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Claudins are a multigene transmembrane protein family comprising at least 27 members.

In gastrointestinal tract, claudins are mainly located in the intestinal epithelia; many types

of claudins form a network of strands in tight junction plaques within the intercellular

space of neighboring epithelial cells and build paracellular selective channels, while

others act as signaling proteins and mediates cell behaviors. Claudin dysfunction may

contribute to epithelial permeation disorder and multiple intestinal diseases. Over recent

years, the importance of claudins in the pathogenesis of inflammatory bowel diseases

(IBD) has gained focus and is being investigated. This review analyzes the expression

pattern and regulatory mechanism of claudins based on existing evidence and elucidates

the fact that claudin dysregulation correlates with increased intestinal permeability,

sustained activation of inflammation, epithelial-to-mesenchymal transition (EMT), and

tumor progression in IBD as well as consequent colitis-associated colorectal cancer

(CAC), possibly shedding new light on further etiologic research and clinical treatments.

Keywords: inflammatory bowel diseases, claudin, intestinal permeability, colitis-associated colorectal cancer,

protein family

INTRODUCTION

Claudins, a multigene transmembrane protein family comprising at least 27 members (1),
reportedly contain four transmembrane (TM) helix domains, two extracellular loops (ECLs), a
short N-terminus and a C-terminus (2). In gastrointestinal tract, claudins are mainly located in
the intestinal epithelia; many species of claudins form a network of strands in tight junction
(TJ) plaques within the intercellular space of neighboring epithelial cells and build paracellular
selective channels (3–5), while the others act as signaling proteins and modulate cell behaviors
(6). Consequently, claudins dysfunction that occurs in enterocytes may contribute to epithelial
permeation disorder and multiple intestinal diseases, including inflammatory bowel diseases (IBD)
(7, 8). IBD are a series of chronic multifactorial gastrointestinal inflammatory disorders that mainly
include Crohn’s disease (CD) and Ulcerative Colitis (UC), with rather high non-response rates
and recurrence rates in clinical practice. Moreover, evidence regarding the correlation of IBD
with colorectal cancers exists, as sustained extensive colitis is a known independent risk factor for
colitis-associated colorectal cancer (CAC) (9, 10). However, owing to sophisticated etiology, the
dynamics of IBD and consequent tumorigenesis remain obscure. As the roles of claudins have been
gradually better understood in recent years, dysregulation of different claudin types may modulate
barrier permeability as TJ proteins and impact tumor behaviors as signaling proteins, therefore
participating in the pathogenesis of IBD and consequent tumorigenesis (11).
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PATHOGENESIS OF IBD

IBD are a series of chronic gastrointestinal inflammatory
disorders, among which CD and UC are the most prevalent and
well-studied (12). The sophisticated etiology of IBD is described
in the following sub-sections, along with the relationship of IBD
to claudins (Figure 1).

Genetic Variants Related to Disease
Susceptibility
Over 200 genetic risk loci are associated with IBD in modulating
barrier homeostasis, intestinal epithelial renewal, defense against
microbes, and innate/adaptive immune regulation, among other
things (13, 14). In a study on twins discordant for CD, healthy co-
twins exhibited barrier function changes similar to their CD co-
twins (e.g., increased small molecule permeability and reduced
claudin-5 expression) when compared with non-related controls,
indicating that genetic predisposition may be an important
etiologic factor in IBD onset (15). Some gene variants may
increase IBD predisposition by modulating TJ proteins because
they take on the dual role of sealing proteins and signaling
proteins. NOD2 mutations engender anti-biotic α-defensin
reduction and altered composition of TJ proteins (e.g., claudin-
1, claudin-2, occluding, and Zonula Occludens-1), resulting
in higher susceptibility to luminal bacterial infection in CD
patients (16) and exacerbation of inflammation via interleukin-
8 (IL-8)/nuclear factor-κB (NF-κB) activation in epithelia as
well as Toll-like receptor-2(TLR2)-dependent interferon-γ (IFN-
γ) upregulation in antigen-presenting cells (17, 18). Similarly,
SHANK3 mutations downregulate ZO-1 by inhibiting protein
kinase Cε (PKCε), thus engendering bacterial paracellular influx
and increasing propensity to inflammation in CD patients (19),
which is also likely a mechanism of claudins dysregulation in IBD
onset that awaits further analysis.

Aberrant Responses of Innate and
Adaptive Immunity
At their core, IBD are a series of autoimmune diseases,
and aberrant immune responses may contribute to IBD in
sophisticated ways by involving both innate and adaptive
immune mechanisms (20). The function of T cells and relevant
cytokines is well-studied and considered important in the
pathogenesis of IBD. Under physiological conditions, Treg cells

Abbreviations: IBD, inflammatory bowel diseases; TJ, tight junction; CD,
Crohn’s Disease; UC, Ulcerative Colitis; CAC, colitis-associated colorectal cancer;
TM, transmembrane; ECL, extracellular loop; EMT, epithelial-to-mesenchymal
transition; ZO, Zonula Occludens; IL, interleukin; NF-κB, nuclear factor-κB; TLR,
Toll-like receptor; IFN, interferon; PKC, protein kinase C; TGF-β, transforming
growth factor-β; TNF, tumor necrosis factor; EGF, epidermal growth factor;
AMPK, AMP-activated protein kinase; JNK, c-Jun N-terminal kinase; MAPK,
mitogen-activated protein kinase; MEK, mitogen-activated ERK kinase; ERK,
extracellular signal-regulated kinase; PI3K, phosphatidylinositol-3-kinase; Akt,
protein kinase B; STAT, signal transducer and activator of transcription; PDZ, PSD-
95/Disc-large/ZO-1; MMP, matrix metalloproteinases; Cdx, caudal homeobox
protein; MLCK, myosin light chain kinase; VEGFR, vascular endothelial growth
factor receptor; EpCAM, epithelial cell adhesion molecule; COX, cyclooxygenase;
EFN, ephrin; EPH, ephrin receptor; YAP, yes-associated protein; TNM, tumor-
node-metastasis.

and macrophages secrete transforming growth factor-β (TGF-
β) and IL-10 to induce immunotolerance (21). However, under
pathological conditions such as infections, the upregulated
proinflammatory cytokines (e.g., IL-1, IL-6, IL-12, and IL-23)
and generation of Th1, Th2, Th9, and Th17 cells, along with
the activation of other immune cells (e.g., neutrophils, NK cells),
cooperatively construct an elaborate network triggering IBD (21).
For example, Th9 subset exacerbates murine experimental colitis,
increases bacteria permeability and impairs wound healing by
secreting IL-9 and upregulating pore-forming claudin-2 (22).
From a viewpoint of clinical applications, except for anti-tumor
necrosis factor (TNF)-α agents, the efficacy and safety of other
inhibitory agents against the participating immune cells and
cytokines, such as anti-integrin and anti-IL-23 agents, still need
to be examined through clinical trials (23, 24).

Dysfunction of Mucosal Barrier
TJ-dependent paracellular passages manage the exchange of
paracellular substances between the intestinal lumen and internal
environment, thereby playing a role in the balancing of nutrient
absorption and waste secretion as well as defense mechanisms
against pathogens. In accordance with the well-acknowledged
roles of claudins in forming TJs and selective channels, claudins
may participate in both types of transepithelial paracellular
leakage (25): proinflammatory cytokines-induced small molecule
(e.g., ions andmannitol) channel disruption and cell detachment-
induced large molecule (e.g., epidermal growth factor, EGF)
leakage (26). Thus, as barrier-forming proteins, dysregulated
expression and redistribution of claudins may lead to increased
intestinal permeability, susceptibility to gut infection and bowel
symptoms of IBD patients (27–29).

Imbalance of Intestinal Microbial
Colonization
Dysbiosis of microbiota may influence mucosal homeostasis,
immune response, nutrient uptake, and vitamin production
with altered metagenome and perturbed microbial metabolism,
finally contributing to IBD (30, 31). For example, adherent-
invasive Escherichia coli, a prevalent pathogen in chronic and
early recurrent ileal lesions in CD patients (32), interferes with
host immune responses by surviving macrophage phagocytosis,
inducing neutrophil autophagy, promoting Th17 differentiation,
and upregulating proinflammatory cytokines TNF-α and IL-6
(33–35). Probiotics, such as Bacillus subtilis and Bifidobacterium
longum, on the other hand, alleviate inflammation and
repair barrier function by downregulating proinflammatory
cytokines (e.g., IL-17, IL-23, and TNF-α) and upregulating TJ
proteins (e.g., claudin-1, occluding, and ZO-1) in colitis mice
models (36–38).

Individual and Environmental Risk Factors
Based on existing epidemiologic research, industrialization is
regarded as a significant risk factor for IBD because its incidence
rate in western countries has increased rapidly since the 1950s
and has remained high (39, 40), while the low incidence rate in
newly industrialized countries has steadily begun to rise in the
twenty-first century (41). Age may also be a risk factor for CD
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FIGURE 1 | A schematic model of claudins in the pathogenesis of IBD and consequent tumorigenesis. Etiologic factors, such as a pathogenic breach and dysbiosis,

engender an overactive inflammatory response by secreting proinflammatory cytokines (e.g., IL-6, IL-9, and IL-23) and generating proinflammatory T cells (e.g., Th1,

Th2, Th9, and Th17), which also changes claudin expression via multiple pathways, such as Wnt and MEK/ERK signaling. Claudin dysregulation directly leads to

impaired barrier function and luminal bacterial leakage inversely exacerbates inflammation, while EGF influx contributes to tumorigenesis. EMT and tumorigenesis are

results of sustained activation of signaling pathways that modulate cell growth and migration, in which claudins act as signaling proteins and modulate aggressive

tumor behaviors. Probiotics, on the other hand, recover epithelial claudin expression, and therefore promote mucosal healing.

and UC, because the first diagnostic peak appears at 20–30 years
in CD and at 30–40 years in UC, along with a possible second
peak at 60–70 years (42). Other risk factors, including smoking,
appendectomy, dietary habits, antibiotic use, and childhood
exposure, may also be relevant to the pathogenesis of IBD
(43, 44). Interestingly, second-hand smoking engenders claudin-
3 and ZO-2 upregulation in murine large intestines possibly by
inhibiting NF-κB signaling and AMP-activated protein kinase
(AMPK), but also increases oxidative stress by activating c-JunN-
terminal kinase (JNK) and p38 mitogen-activated protein kinase
(MAPK) signaling, indicating the complicated role of smoking in
modulating inflammation (45).

TUMORIGENESIS OF IBD

The sophisticated pathogenesis of CAC is associated with
genomic alterations, inflammation-induced aberrant immune
response, and alterations in bowel microbiota, etc. (46).

Sequencing analysis has revealed that genomic alterations
in CAC are significantly different from sporadic colorectal
cancer with regard to a higher frequency of TP53, MYC,
and IDH1 mutations, along with lower frequency of APC
mutations (47). Moreover, as colitis-associated intestinal barrier
leak allows for the paracellular influx of luminal growth
factors, EGF triggers sustained activation of Ras/Raf/mitogen-
activated ERK kinase (MEK)/extracellular signal-regulated
kinase (ERK) signaling, phosphatidylinositol-3-kinase (PI3K)/
protein kinase B (Akt) signaling as well as signal transducer
and activator of transcription-3 (STAT3) signaling, along
with secretion of proinflammatory cytokines (e.g., IL-17 and
IL-23), thus accelerating cell proliferation and engendering
tumorigenesis (48–51). Additionally, microbial composition is
altered in patients with CAC or sporadic colorectal cancer and
varies at different stages of colorectal tumorigenesis (52, 53),
possibly owing to infection-associated inflammation, bacterial
metabolites, and infection-induced oxidative stress (54). The
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TABLE 1 | Changes of claudins in colitis-associated colorectal cancer (CAC) and

colorectal cancer.

Human Animal models

CAC Colorectal cancer

Claudin-1 ↑(55, 56) ↑(57–60)↓(61, 62) ↓(63) (rats)

↑(64) (mice)

Claudin-2 Unchanged (55) ↑(61, 65)↓(66) Unchanged (63)

(rats)

Claudin-3 ↑(55) ↑(61, 67, 68)↓(58) ↓(69) (mice)

Claudin-4 ↑(55) ↑(57, 67)↓(58, 62) -

Claudin-5 - ↓(70) -

Claudin-7 - ↑(61, 71)↓(58, 62, 72) Unchanged (63)

(rats)

Unchanged (73) ↑(74)↓(75) (mice)

Claudin-8 - ↓(70, 76) -

Claudin-12 - ↑(76) -

Claudin-15 - ↓(70) ↑(63) (rats)

Symbol “↑” stands for upregulation and “↑” for downregulation, while “-” stands for no

explicit data on the respective claudin.

changes of claudins in CAC and colorectal cancer are summed
up in Table 1 (55–76).

EXPRESSION AND FUNCTION OF
CLAUDINS

Expression of Claudins in the
Gastrointestinal Tract
Though claudins are widely expressed in various kinds of organs
and tissues (77), only a few of them are detectable in the
gastrointestinal tract. Multiple studies have confirmed the tissue-
specific physiological heterogeneity in normal gastrointestinal
epithelium and pathological modification of claudin expression
in IBD patients (Table 2) (78–80). Hence, deviation from the
physiological expression pattern of claudins probably implies a
pathological state. The expression and distribution of claudins
may be regarded as an indicator or mediator of mucosal function
in concerning diseases that cause intestinal mucosal damage,
including IBD.

Structures of Claudins
Different types of claudins have basic structures in common
(Figure 2), including four transmembrane helices, two
extracellular loops, a short N-terminus and a cytoplasmic
C-terminus(2). ECLs and TM mediate the formation of claudin
dimers and dimers further assemble themselves into barrier or
pores in the paracellular space (81, 82). ECLs are also able to
bind C. perfringens enterotoxin and therefore to participate in
infection-induced pathogenesis (82). On the other hand, the
diverse C-terminus of claudins binds cytoplasmic proteins by
PSD-95/Disc-large/ZO-1 (PDZ) domain, which may be the
structural foundation for claudins to modulate cell behaviors as
signaling proteins (83).

Functions of Claudins in IBD and CAC
Though it is well-acknowledged that gastrointestinal-specific
claudins participate in building intestinal barriers and
modulating permeability (79), there is also ample evidence
that claudins may act as signaling proteins and participate
in inflammation, cell proliferation, differentiation, and
tumorigenesis via cellular signaling pathways, including
EGFR/MEK/ERK signaling, PI3K/Akt signaling, Wnt/β-catenin
signaling and AMPK signaling, etc. (61). Thus, inflammation-
induced claudins dysregulation may mediate the interaction
between IBD and CAC.

Claudin-1

Claudin-1 is located in the junctional areas as well as lateral
membranes of crypt epithelial cells and upregulated in entire
epithelia during CD and UC (84, 85). Evidence shows that
downregulation of claudin-1 contributes to increased intestinal
permeability via NF-κB activation and leads to diarrhea
in patients with irritable bowel syndrome (86). On the
other hand, claudin-1-overexpressing mice exhibit higher
susceptibility to experimental colitis, with impaired goblet
cell differentiation, deferred epithelial recovery, sustained
inflammation and crypt hyperplasia, possibly resulting
from matrix metalloproteinases-9(MMP-9)/ERK-induced
Notch signaling activation (85). Wnt/β-catenin signaling
that participates in inflammation, cell differentiation and
proliferation, seems to have a strong correlation with claudin-
1, as claudin-1-overexpressing mice exhibit Wnt/β-catenin
signaling activation, and caudal homeobox protein-2(Cdx-
2)-associated Wnt signaling upregulates claudin-1 inversely
in colorectal cancer cell lines (60, 64), along with combined
upregulation of claudin-1 and β-catenin in human primary
and metastatic colorectal cancer lesions (87). In addition,
TNF-α-induced claudin-1 upregulation leads to ERK and SRC
signaling activation, thus contributing to EMT and increased
tumor invasion, suggesting the underlying role of claudin-1 in
triggering colitis and CAC (88).

Claudin-2

As claudin-2 is predominantly expressed in TJ region and the
apical cytoplasm of surface colonocytes (84), it is considered
to increase paracellular permeability by forming cation-selective
and water channels on intestinal epithelia (89, 90), along
with an overall upregulation in IBD (84, 91) and CAC (92).
Contrary to claudin-1, claudin-2-overexpressing mice exhibit
higher resistance to experimental colitis by showing decreased
cell apoptosis, increased epithelial proliferation and immune
tolerance, brought about by downregulation of IL-6-induced NF-
κB as well as STAT3 signaling and upregulation of Treg cell
population as well as immunoregulatory cytokine TGF-β (93).
However, different from the protective role in colitis, claudin-2
is upregulated by Cdx-associated Wnt signaling activation (94)
and contributes to tumorigenicity of CAC by promoting cell
proliferation via EGFR/ERK signaling in vitro (92).
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TABLE 2 | Expression patterns of claudins in normal human tissue in comparison with altered expression in IBD.

Normal tissue Trend in IBD

Stomach Duodenum Jejunum Ileum Colon Rectum CD UC

Claudin-1 +(78) +(78) +(78, 79) +(78) +(78, 79) +(78) ↑(78) ↑(78)

Claudin-2 +(78, 80) +(78–80) +(78, 79) +(78–80) ±(78, 80) ±(78, 80) ↑(78)↓(80) ↑(78, 80)

Claudin-3 ±(80) ±(79, 80) No data +(80) +(78–80) +(80) ↓(78, 80) −(80) ↓(78)

Claudin-4 ±(80) +(79, 80) No data +(80) +(78–80) +(80) ↓(80) −(80) ↓(78)

Claudin-5 No data +(78, 79) No data No data +(79) No data ↓(78) No data

Claudin-7 ±(78, 80) +(78, 80) +(78, 79) +(78–80) +(78, 80) +(78, 80) No data ↓(78)

Claudin-8 ±(80) ±(79, 80) No data ±(80) +(78–80) +(80) ↓(78) No data

Claudin-12 +(78, 80) +(78, 80) +(78, 79) +(78, 80) +(78, 80) +(78, 80) ↓(78, 80) −(80)

Claudin-15 ±(78, 80) +(78, 80) +(78) +(78, 80) +(78, 80) ±(78, 80) No data No data

Claudin-18 +(80) −(80) No data −(80) −(80) −(80) No data ↑(78)

The expression levels of claudins in normal human gastrointestinal tract were defined as positive (+), negative (−), and weakly positive (±). The trend of respective claudins in IBD was

defined as upregulated (↑), downregulated (↓), and unchanged (−). IBD, Intestinal Bowel Diseases, UC, Ulcerative Colitis, CD, Crohn’s Disease.

FIGURE 2 | The trait of claudins (pore-forming or barrier-forming) depends on pore-like structures (marked in red circle) and polar amino acid residues of ECLs and

occasionally TM segments in claudin dimers interaction. C-terminus of different claudins is diverse and able to bind cytoplasmic proteins by PDZ domain, which may

be the structural foundation for claudins to modulate cell behaviors as signaling proteins.

Claudin-3

Claudin-3 is typically located in junctional areas and lateral
membranes of healthy colonic surface and crypt epithelia, while
its expression in apical regions is lowered in the epithelia of IBD

patients (78, 95). A research conducted on murine postnatal
intestinal barrier development revealed that intestinal claudin-
3 expression peaks during early stages of life and complies
to the process of probiotics-induced MyD88-dependent gut
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maturation, indicating that claudin-3 forms intestinal epithelial
barrier on the basis of probiotics-induced TLR activation in early
life (96). Evidence from in vitro experiments also demonstrated
that claudin-3 is downregulated by proinflammatory cytokines
(e.g., IFN-γ, TNF-α, and IL-1β)-induced myosin light chain
kinase (MLCK) activation (97, 98).In claudin-3-deficient
mice model, colonic epithelial dedifferentiation, barrier
dysfunction and rapid tumor progression likely resulted from
IL-6/gp130/STAT3 signaling-induced Wnt/β-catenin signaling
upregulation, indicating the interaction between inflammation
and tumorigenesis mediated by claudin-3 deficiency (69).
However, another study on colorectal adenocarcinoma cell
line revealed that claudin-3 overexpression promotes tumor
malignancy via EGFR/MEK/ERK and PI3K/Akt signaling (68).
The aforementioned dual role of claudin-3 in tumorigenesis
indicates that the imbalance of claudin-3 may participate in
tumorigenesis via multiple pathways.

Claudin-4

Claudin-4 is expressed in TJs and lateral membranes of normal
colonic surface as well as crypt epithelia, and responsible for
physiological chloride reabsorption (95, 99). Downregulation
of claudin-4 are mainly observed in junctional areas of
inflamed epithelia, probably due to TNF-α/IFN-γ induced
MLCK activation (95). AMPK and muscarinic acetylcholine
receptors-induced ERK activation is also able to trigger claudin-4
phosphorylation, β-arrestin2/clathrin-mediated redistribution
from cellular membranes to cytoplasm, and consequent
ubiquitination-induced degradation (100, 101), contributing to
increased epithelial paracellular permeability. However, studies
on gastrointestinal tumor progression are quite contradictory.
Although claudin-4 expression promoted by lncRNA-KRTAP5-
AS1 and lncRNA-TUBB2A contributes to aggressive cancer
behaviors in gastric cancer (102) and β-catenin expression
is synchronous with claudin-4 upregulation in CAC tissues
(55), there is also evidence showing that claudin-4 suppression
in colorectal cancer tissues correlates with aggressive cancer
behaviors (103).

Claudin-5

Claudin-5 localizes strictly in junctional areas in normal surface
and crypt epithelia, whereas its reduction and redistribution
from TJs to sub-junctional membranes are observed in active
CD (91). Alteration in the expression of claudin-5 and other
sealing claudins leads to decreased number of TJ strands
and reduced depth of TJ meshwork, consequently increasing
barrier permeability (91). Claudin-5 is upregulated by lamina
propria lymphocytes for its function in accelerating intestinal
epithelia differentiation via Notch-1 signaling to maintain
epithelial homeostasis (104). However, the lymphoepithelial
interactions may be a double-edged sword, as PI3K/Akt and
MAPK signaling upregulated by lamina propria lymphocytes
participate in dysregulated epithelial cell maturation and
enhanced intestinal antigen presentation, therefore leading to
exacerbation of inflammation (105). On the other hand, as
claudin-5 is downregulated by vascular endothelial growth factor
receptor-2 (VEGFR2)/PI3K/Akt signaling and IL-8 in endothelial

cells, resulting in impaired endothelial integrity and increased
vascular permeability (106), the reduction of claudin-5 may play
a role in weakened cell adhesion and tumor metastasis in various
tumor types, such as ovarian cancer (107), urothelial carcinoma
(108), and prostate cancer (109). However, to date, the role of
claudin-5 in gastrointestinal tumors remains obscure.

Claudin-7

Claudin-7 is found in TJ regions as well as basolateral membranes
of colonocytes, whose junctional expression are significantly
reduced in active UC (110). Deficiency of claudin-7 mainly
causes dysregulated paracellular flux of small organic solutes,
such as microflora products, and triggers colonic inflammation
in mice models (111). In another study, due to claudin-7
deficiency, upregulation of MMPs (e.g., MMP-3 and MMP-7)
turns IL-1β precursor into the active form (112) and triggers NF-
κB signaling activation, along with MMPs-induced degradation
of claudin-7/claudin-1/integrin-α2 complex, finally engendering
colonic inflammation and damaged cell-matrix interaction (113).
Further, claudin-7 inhibits ERK and SRC signaling, therefore
suppressing EMT and tumor progression in colorectal cancer cell
lines (114). However, there is also in vitro evidence that claudin-7
cooperates with epithelial cell adhesion molecule (EpCAM) and
generates EpIC, a co-transcription factor that collaborates with β-
catenin in cancer initiating cells, contributing to EMT and cancer
metastasis (71).

Claudin-8

Since claudin-8 acts as sealing claudins in junctional regions
of normal epithelial surface as well as crypts(91) and prevents
paracellular back-leakage of Na+ in colonic reabsorption(115),
its reduction and redistribution from TJs to cytoplasm may lead
to TJ structure disruption and increased epithelial permeability
in IBD, especially in active CD. In both IBD patients and
mice with experimental colitis, claudin-8 is downregulated by
hyperactivation of IL-23/miR-223 (116) and IL-9/miR21 (117)
pathways, causing inflammation-induced intestinal mucosal
damage and retardation of mucosal healing, while IL-9/STAT5
pathway activation may also account for bowel epithelial
inflammation (118). On the other hand, as CLDN8 is correlated
with cancer progression via Akt and MAPK signaling in prostate
cancer (119), the significance of downregulated claudin-8 in
colorectal cancer awaits further analysis (76).

Claudin-12,-15, and -18

The presence of claudin-12 is decreased in the colon epithelia, but
increased in the ileum epithelia of CD patients (80). By forming
Ca2+ paracellular channels, claudin-12 mediates Vitamin-D
dependent Ca2+ permeability in enterocytes (120). Although IL-
18/p38 MAPK pathway downregulates claudin-12 and promotes
tumor invasion in breast cancer, indicating its possible anti-
tumor effect (121), the upregulation of claudin-12 in colorectal
cancer needs to be further studied (76).

Claudin-15 modulates small intestinal Na+ permeability
by forming Na+ channels (122), whose deficiency results in
Na+-dependent glucose/amino acid/fat absorption defect in
mice models (123, 124). Interestingly, claudin-15-deficient mice
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develop dilated and lengthened upper small intestines without
signs of epithelial neoplasia, suggesting that claudin-15 may
regulate intestinal epithelial cell proliferation and organ size,
while the underlying mechanism remains to be discovered
(125). Owing to a scarcity of research, the significance of
reduced claudin-15 expression in colorectal adenocarcinoma is
still undefined (70).

CLDN18 gene produces lung-specific and stomach-specific
claudin-18 (126). Stomach-specific claudin-18 (claudin-18.2)
forms TJ strands in gastric epithelial cells and limits paracellular
H+ efflux; its deficiency may trigger gastritis by upregulating
IL-1β, TNF-α, and cyclooxygenase-2 (COX-2)/prostaglandin-E
pathway (127). Intriguingly, claudin-18.2-deficient mice develop
gastric mucosal neoplasia, which is associated with the activation
of multiple pathways, including CD44, ephrin (EFN)/ ephrin
receptor (EPH) and yes-associated protein-1 (YAP1)/HIPPO
signaling (128). However, the existence of claudin-18.2 in
primary and metastatic lesions of gastric cancer, along with its
significant ectopic expression in various types of cancers (e.g.,
pancreatic adenocarcinomas, esophageal tumors, and bile duct
cancers), indicates the underlying role of claudin-18.2 as a pan-
cancer therapeutic target (129, 130). On the other hand, though
lung-specific claudin-18 (claudin-18.1) is expressed in the colonic
epithelia of UC patients and experimental colitis mice models, its
significance awaits further analysis (131).

CONCLUSION

Though claudins participate in the pathogenesis of IBD and
consequent tumorigenesis, actual prognostic or therapeutic
application of claudins in IBD remains scarce. As for the potential
role of claudins in colorectal cancer, anti-claudin-1 antibodies
specifically bind claudin-1 on the membrane of tumor cells
and inhibit tumor progression in vivo and in vitro, indicating
that claudin-1 may be a therapeutic target for colorectal cancer,
especially for subtypes with KRAS mutations and Wnt signaling
activation (132). However, even though claudin-1 is upregulated
in human colon cancer tissues when compared with adjacent
normal epithelia, claudin-1 reduction is strongly correlated with
poor prognosis, including high recurrence rate and poor survival,
in tumor-node-metastasis (TNM) stage II colon cancer patients
(133). On the other hand, in a phase IIb study on patients
with claudin-18.2 positive gastric cancer or gastroesophageal
junction adenocarcinoma, the combination of anti-claudin-18.2

antibodies claudiximab and first line chemotherapy improves
response rate, progression-free survival, and overall survival in
comparison with chemotherapy alone, suggesting the potential
of claudin-18.2 as a therapeutic target for claudin-18.2-positive
gastric cancer (134) and other cancer types with claudin-18.2
ectopic expression (e.g., pancreatic cancer) (129, 135).

Previous studies have shown that claudins modulate barrier
function, inflammation and tumorigenesis in gastrointestinal
tract, while their roles in genetic propensity, immune response
apart from T cells activation and microbial dysbiosis still need
to be further studied. Also, for several gastrointestinal claudins
(e.g., claudin−12,−15, and−18), where does the dysregulation
exactly occur among various types of gastrointestinal cells and
the relevant modulating mechanisms remain obscure. Though
claudins dysregulation predominantly occurs in epithelial cells,
whether it influences other cell types (e.g., intestinal stem
cells and goblet cells) awaits further analysis. In addition,
the sophisticated modulating mechanism of claudins makes
it difficult to determine which signaling pathway is primary
in IBD and CAC, especially for different cancer subtypes.
Therefore, conclusions from different signaling studies may
be contradictory, which has become an obstacle for claudins
to be therapeutic targets for IBD and CAC. The potential
of claudins in promoting mucosal healing by restoring TJ
structures as TJ-forming proteins and regulating inflammation
as well as tumor behaviors as signaling proteins awaits
further analysis.
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