed

increased functional connectivity between the left thalamus and the

occipital cortices in SZ compared to HC (Yamamoto et al., 2018). And

Wei et al. found the local functional connectivity reduced in the visual

area in SZ compared to HC (Wei et al., 2018). In addition, the study of

Mastrovito conducted a direct comparison between ASD and SZ on

the functional connectivity of visual networks and found an increase

within high visual networks as well as between DMNs and high visual

networks (Mastrovito et al., 2018) in ASD compared to SZ, which is

consistent with our results.

Regarding the GMV measures, ASD group shows increases com-

pared to SZ group in all top 15 brain regions, including frontal gyrus

(left and right medial superior frontal gyrus, left and right dorsolateral

superior frontal gyrus, and left and right middle frontal gyrus), tempo-

ral gyrus (left and right middle temporal gyrus, left and right temporal

pole: superior temporal gyrus, left and right superior temporal gyrus,

right temporal pole: middle temporal gyrus and right inferior temporal

gyrus) and right insula. Furthermore, regarding all the 15 brain regions,

HC group fell intermediate between SZ and ASD. Our previous study

also found GMV decreases of SZ group and GMV increases of ASD

group relative to HC in the frontal and temporal gyrus but no voxels

showed increased gray matter in SZ and decreased gray matter in

ASD (relative to HC) (Du et al., 2021). Frontal gyrus, which regulates

behavior (Jana et al., 2020) and relates to cognitive competence (Thye

et al., 2018), has been shown to be associated with social cognition

abnormalities in ASD and SZ. In previous studies, Liu et al. found that

compared to HC, the GMV of ASD shows increases in the left supe-

rior and middle frontal gyrus (Liu et al., 2017). In addition, the increase

in the volume of the temporal lobe in ASD (Ecker et al., 2013; Palmen

et al., 2005) and the reduction in the volume of the temporal lobe in

SZ (Mennigen et al., 2019; van Haren et al., 2007) also have been

found compared to HC. Taken together, our work directly and clearly

TABLE 4 The top 15 important brain regions each of which consisted of more than 10% overlapping GMV features in the classification and
also included abundant voxels and the lowest p-values in the SZ versus ASD comparison.

Brain region

Mean GMV

of HC
group

Mean GMV

of ASD
group

Mean GMV
of SZ group

Number of

voxels in each
region

p-value of two-sample

t-test between SZ
and ASD

T-value of two-sample

t-test between SZ
and ASD

Frontal_Sup_Medial_L 0.590 0.599 0.559 188 1.06 � 10�19 �9.355

Temporal_Mid_R 0.597 0.613 0.570 241 1.58 � 10�18 �9.030

Frontal_Sup_Medial_R 0.588 0.596 0.558 178 6.22 � 10�18 �8.862

Frontal_Sup_2_R 0.611 0.618 0.578 590 7.40 � 10�18 �8.840

Temporal_Pole_Sup_L 0.695 0.704 0.661 388 1.22 � 10�17 �8.778

Temporal_Pole_Mid_R 0.652 0.660 0.615 219 1.29 � 10�17 �8.772

Frontal_Sup_2_L 0.579 0.587 0.550 471 3.10 � 10�17 �8.661

Temporal_Pole_Sup_R 0.673 0.683 0.641 545 3.41 � 10�17 �8.649

Temporal_Sup_R 0.631 0.649 0.611 151 1.87 � 10�16 �8.432

Temporal_Inf_R 0.618 0.631 0.595 127 2.14 � 10�16 �8.415

Frontal_Mid_2_L 0.668 0.675 0.635 283 3.08 � 10�16 �8.368

Insula_R 0.619 0.624 0.581 145 5.30 � 10�16 �8.298

Temporal_Sup_L 0.714 0.723 0.686 164 2.50 � 10�15 �8.093

Temporal_Mid_L 0.682 0.694 0.657 223 6.44 � 10�15 �7.967

Frontal_Mid_2_R 0.578 0.582 0.548 303 8.41 � 10�14 �7.615

Note: Automated anatomical labeling atlas 3 (AAL3) was used to parcellate the brain. For each brain region, we list the relevant region name, the mean

GMV of each group (HC, ASD, and SZ), the number of voxels in each region, and the p-value and T-value in the SZ versus ASD comparison (tested by two-

sample t-test).
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suggests that the frontal gyrus, temporal gyrus, and insula show dif-

ferences in gray matter between SZ and ASD, going further their

changes in the two disorders are toward different directions (relative

to HC).

Interestingly, our results support that the middle frontal gyrus

plays an important role in distinguishing SZ and ASD in using both

brain functional and structural measures, for the first time highlighting

that this region may represent different neural underpinnings of SZ

and ASD. In our work, our findings supported that the functional con-

nectivity between caudate and middle frontal gyrus decreased in both

the SZ group and ASD group compared to the HC group and the

severity of the SZ group was stronger than that of the ASD group.

We also found that the GMV showed an increasing trend in ASD and

a decreasing trend in SZ compared to HC for the middle frontal gyrus.

There are many studies also have reported the abnormality of the

middle frontal gyrus in the two disorders from either functional or

structural measures. For functional measures, Kyriakopoulos et al.

found that the patients with early-onset SZ showed reduced func-

tional activation compared to HC in the middle frontal gyrus

(Kyriakopoulos et al., 2012) and Noonan et al. found the activation of

ASD in the left middle frontal gyrus was weaker than that of HC

group (Noonan et al., 2009). For structural measures, Cauda

et al. (2011) found increased GMV in the middle frontal gyrus of pedi-

atric ASD patients relative to HC and Ubukata et al. (2013) suggested

gray matter reductions of SZ group in the middle frontal regions com-

pared to HC.

Some aspects may deserve further exploration in future work.

First, in this work, we did not assess associations between the neuro-

imaging measures showing group differences and the clinical symp-

toms of SZ or ASD, as the symptom scores of the two disorders are

not very comparable in our data. In the future, more work can be done

to investigate whether their differences in brain link to their different

clinical manifestation. Second, as we aimed to find the most important

neuroimaging measures that differ between ASD and SZ, we built

two-class (SZ vs. ASD) classifiers, not three-class (SZ, ASD, and HC)

classifiers. So, the ability of our identified measures in distinguishing

disease and HC groups was not tested. Third, the fusion was con-

ducted at the model level (not the feature level) in our work, since

complicated feature fusion could hinder the intuitional explanation of

biomarkers. Fourth, other neuroimaging measures such as cortical

thickness and surface area could be jointly utilized in the future to

improve the performance, as one recent study showed their potential

in distinguishing SZ and ASD (Yassin et al., 2020). But we also think

proposing a fusion method on both feature and model levels would

further improve the distinguishing ability.

In summary, we investigated the discriminative biomarkers

between SZ and ASD in brain functional connectivity and gray mat-

ter measures using a direct classification strategy. We identified

the most important differences that can successfully distinguish

the two groups of patients, and the results were validated using

both an unbiased 10-fold cross-validation in main data and the fully

independent data. More importantly, our proposed fusion method

performed better than the method only using single-modality fea-

tures, supporting the potential of using the multimodal combina-

tion. We also found that the middle frontal gyrus was involved in

both functional connectivity and gray matter differences. Taken

together, our work is important because it localizes the brain differ-

ences between two related disorders that have shared a long and

tangled history in their diagnoses.
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