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Human Papillomavirus (HPV) is the causal agent of 5% of cancers worldwide and the

main cause of cervical cancer and it is also associated with a significant percentage of

oropharyngeal and anogenital cancers. More than 60% of cervical cancers are caused by

HPV16 genotype, which has been classified into lineages (A, B, C, and D). Lineages are

related to the progression of cervical cancer and the current method to assess lineages

is by building a Maximum Likelihood Tree (MLT); which is slow, it cannot assess poor

sequenced samples, and annotation is done manually. In this study, we have developed

a new model to assess HPV16 lineage using machine learning tools. A total of 645

HPV16 genomes were analyzed using Genome-Wide Association Study (GWAS), which

identified 56 lineage-specific Single Nucleotide Polymorphisms (SNPs). From the SNPs

found, training-test models were constructed using different algorithms such as Random

Forest (RF), Support Vector Machine (SVM), and K-nearest neighbor (KNN). A distinct set

of HPV16 sequences (n= 1,028), whose lineage was previously determined by MLT, was

used for validation. The RF-basedmodel allowed a precise assignment of HPV16 lineage,

showing an accuracy of 99.5% in the known lineage samples. Moreover, the RF model

could assess lineage to 273 samples that MLT could not determine. In terms of computer

consuming time, the RF-based model was almost 40 times faster than MLT. Having a fast

and efficient method for assigning HPV16 lineages, could facilitate the implementation of

lineage classification as a triage or prognostic marker in the clinical setting.

Keywords: Human Papillomavirus (HPV), cancer, prognostic and predictive factors, classification, machine

learning, HPV16 lineage

INTRODUCTION

A total of 5% of worldwide cancers are caused by the Human Papillomavirus (HPV) being cervical
cancer the fourth most common cancer in women (Arbyn et al., 2020). Although the incidence of
cervical cancer has decreased over the last years (Arbyn et al., 2011; Van Dyne et al., 2018) due to
the implementation of screening methods (Brisson et al., 2020) and it may decrease in the following
years due to vaccination (Bruni et al., 2021; Falcaro et al., 2021), an estimated 570,000 women were
diagnosed with cervical cancer worldwide in 2018 (Bray et al., 2018). Moreover, the incidence of
non-cervical cancers has increased in recent years. While in cervical cancer HPV prevalence is
close to 100%, in other HPV-associated anogenital cancers viral prevalence rates differ according
to the anatomical site: anus (88%; Alemany et al., 2015), vagina (74%; Alemany et al., 2014), penis
(33%; Alemany et al., 2016), vulva (29%; de Sanjosé et al., 2013), and oropharynx (29–70%; Stein
et al., 2015).
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HPV high-risk types (HR-HPV) include predominantly, alpha
9 (HPV 16/31/33/35/52/58), alpha 7 (HPV 18/39/45/59/68),
alpha 6 (HPV 56/66), and alpha 5 (HPV 51) genus, but HPV16
is by far the most common HR-HPV type, which contributes
to 70–75% of all cervical cancers and is found in 40–60%
of cervical intraepithelial neoplasia 2 (CIN2+; Bzhalava et al.,
2013). However, only 5% of persistent HPV16 infections will
evolve to high-grade lesions, and from those, a small proportion
will progress to invasive cancer. Although it remains unclear
why some HPV16 infections progress while others are cleared
spontaneously, viral genome variability has been described as a
key factor that could play a crucial role in the progression toward
high-grade lesion or invasive cancer risk (Cullen et al., 2015).
HPV16 was classified accordingly to viral genome variability in
different lineages (A, B, C, and D) and sublineages (A1-4, B1-3,
C1, D1-3) by Burk et al. (2013). HPV16-A lineage is the most
prevalent type worldwide, while HPV16-D is the most aggressive
type associated with cervical cancer risk (Gheit et al., 2011;
Mirabello et al., 2016; Clifford et al., 2019).

In the 90’s, the HPV genotype and HPV16 variants were
determined according to the L1—Open Reading Frame (ORF)
region that was amplified and sequenced (Ho et al., 1991; Chen
et al., 2005). The implementation of New Generation Sequencing
(NGS) techniques allowed us to perform bulk experiments and
obtain longer sequences beyond the L1 ORF. Full viral genome
sequencing resulted in the discovery of more lineages and
genome variants (Burk et al., 2013). High-throughput sequencing
as Illumina or Ion Torrent (Cullen et al., 2015) methods leads
us to read the full viral genome. Before estimating the similarity
between genomes, sequence samples are aligned to the reference
HPV16 sequence (NCBI genome IDs: NC_001526.4). Then, a
Maximum Likelihood Tree (MLT) is built altogether with a set
of known-lineage HPV genomes used as a reference to assign
specific lineages (Smith et al., 2011). New samples are placed
on the phylogenetic tree according to their similarity with the
reference sequences. Finally, the researcher manually assigns a
lineage for the sample of interest, looking at where the sample
has been located on the phylogenetic tree.

However, since the current method uses the entire genome
sequence, poor coverage samples and samples showing gaps or
missing fragments are difficult to classify. Building a phylogenetic
tree is a time-consuming method when the sample size is
big, which may take a long time to process depending on
the computer used and finally, the lineage assignment is done
manually. As MLT classification is directly influenced by the
operator’s expertise, reproducibility and standardization of the
method may vary. To improve the HPV16 lineage assessment,
we propose a new model that uses a few positions on the HPV16
genome to assess lineage and it does not require visual control,
which makes the process faster and reproducible.

In this study, we describe a new code that can be used
to efficiently assign HPV16 lineages. Using a Genome-Wide
Association Study (GWAS), we tested all the positions of the
HPV16 genome that are known to be unique to a single lineage or
sublineage. Then, using machine learning algorithms, we trained
and tested different models using reference and known samples
for these positions. The code has been developed with the R

language and it has been validated with more than 4,000 HPV16
genomes. Having a fast and efficient method for assigning HPV
linages will help clinics to provide better-informed prognoses and
help to define screening and treatment decision strategies.

MATERIALS AND METHODS

Samples
HPV16 genome sequences were used to find the lineage-specific
SNPs and to build the model to assess lineage. Reference
samples were obtained from two different sets of known-
lineage HPV16 genomes: one set was described by Burk (n
= 46; Smith et al., 2011) and the other was obtained from
the Papillomavirus genome database (PAVE) webpage (n =

10; Supplementary Material 1). To define the lineage-specific
positions for HPV16A, HPV16B, HPV16C, and HPV16D and
to build the training-test models we used the reference samples
and all the complete HPV16 genomes from NCBI (n = 588),
downloaded from NCBI nucleotide dataset by keyword search
“txid333760 complete genome;” Species: Viruses; Molecular
types: Genomic DNA/RNA; Sequence type: Nucleotide accessed
on July 30, 2021.

Validation of the model was performed with two different
sets of samples, the first set of 1,028 HPV16 samples collected
and sequenced in our laboratory, and the second set of
3,898 samples (which included the complete genomes and
other almost complete genomes) were downloaded from NCBI
nucleotide dataset by keyword search txid333760; Species:
Viruses; Molecular types: Genomic DNA/RNA; Sequence type:
Nucleotide; Release Date: From 0000/01/01 to 2022/03/24;
Sequence length: from 7,000 to 8,500; accessed on March 24,
2022.

All samples were aligned on the HPV16 reference genome
(GenBank Accession code: K02718.1) with MAFFT (v7.475)
software using “–add” and “–keeplength” options (Katoh et al.,
2019). The HPV16 reference genome, which is the HPV16-A1
sublineage has been added to the reference sample set (n= 57).

Lineage Assessment
The HPV16 lineage was assigned to the 588 NCBI samples using
the current lineage assignment process described by Burk (Burk
et al., 2013; Cullen et al., 2015) based on phylogenetics, which
we will henceforth call Maximum Likelihood Tree (MLT), as
it is based on this the Maximum Likelihood algorithm. The
process consists of building a phylogenetic tree with altogether
known lineage sequences and samples of interest. Phylogenetic
analysis was conducted using MEGAX (Tamura et al., 2021)
(v10.2.4) using the 57 reference samples plus the 588 NCBI
previously aligned samples. To build the phylogenetic tree, we
first calculated the genomic variation in a group of sequences
with the Maximum Likelihood statistical method applying the
Tamura-Nei correction model for nucleotide substitution. The
process was replicated 100 times with the bootstrapping method.
Finally, a tree was built, and lineage was assigned to each
sample accordingly to the closest reference sample and results
were manually annotated. Not all samples were assigned to a
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lineage, since some sequences were not placed in themain lineage
branches, so they were classified as “n” or unknown lineage.

Detection of Main Nucleotides Related to
Lineage
AGenomicWide Association Study (GWAS; Manolio, 2010) was
performed on the reference and NCBI sequences (n = 645) to
find differences between lineages within the HPV16 genome. The
7,906 base pairs that make up the viral genome have been traced
to detect mutations. Known positions with two or more alleles
with a minimum variant frequency (MVF) of 0.05 and a call rate
higher than 95%were called SNP candidates. A generalized linear
model (GLM) with a binomial distribution and a logit function
was used to test the relationship between each SNP candidate and
the HPV16 lineage. P-values were adjusted by False Discovery
Rate (FDR) and only SNPs with a p-value lower than 0.05 were
considered significant.

Training a New Model to Assess Lineage
To assess lineage with the SNPs described in the previous step we
opt for training-test models. Different algorithms had been used
to train models: Random Forest (RF), Support Vector Machine
(SVM) and K-nearest neighbor (KNN), and Classification and
Regression Trees (CART). Themodel was built with a total of 646
samples, including the 588 NCBI complete HPV16 genomes, the
57 reference samples, and a new sample called the “n-sample.”
The n-sample had no information and was composed of 7,906
unknown nucleotides (“n”), to assign unknown lineage to those
samples with poor coverage. The 80% (n = 518) of the samples
had been used for training and testing the model, while the
remaining 20% (n = 128) had been used for the validation. For a
better estimation, samples have been randomly mixed 100 times
creating different training and test groups with the k-fold cross-
validation method, and the model has been trained and tested
for each new dataset. Accuracy, Kappa constant, and the testing
confusion matrixes have been used to compare models and to
choose the best model for lineage assessment.

Validate the New Model
Finally, validation has been performed to test the new model
with two datasets of samples. The model has been validated
with 3,898 genomes downloaded from NCBI which included
both complete genomes and almost complete genomes and
with a dataset composed of 1,028 HPV16-positive samples,
that were selected from the archive of HPV tumors collected
for the RIS HPV TT, VVAP, and Head and Neck studies (De
Sanjose et al., 2010) and coordinated by the Catalan Institute
of Oncology (ICO). Formalin-fixed paraffin-embedded (FFPE)
specimens were sequenced with the HPV16 assay designed for
the Ion Torrent Sequencing platform, which covers more than
80% of the viral genome (Cullen et al., 2015). Therefore, this
last step of validation has tried out the model with a set of
incomplete genomes as the sequencing assay was designed to
amplify low-quality archival DNA.

In both datasets, lineage was first assessed with MLT,
to then compare the quality of the new lineage assessment
done by the machine learning model. Both GWAS and

the training-test model has been performed using R
language under 3.6.3 version and the code is available
on www.github/INCALAB-PREC/HPV16-linpred/.

RESULTS

A GWAS performed on 645 HPV16-reference genomes showed
56 SNPs that are unique for one or more HPV16-lineages: A, B,
C, or D (Figure 1A). Significant SNPs were spread out into the
full genome. Gene E1 had a total of 16 lineage-definers SNPs,
followed by E2 (10 SNPs), L2 and URR (7 SNPs), E6 (4 SNPs),
E5 and L1 (3 SNPs), E7 (1 SNP), and 5 SNPs were found in a
non-codifying region. Most of the differences in nucleotides were
found between A and D or C lineages.

The training-test models were built using the 80% (n = 518)
of the HPV16 dataset randomly selected and considering only
the 56 lineage-specific positions found in the GWAS. The 100
k-fold cross-validation method has been applied and the dataset
has been resampled 100 times in train and test groups. Each new
dataset group was trained and tested to improve the estimated
values of the model. Figure 1B shows a comparison between
the models used, revealing that the best model to assess HPV16
lineage was the Random Forest (RF) algorithm, with an accuracy
of 0.99 (CI:95%), followed by Support Vector Machine (SVM)
andK-nearest neighbor (KNN); with amean accuracy of 0.98 (CI:
95%) for both. Validation of the models was performed with the
remaining 20% of the dataset (n = 128). To build the confusion
matrix, lineage was assessed using the three models (RF, SVM,
and KNN) and individually compared with the lineage assessed
by MLT. Random Forest was the model with less error since all
the assessed lineages match with MLT and were selected for the
next validation steps (Figure 1C). Despite the high accuracy of
SVM and KNNmodels, both failed in one single sample.

Further validations were carried out with two independent
set of samples, the first one included 1,028 HPV16 positive
samples, whose genome was partially obtained from FFPE
archive samples. Most of the high coverage samples were
classified with the same lineage as the MLT method did, shown
in green in the confusion matrix (Figure 2A). Only one sample
was differently classified between models (in red). MLT lineage
classification is a challenge in low coverage samples, since out of
1,028 samples only 569 (56.1%) could be evaluated. In contrast,
RF model has been able to assess lineage in 943 (93.0%) of these
sequences. Therefore, if the MLT model is considered as the
reference method for assessing HPV16 lineage, the RF model has
an error of 0.17%. A total of 375 samples with average coverage
have been assessed for the first time (in blue). However, we have
no way of confirming that these samples have been properly
classified. Lineage could not be assessed in 84 samples by either
method, which has been classified as “n” samples. The coverage of
most of these samples is poor, although some samples with good
coverage were found in the unclassified group.

To understand in which conditions the RF model can assign
lineage, different statistical analyses had been performed. Lineage
has been assessed with a median of 24 known SNPs out of the
56 lineage-specific SNPs in a single sample (in red), while the
84 sequences that no lineage could be assigned had <15 known
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FIGURE 1 | A total of 56 lineage-definers SNPs were found in the GWAS, which were used to build four machine learning models, being RF the best model to predict

HPV16 lineage. (A) Manhattan plot showing all the nucleotides in the HPV16 genome with any mutation (MAF > 0.05 and CR < 95%). SNP candidates have been

colored differently according to which lineage they are specific for. Therefore, one SNP candidate can define two different lineages and it will be plotted twice. SNPs

significantly related (p < 0.05) with any lineage are plotted above the black line. The genomic map under the Manhattan plot shows the positions of the HPV16 genes.

(B) Accuracy and Kappa of the different training-test algorithms build to predict HPV16 lineage. Models used are Random Forest (RF), Support Vector Machine (SVM),

K-nearest neighbor (KNN), and Command Assessment of Readiness and Training (CART). Kappa is a metric that compares an observed Accuracy with an expected

Accuracy obtained by cross-validation (100-fold). When both, accuracy and kappa are 1, the model is perfect. (C) Confusion matrix for the Random Forest-based

model using the validation set of samples. In green, samples that had been assessed equally with both methods: RF and Maximum Likelihood Tree (MLT).

SNPs (in blue; Figure 2B). Therefore, it must exist a minimum
number of SNPs to successfully run the model. We have fixed a
threshold at the intersection of the two density lines, which is 13
SNPs, and sequences with<13 out of the 56 lineage-definer SNPs
will be directly assigned as unclassified lineage - “n.” Applying the
threshold, the confusion matrix slightly changes, losing a total of
102 samples that will be considered as “n” instead of the predicted
lineage (Figure 2C). None of the samples equally assigned for
both methods, RF and MLT, has been affected by the application
of the threshold. After the correction, the percentage of lineage
assignment decreased from 93.0 to 82.9%. Discarded samples
included sequences of both good and bad coverage samples.

RF model has been validated with a second set that includes
all the HPV16 genomes available in the NCBI dataset in March
2022. Lineage has been previously assessed by the MLT method
and then has been assessed with the random-forest algorithm.
The accuracy of the validation matrix is 98.9% (p < 0.001) and
the error when assigning the lineage is <1.5%. However, a set of
samples classified with theMLTmethod as HPV16-A lineage had
been classified as B (n= 28) and D (n= 12) using the RF model.
Discarding those who had<24 known SNPs thematrix improves,
which indicates that the loss of certain SNPs after sequencing

incomplete genomes, could influence the classification model
accuracy. However, 22 samples are still classified as B instead of A
(Figure 2D). This is probably due to a large number of HPV16-A
samples included in the validation step compared to the other
lineages. Although the error in lineage A classification is only
0.67%, most of the errors accumulate in B, which is the closest
lineage to A, and overall, one of the less frequent lineages. In turn,
all samples initially classified using MLT as B were well-classified
as B using the RF model, which confirms that the model works to
classify lineage B.

As the prevalence of HPV16-A lineage is higher in the world,
for this reason, all the possible HPV16 datasets will have an
important bias. We evaluate the model with a balanced dataset
for each lineage. Sets of 200 lineage-balanced samples had been
created randomly selecting 50 samples of each lineage from the
full NCBI dataset (n = 3,898). The validation of the model,
repeated with 10 different random sets shows an accuracy of
0.986 (95% CI: 0.958–0.997). The A-samples misclassification to
B almost disappears (Supplementary Material 2).

In both pipelines, samples must be aligned to a reference
genome. MAFFT takes an average of 2min to align a total
of 100 HPV16 genomes. It takes ∼40min to calculate the
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FIGURE 2 | Model validation on 1,028 patient’ HPV16 sequences showed higher ratios of classification with Random Forest (RF) model than with Maximum

Likelihood Tree (MLT). (A) RF validation was performed on 1,028 samples and shown in a confusion matrix. Samples receiving the same classification from both

pipelines are colored in green, while samples that are not classified with the same lineage are shown in red. In the last column, sequences that RF-based model could

assign for the first time and MLT could not. (B) Density curves of the number of covered lineage specific SNPs for each sample in function if their lineage has been

assessed by RF (red) or not (blue), shows that the smaller number of known SNPs makes more difficult for the RF model to assess lineage. The black line corresponds

at the intersection point between the two densities curves, where we had defined a threshold, where samples with <13 SNPs will be considered as the unclassified

lineage or “n.” (C) Validation matrix after threshold correction, discarding all the samples that have less than 13 known lineage-definers SNPs. Notice that the

threshold only changes the blue column, increasing the n-samples from 87 to 182. (D) Validation matrix using 3,898 HPV16 genomes available in the nucleotide

database from NCBI. Samples with <24 lineage-dependent SNPs had been classified as n-sample.

distances between samples with the MLT algorithm and to build
a phylogenetic tree (bootstrapping samples 100 times) (Table 1).
Followed by the annotation step, where the operator annotates
manually the lineage by looking at the phylogenetic tree, which
may take between 30 and 40min depending on the skills of the
worker. Using the developed code in this project, it only takes
0.97 s (SD= 0.43, repeated 25 times) to load the samples in Fasta
format, assess lineage with the RF model and annotate lineage.
For 100 samples, the new RF pipeline is almost 40 times faster
than the current MLT pipeline. By increasing the number of
samples to be tested, the difference between models becomes
much larger. To assign lineage in our 1,028 HPV16 genomes
dataset, the RF model was almost 40,000 times faster than MLT,
since the process to build the MLT and annotating lineage lasted

approximately up to 30 h, while the RF model took only 2,81 s
(SD= 0.15, repeated 10 times).

Sublineage A
From the reference genome set (n = 645), a total of 481 HPV16-
A samples had been selected, all of them assessed with A-lineage
by both models, MLT and RF. Nucleotide differences between
0.5 and 1% of the complete genomes are used to define the
sublineages (Burk et al., 2013), and HPV16-A lineage is classified
in A1, A2, A3, and A4 groups. As HPV16-A1, A2, and A3
sublineages are more similar to each other and have a similar
contribution on HPV-associated cancers than A4, we decided
to cluster them into a single group called A123. A total of 67
positions were classified as SNP candidates (CR > 95% and
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MAF > 0.05), but the GWAS only assessed 17 significantly SNPs
associated with A123 or A4 sublineage.

An 80% of the samples were used to build the models, and
from the five machine-learning models used in this study, RF and
KNN were the models with better results to predict sublineage A.
KNNmodel obtained an accuracy of 0.979 (95%CI: 0.926–0.997),
which showed similar values than RF with an accuracy of 0.968
(CI: 0.911–0.993). After resampling and building the model 100
times, models were validated other 20% of the samples (n = 96).
The validation matrix showed two mismatches between KNN
and MLT (Figure 3A), instead of the three mismatches produced
by the RF model, even showing the same accuracy values. A
second validation was performed with the patient’s sequenced
HPV16-A samples (n = 466) obtained from the project led by
ICO (Figure 3B). The accuracy of predicting sublineage A123 or

TABLE 1 | HPV16 lineage classification is faster with the Random Forest pipeline.

100 HPV16 samples Current pipeline (MLT) New pipeline (RF)

Software/ Time Software/ Time

method (min) method (min)

Alignment MAFFT 2 MAFFT 2

Algorithm MEGAX/MLT 40 R/RF 0.97 s

Annotation Manually* 30–40* R

The time for both pipelines was calculated on a set of 100 HPV16 sequences and tracked

in a computer with the following features: UBUNTU 20.04 with 4 GHz Intel Core i7 and

16 GB of RAM.

For both pipelines, samples were aligned on the reference HPV16 genome with MAFFT

software using “—keeplength” function. For the current pipeline we usedMEGAX software

to calculate the distance between sequences with the Maximum Likelihood tree (MLT)

method and to build a phylogenetic tree. The new pipeline has been developed with

R language and uses the Random Forest (RF) algorithm from the “caret” library. While

the R code generates an output with the samples ID and the assigned lineage, the

current pipeline requires manual annotation and the estimated time* may depend on the

operator’s skills.

A4 was 0.939 (95% CI: 0.914–0.959), being lower than the lineage
model accuracy.

The training-tests with an accuracy higher than 95% (RF,
KNN, and SVM) were ensembled by the majority vote method.
The ensemble model did not improved the KNN prediction
(Figure 3C).

DISCUSSION

The HPV16 lineage classification needs to be more efficient if
we ever want to implement it as triage or prognostic marker
in the clinical setting. Here we describe a faster and automated
new model based on machine learning that efficiently classifies
HPV16 sequences into lineages and requires lower sequence
coverage if compared with the current method.

The current classification model calculates the similarity
between samples and reference HPV16 genomes using the
Maximum Likelihood estimation to classify the sampled
sequence into a given lineage. To work, the MLT algorithm
requires, as input, the whole HPV16 genome (7,906 base pairs),
therefore, sampled sequences with large uncovered regions
cannot be assigned to any lineage. We performed a genomic wide
association study in which we identified 56 SNPs that are HPV16-
lineage specific. The subset of SNPs included in the RF model
is mainly lineage definers, our results are in agreement with
previously described studies using phylogenetic reconstruction
and classification to assignHPV16 variants to clinical sample (Ou
et al., 2021).

Working with 56 SNPs instead of the full genome sequence,
we can develop more efficient and faster models than the current
model used for HPV16 lineage classification. Among different
training-test models used to assess lineage based on the 56 SNPs,
Random Forest was the best one, with an accuracy close to 100%.
Using the RF to classify more than 1,000 samples we could assign
a lineage to 93% of the samples, whereas usingMLTwe assigned a
lineage to 56.1%. If the MLT model is considered as the reference

FIGURE 3 | Comparison between KNN, MLT and ensembled models to assign sublineage A shows good results but with higher error than the lineage model. (A)

K-nearest neighbors (KNN) confusion matrix on the 20% of the HPV16-A reference sequences that were not used to build the model. (B) KNN validation was

performed on 466 HPV16 patient’s sequences and shown in a confusion matrix. Samples receiving the same classification from both pipelines are colored in green,

while samples that are not classified with the same sublineage are shown in red. In the last column, sequences that KNN-based model could assign for the first time

and Maximum Likelihood Tree (MLT) could not. (C) Ensembled model by majority vote was validated on the 466 HPV16-A patient’s genomes.
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method for HPV16 lineage classification since it does not exist
another method, the new RF-based model would have an error
between 0.17 and 1.4% according to both validation matrices.
Therefore, from the 273 samples of first-time lineage assessed by
RF in the 1,028 patient samples, we may assume that the error is
similar, so there would be between 1 or 4 misclassified samples in
this group.

Not all the SNPs are equally related to the lineage. A total of 20
out of 56 SNPs used in the model show higher Odds Ratio (OR)
values when the relation between nucleotide and lineage is tested,
thus lineage assessment could also work with a smaller set of
SNPs in each sample. The density histogram showed that at least
13 SNPs must be known to assess lineage with the RF model, in
consequence, samples with <13 known SNPs will be considered
non-classified samples to avoid errors in low coverage samples.
Besides the reduction of data required, if compared to the MLT
pipeline, the RFmodel also allows a much faster process that does
not require manual annotation. The RF model is 40 times faster
than the MLT model.

Sequencing is becoming affordable to most laboratories, and
consequently becoming a part of the clinical setting; however, it
generates large amounts of data that may be difficult to analyze,
besides being time-consuming. The new model we present
here allows a straightforward assignment of HPV16 sequence
alignment of virtually all sampled sequences.

The main limitation of this study is that we did not test our
model for all sublineages, the training-test models could be only
applied for A sublineage. Further studies should investigate the
mismatched samples in order to unveil any potential limitation
of the RF model for assigning HPV16 lineages. Our model
can be implemented to classify HPV genotypes and other
HPV lineages. Thus, samples from cervical and anogenital sites
that are positive for any HPV type could be assigned to a
specific lineage.

Having a fast and efficient method for assigning HPV linages
may allow better-informed prognosis and may better guide
doctors on the best course for women showing an HPV16
positive test or individuals with HPV positive pre-neoplastic
lesions and high-grade lesions. Most of the current screening
algorithms, using HPV as a primary test, define that HPV16
positive women should be referred directly to colposcopy, while
more than 95% of these infections will be cleared spontaneously
during the next 12 months. The identification of HPV16-positive
women with a high risk of progression is a key point to develop
new diagnostic tools for improving screening or diagnostic
specificity avoiding unnecessary methods.

In addition, the computational model described in this work
would be easily implementable in a user-friendly software or
web interface, which will make easier the introduction of HPV16
lineage classification in the clinical setting.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The study was approved by the Ethics Committee of Hospital
Universitari de Bellvitge. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

LA-P and MP conceived of the presented idea. LA-P developed
the theory and performed the computations. LA contributed
to the conceptualization of the work. All authors discussed the
results and contributed to the final manuscript.

FUNDING

This work was supported by a grant from the Instituto
de Salud Carlos III (Spanish Government) through the
projects PI17/00123 (Co-funded by European Regional
Development Fund. ERDF, a way to build Europe) and
CIBERESP CB06/02/0073, and the Secretariat for Universities
and Research of the Department of Business and Knowledge of
the Government of Catalonia grants to support the activities
of research groups 2017SGR1085. We thank the CERCA
Programme/Generalitat de Catalunya for institutional support.
None of these entities played a role in data collection, data
analysis, data interpretation, or report writing. All authors had
full access to all data in the study and had final responsibility for
the decision to submit for publication.

ACKNOWLEDGMENTS

We would like to thank L. Mirabello and M. Schiffman from
NCBI to sequence the HPV16 genomes used for the model
validation and to Ana Esteban and Marleny Vergara to process
all the samples from the RIS HPV TT, VVAP, and Head and Neck
studies. I would also like to thank Marcia Triunfol at Publicase or
her help with manuscript drafting.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
851841/full#supplementary-material

REFERENCES

Alemany, L., Cubilla, A., Halec, G., Kasamatsu, E., Quirós, B., Masferrer, E., et al.

(2016). Role of human papillomavirus in penile carcinomas worldwide. Eur.

Urol. 69, 953–961. doi: 10.1016/j.eururo.2015.12.007

Alemany, L., Saunier, M., Alvarado-Cabrero, I., Quirós, B., Salmeron, J., Shin, H.-

R., et al. (2015). Human papillomavirus dna prevalence and type distribution in

anal carcinomas worldwide. Int. J. Cancer 136, 98–107. doi: 10.1002/ijc.28963

Alemany, L., Saunier, M., Tinoco, L., Quirós, B., Alvarado-Cabrero, I., Alejo, M.,

et al. (2014). Large contribution of human papillomavirus in vaginal neoplastic

Frontiers in Artificial Intelligence | www.frontiersin.org 7 June 2022 | Volume 5 | Article 851841

https://www.frontiersin.org/articles/10.3389/frai.2022.851841/full#supplementary-material
https://doi.org/10.1016/j.eururo.2015.12.007
https://doi.org/10.1002/ijc.28963
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Asensio-Puig et al. HPV16 Lineage Classification

lesions: a worldwide study in 597 samples. Eur. J. Cancer 50, 2846–2854.

doi: 10.1016/j.ejca.2014.07.018

Arbyn, M., Castellsagué, X., de Sanjosé, S., Bruni, L., Saraiya, M., Bray, F.,

et al. (2011). Worldwide burden of cervical cancer in 2008. Ann. Oncol. 22,

2675–2686. doi: 10.1093/annonc/mdr015

Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay,

J., et al. (2020). Estimates of incidence and mortality of cervical cancer

in 2018: a worldwide analysis. Lancet Glob. Health 8, e191–e203.

doi: 10.1016/S2214-109X(19)30482-6

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.

(2018). Global cancer statistics 2018: Globocan estimates of incidence and

mortality worldwide for 36 cancers in 185 countries. Cancer J. Clinicians 68,

394–424. doi: 10.3322/caac.21492

Brisson, M., Kim, J. J., Canfell, K., Drolet, M., Gingras, G., Burger, E.

A., et al. (2020). Impact of hpv vaccination and cervical screening

on cervical cancer elimination: a comparative modelling analysis in 78

low-income and lower-middle-income countries. Lancet 395, 575–590.

doi: 10.1016/S0140-6736(20)30068-4

Bruni, L., Saura-Lázaro, A., Montoliu, A., Brotons, M., Alemany, L., Diallo,

M. S., et al. (2021). Hpv vaccination introduction worldwide and who and

unicef estimates of national hpv immunization coverage 2010–2019. Prev. Med.

144:106399. doi: 10.1016/j.ypmed.2020.106399

Burk, R. D., Harari, A., and Chen, Z. (2013). Human papillomavirus genome

variants. Virology 445, 232–243. doi: 10.1016/j.virol.2013.07.018

Bzhalava, D., Guan, P., Franceschi, S., Dillner, J., and Clifford, G. (2013).

A systematic review of the prevalence of mucosal and cutaneous human

papillomavirus types. Virology 445, 224–231. doi: 10.1016/j.virol.2013.07.015

Chen, Z., Terai, M., Fu, L., Herrero, R., DeSalle, R., and Burk, R.

D. (2005). Diversifying selection in human papillomavirus type 16

lineages based on complete genome analyses. J. Virol. 79, 7014–7023.

doi: 10.1128/JVI.79.11.7014-7023.2005

Clifford, G. M., Tenet, V., Georges, D., Alemany, L., Pavón, M. A., Chen, Z., et al.

(2019). Human papillomavirus 16 sub-lineage dispersal and cervical cancer risk

worldwide: whole viral genome sequences from 7116 hpv16-positive women.

Papillomavirus Res. 7, 67–74. doi: 10.1016/j.pvr.2019.02.001

Cullen, M., Boland, J. F., Schiffman, M., Zhang, X., Wentzensen, N., Yang, Q.,

et al. (2015). Deep sequencing of hpv16 genomes: a new high-throughput

tool for exploring the carcinogenicity and natural history of hpv16 infection.

Papillomavirus Res. 1, 3–11. doi: 10.1016/j.pvr.2015.05.004

de Sanjosé, S., Alemany, L., Ordi, J., Tous, S., Alejo, M., Bigby, S. M., et al. (2013).

Worldwide human papillomavirus genotype attribution in over 2000 cases of

intraepithelial and invasive lesions of the vulva. Eur. J. Cancer 49, 3450–3461.

doi: 10.1016/j.ejca.2013.06.033

De Sanjose, S., Quint, W. G., Alemany, L., Geraets, D. T., Klaustermeier, J. E.,

Lloveras, B., et al. (2010). Human papillomavirus genotype attribution in

invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet

Oncol. 11, 1048–1056. doi: 10.1016/S1470-2045(10)70230-8

Falcaro, M., Castañon, A., Ndlela, B., Checchi, M., Soldan, K., Lopez-Bernal,

J., et al. (2021). The effects of the national hpv vaccination programme in

england, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia

incidence: a register-based observational study. Lancet 398, 2084–2092.

doi: 10.1016/S0140-6736(21)02178-4

Gheit, T., Cornet, I., Clifford, G. M., Iftner, T., Munk, C., Tommasino, M., et al.

(2011). Risks for persistence and progression by human papilloma virus type

16 variant lineages among a population-based sample of danish women. Cancer

Epidemiol. Prev. Biomark. 20, 1315–1321. doi: 10.1158/1055-9965.EPI-10-1187

Ho, L., Chan, S., Chow, V., Chong, T., Tay, S., Villa, L. L., et al. (1991). Sequence

variants of human papillomavirus type 16 in clinical samples permit verification

and extension of epidemiological studies and construction of a phylogenetic

tree. J. Clin. Microbiol. 29, 1765–1772. doi: 10.1128/jcm.29.9.1765-1772.1991

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). Mafft online service: multiple

sequence alignment, interactive sequence choice and visualization. Brief.

Bioinformat. 20, 1160–1166. doi: 10.1093/bib/bbx108

Manolio, T. A. (2010). Genome wide association studies and assessment of the risk

of disease. N. Engl. J. Med. 363, 166–176. doi: 10.1056/NEJMra0905980

Mirabello, L., Yeager, M., Cullen, M., Boland, J. F., Chen, Z., Wentzensen, N.,

et al. (2016). Hpv16 sublineage associations with histology-specific cancer risk

using hpv whole-genome sequences in 3200 women. J. Natl. Cancer Instit.

2016:108:djw100. doi: 10.1093/jnci/djw100

Ou, Z., Chen, Z., Zhao, Y., Lu, H., Liu, W., Li, W., et al. (2021). Genetic signatures

for lineage/sublineage classification of HPV16, 18, 52 and 58 variants. Virology

553, 62–69. doi: 10.1016/j.virol.2020.11.003

Smith, B., Chen, Z., Reimers, L., Van Doorslaer, K., Schiffman, M., DeSalle, R., et al.

(2011). Sequence imputation of hpv16 genomes for genetic association studies.

PLoS ONE 6:e21375. doi: 10.1371/journal.pone.0021375

Stein, A. P., Saha, S., Kraninger, J. L., Swick, A. D., Yu, M., Lambertg, P. F.,

et al. (2015). Prevalence of human papillomavirus in oropharyngeal cancer: a

systematic review. Cancer J. 21:138. doi: 10.1097/PPO.0000000000000115

Tamura, K., Stecher, G., and Kumar, S. (2021). Mega11: molecular

evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027.

doi: 10.1093/molbev/msab120

Van Dyne, E. A., Henley, S. J., Saraiya, M., Thomas, C. C., Markowitz, L.

E., and Benard, V. B. (2018). Trends in human papillomavirus–associated

cancers?united states, 1999–2015. Morbidity Mortality Weekly Rep. 67:918.

doi: 10.15585/mmwr.mm6733a2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Asensio-Puig, Alemany and Pavón. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 June 2022 | Volume 5 | Article 851841

https://doi.org/10.1016/j.ejca.2014.07.018
https://doi.org/10.1093/annonc/mdr015
https://doi.org/10.1016/S2214-109X(19)30482-6
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S0140-6736(20)30068-4
https://doi.org/10.1016/j.ypmed.2020.106399
https://doi.org/10.1016/j.virol.2013.07.018
https://doi.org/10.1016/j.virol.2013.07.015
https://doi.org/10.1128/JVI.79.11.7014-7023.2005
https://doi.org/10.1016/j.pvr.2019.02.001
https://doi.org/10.1016/j.pvr.2015.05.004
https://doi.org/10.1016/j.ejca.2013.06.033
https://doi.org/10.1016/S1470-2045(10)70230-8
https://doi.org/10.1016/S0140-6736(21)02178-4
https://doi.org/10.1158/1055-9965.EPI-10-1187
https://doi.org/10.1128/jcm.29.9.1765-1772.1991
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1056/NEJMra0905980
https://doi.org/10.1093/jnci/djw100
https://doi.org/10.1016/j.virol.2020.11.003
https://doi.org/10.1371/journal.pone.0021375
https://doi.org/10.1097/PPO.0000000000000115
https://doi.org/10.1093/molbev/msab120
https://doi.org/10.15585/mmwr.mm6733a2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	A Straightforward HPV16 Lineage Classification Based on Machine Learning
	Introduction
	Materials and Methods
	Samples
	Lineage Assessment
	Detection of Main Nucleotides Related to Lineage
	Training a New Model to Assess Lineage
	Validate the New Model

	Results
	Sublineage A

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


