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The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during

their post-translational maturation. In the brain, PSA modulates distances between cells

and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved

in many aspects of energy balance including food intake, osmoregulation, circadian

rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the

regulation of plasma cholesterol levels and distribution. We report that HFD consumption

in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol.

Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL

were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic

PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results

indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the

rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms

by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be

elucidated, these findings also suggest that low level of hypothalamic PSA might be

a risk factor for dyslipidemia and cardiovascular diseases.

Keywords: polysialic acid, hypothalamus, atherosclerosis, HDL, LDL, synaptic plasticity

INTRODUCTION

Atherosclerosis is characterized by the accumulation of lipoprotein-derived cholesterol in the
arterial wall (Hegele, 2009; Goldstein and Brown, 2015). Among lipoproteins, low-density
lipoproteins (LDL) play a critical role in the early-onset of the disease. The oxidativemodification of
LDL promotes themigration of circulatingmonocytes into the arterial wall and their differentiation
intomacrophages that in turn scavenge oxidized LDL in an unregulatedmanner (Tabas et al., 2007).
Accordingly, elevated plasma LDL-cholesterol has long been associated with cardiovascular risk
and strongly correlates with cardiovascular events (Brown and Goldstein, 1996). On the opposite,
high-density lipoproteins (HDL) cholesterol levels are inversely correlated with atherosclerosis but
the molecular basis of this relationship is still unclear (Rye et al., 2009). Lowering blood LDL by
statins is the first-line strategy against atherosclerosis (Brautbar and Ballantyne, 2011). Additional
drugs can be used in combination with statins to further reduce the cardiovascular risk (Libby,
2005). In this way, strategies aiming at increasing HDL-cholesterol are still under development
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but their net effect on atherosclerosis and cardiovascular events
still needs to be demonstrated (Libby et al., 2011). In all
cases, current pharmacological treatments target cholesterol
metabolism in liver, gut, or in the vascular compartment. A
better understanding of how the plasma level of lipoproteins is
regulated might provide new opportunities to achieve optimal
LDL levels as well as LDL-to-HDL cholesterol ratio.

Many lines of evidence have been accumulated showing
a neural control of plasma cholesterol (Perez-Tilve et al.,
2011; Bruinstroop et al., 2014; Geerling et al., 2014). Earlier
studies performed in rats and rabbits have shown that electrical
stimulation (Gunn et al., 1960) or lesion (Bernardis and
Schnatz, 1971) in the hypothalamus strongly alter plasma
cholesterol. More recently, it has been shown that circulating
hormones such as leptin (Vanpatten et al., 2004), insulin
(Scherer et al., 2016), and Glp-1 (Parlevliet et al., 2012;
Panjwani et al., 2013; Taher et al., 2014), trigger brain-
mediated regulation of hepatic cholesterol metabolism. Nutrients
such as glucose or oleic acid are also able to regulate
VLDL hepatic production via a central action (Lam et al.,
2007; Yue et al., 2015). Further pharmacological studies
indicate that the melanocortin system, which is sensitive
to these hormones and nutrients, is a master regulator of
plasma cholesterol. The two main antagonistic components
of this system are anorexigenic proopiomelanocortin (POMC)
neurons and orexigenic neuropeptide Y/agouti-related protein
(NPY/AgRP) neurons. NPY neurons enhance VLDL maturation
and secretion (van Den Hoek et al., 2004; Stafford et al., 2008;
Bruinstroop et al., 2012; Rojas et al., 2012, 2015) whereas POMC
neurons modulate HDL uptake by the liver (Perez-Tilve et al.,
2010).

Synaptic inputs on POMC and NPY neurons vary in adult
mice, depending on the energy state and changes in fuel
availability (Vong et al., 2011; Yang et al., 2011; Benani et al.,
2012; Liu et al., 2012). Synaptic plasticity of the melanocortin
system likely contributes to the accurate control of energy balance
(Benani et al., 2012), and altered synaptic plasticity of POMC
and NPY neurons might be a risk factor for metabolic diseases
(Pinto et al., 2004; Horvath et al., 2010). We identified the
polysialic acid molecule (PSA) as a permissive factor for synaptic
reorganization of the melanocortin system during overfeeding
(Benani et al., 2012). PSA is a large glycan that is added to specific
membrane proteins, including the neural cell-adhesion molecule
(NCAM), during post-translational maturation. The attachment
of PSA to cell-surface proteins reduces cell interactions and
promotes synaptic changes and other plasticity-related events
in the brain (Rutishauser, 2008). In the hypothalamus, PSA
is involved in many aspects of energy balance including food
intake (Benani et al., 2012), osmoregulation (Theodosis et al.,
1999), circadian rhythm (Shen et al., 1997; Glass et al., 2000;
Fedorkova et al., 2002; Prosser et al., 2003), and sleep (Black
et al., 2009). In this work, we investigated whether PSA also
contributes to the homeostatic control of plasma cholesterol.
To examine this hypothesis, we compared plasma cholesterol-
containing lipoproteins levels during overfeeding induced by
short-term high-fat diet (HFD) in control mice and PSA-depleted
mice. Selective loss of PSA in the hypothalamus was achieved

through stereotactic bilateral injection of endoneuraminidase N
(endoN), a highly specific bacterial enzyme that cleaves PSA from
NCAM residues (Vimr et al., 1984).

MATERIALS AND METHODS

Animals
Male C57Bl/6J mice were purchased from the Charles River
Laboratories France. Mice were maintained in temperature and
humidity controlled rooms on a 12-h/12-h light/dark cycle, with
lights on at 07:00 a.m. They were fed either a standard diet (A04;
5.1% lipids; 3.3 kcal/g) or a high fat diet (HFD, reference number:
U8954; 22% lipids; 4.4 kcal/g) purchased from Safe, France. Food
and water were provided ad libitum. For pair-feeding studies, the
daily amount of HFD provided to the pair-fed EndoN-treated
group (HFDpf mice) was matched to that consumed by the
vehicle-treated group fed a HFD (HFD mice). Daily food intake
was recorded manually. Experiments were performed on 8-week
old mice. All procedures were in agreement with the European
Directive 2010/63/UE and were approved by the FrenchMinistry
of Research (agreement #00853.01) and by the local ethic
committee, i.e., “Comité d’Ethique de l’Expérimentation Animale
Grand Campus Dijon” (national identification number: #105).

Bilateral endoN Injections in the
Hypothalamus
Depletion of PSA in the hypothalamus was achieved by bilateral
intra-parenchymal injections of EndoN (0.28 units/side, prepared
in phosphate buffer with glycerol, injected volume: 400 nl/side,
rate of infusion: 100 nl/min; EuroBio). Injections were performed
under isoflurane anesthesia as previously described (Benani
et al., 2012; Brenachot et al., 2014). Stereotactic coordinates for
injection were: −1.4mm posterior to the Bregma, ±0.4mm
lateral to the sagittal suture, and −5.6mm below the skull
surface. Control mice received artificial cerebrospinal fluid
(aCSF; Tocris Bioscience). Mice were housed individually
after surgery. They were kept under controlled temperature
and rehydrated with intra-peritoneal injection of saline. They
were also injected subcutaneously with buprecare (1mg/kg)
to reduce post-operative pain. Mice were allowed 2 days
for recovery before experiment, i.e., before HFD introduction.

Plasma Lipid Analyses
Mice were fasted 4 h (with bedding changed and food removed)
at 10.00 a.m. and blood samples were collected at 2.00 p.m.
under anesthesia with isoflurane. Blood was drawn from the
retro-orbital plexus on heparin-containing tubes. Plasma was
isolated by a 8,000-rpm spin (7,230 g) at 4◦C and samples
were stored at −80◦C before analysis. Plasma VLDL, LDL, and
HDL were isolated by sequential ultracentrifugation as the d <

1.006 g/ml, the 1.006 g/ml< d< 1.063 g/ml, and the 1.063 g/ml<
d < 1.21 g/ml fractions, respectively (Hurt-Camejo et al., 2013).
Densities were adjusted with KBr solutions. The centrifugation
steps for VLDL, LDL, and HDL consisted of 3, 4, and 5-h runs,
respectively, at 100,000 rpm (436,000 g) in a TLA-100 rotor
on a Beckman Optima TLX ultracentrifuge (Palo Alto, CA).
Cholesterol levels in total plasma and in lipoprotein fractions
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were measured enzymatically with a commercially available kit
(Cholesterol FS, Diasys, Holzheim, Germany).

VLDL Secretion Rate Assay
VLDL production rate was determined bymeasuring the increase
in plasma triglyceride levels after injection of an inhibitor of
lipolysis as previously described (Sberna et al., 2011). Briefly,
4-h fasted mice were injected intraperitoneally with Poloxamer
407 (P-407, Lasersen, Etampes, France) (1 g/kg body weight).
Blood samples were drawn into EDTA-containing tubes and
plasma was isolated by centrifugation as described above.
Plasma triglycerides levels were determined enzymatically with
a commercially available kit (Triglyceride FS, Diasys, Holzheim,
Germany). The VLDL triglyceride production rate was calculated
from the slope of the curve between 30 and 120min after P-407
injection and expressed as g/l/min.

Statistical Analysis
All data are expressed as means. Error bars indicate SEM.
Multiple comparisons of groups were performed by one-
way ANOVA using Prism 5.0 software (GraphPad Software).
Newman–Keuls test was used in post hoc analyses to compare
groups when main effects reached significance. Equality of
variances and normality of distribution were checked prior
to analysis using Bartlett-test and Kolmogorov–Smirnov-test,
respectively. When variances were significantly different or if the
data fail the normality test, the Mann–Whitney test was applied.
Calculated p-values below 0.05 were considered significant.
Finally, significant differences between groups were indicated
on each graphic representation with a letter and bars without a
common letter are significantly different.

RESULTS

Plasma Lipoproteins Profile Is Rapidly
Altered upon HFD
We first characterized how plasma cholesterol was regulated
upon short-term HFD. For that purpose, we fed mice a HFD
for 1 day to 2 weeks and measured total plasma cholesterol and
VLDL-, LDL-, and HDL-cholesterol. Control mice were kept on
standard diet (STD). HFD consumption for 1 day was sufficient
to raise total plasma cholesterol (Figure 1A). This increase was
a result of higher VLDL-, LDL-, and HDL-cholesterol levels
(Figures 1B–D). Total plasma cholesterol, as well as LDL- and
HDL-cholesterol, remained elevated during the 2-week exposure
to HFD (Figures 1A,C,D). However, VLDL-cholesterol returned
to basal values after 1 week while mice were still kept on HFD
(Figure 1B).

Hypothalamic PSA Removal Alters Plasma
Lipoprotein Homeostasis
To assess the role of hypothalamic PSA in the regulation
of circulating cholesterol, we compared levels of plasma
cholesterol after 1-week HFD in control and endoN-treated
mice (Figure 2A). On STD, daily food intake of control mice
that received intrahypothalamic endoN treatment was stable
and similar to that of mice receiving aCSF injections. As a

result, cumulative energy intake over a week was similar for
these two groups (Figure 2B). The absence of behavioral change
upon endoN treatment suggests that endoN per se does not
elicit obvious anorectic inflammatory response. Although this
compound did not modify energy intake over a week in mice
fed a STD, endoN treatment increased it on HFD (Figure 2B).
This typical hyperphagic response induced on HFD by the
endoN treatment reveals a PSA-dependent adaptive behavioral
response to dietary fat (Benani et al., 2012). To appreciate the
contribution of endoN treatment on blood parameters during
HFD, irrespective of associated hyperphagia, we pair-fed endoN-
treated mice (HFDpf) limiting them to the amount of calories
ingested by vehicle-treated control group on HFD (Figure 2B;
HFD/aCSF: 4.83 ± 0.14, HFDpf/endoN: 5.04 ± 0.1 kcal/g of
body weight over a week). EndoN treatment did not alter
plasma cholesterol levels and distribution in STD-fed mice
(Figures 2C–F). EndoN treatment did not affect total cholesterol
or VLDL-cholesterol in HFD-fed mice too (Figures 2C,D).
However, endoN injection in the hypothalamus slightly increased
LDL-cholesterol and significantly reduced HDL-cholesterol in
HFD-fedmice (Figures 2E,F). Similar effects of endoN treatment
on plasma cholesterol were obtained in mice fed a HFD ad
libitum and in HFD pair-fed mice (Figures 2C–F). Interestingly,
LDL/HDL ratio or non-HDL/HDL ratio remained unchanged
after 1-week HFD (Figures 2G,H), and endoN treatment did not
change these ratios upon STD. However, by affecting both plasma
LDL and HDL levels, endoN caused elevation of LDL/HDL
and non-HDL/HDL ratios in HFD-fed mice, independently of
changes in food intake.

Hypothalamic PSA Does Not Control
Hepatic VLDL Secretion
We next sought to determine how hypothalamic PSA controls
plasma cholesterol in HFD-fed mice. Because neural circuits in
the brain directly control cholesterol metabolism by the liver
(Perez-Tilve et al., 2010), we investigated the hepatic function
after hypothalamic PSA manipulation. We assessed hepatic
production of VLDL in mice that received endoN or vehicle
in the hypothalamus. As before, mice were fed either a STD
or HFD for 1 week, or were pair-fed on HFD to prevent
endoN-induced hyperphagia as a confounding factor. Hepatic
VLDL production rate was determined by measuring the kinetics
of triglyceride increase after inhibition of VLDL triglyceride
hydrolysis by intraperitoneal injection of poloxamer, an inhibitor
of lipoprotein lipase (LPL) (Figure 3A). Ingestion of HFD for
1 week decreased VLDL production rate compared to STD-
fed mice (Figure 3B). EndoN injection in the hypothalamus did
not modify VLDL production rate in STD-fed mice nor during
short-term HFD.

DISCUSSION

In the present study, we report that acute overfeeding induced
by HFD consumption rapidly increased plasma cholesterol
levels in mice. This was noticeable as early as 1 day
after HFD introduction. Characterization of major circulating
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FIGURE 1 | Plasma lipoproteins profile is rapidly altered upon HFD. (A–D) Plasma kinetics of total cholesterol, VLDL cholesterol, LDL cholesterol, and HDL

cholesterol in mice during a 2 week-high fat diet (HFD; red bars). Control mice were fed with a standard diet (STD; gray bars). n = 5–6 for each time-point. Data are

presented as mean ± SEM and were analyzed by one-way ANOVA and Newman–Keuls multiple comparison test. Bars without a common letter are significantly

different.

cholesterol-containing lipoproteins revealed that VLDL, LDL,
and HDL cholesterol were all elevated after 1 day on HFD.
Interestingly, VLDL-cholesterol returned to basal value within a
week althoughmice were still kept onHFD.Moreover, LDL/HDL
as well as non-HDL/HDL cholesterol ratio, remained unchanged
after 1-week HFD. These results support the existence of
homeostatic mechanisms that limit the rise of VLDL-cholesterol
during acute overfeeding and that maintain a balanced plasma
lipoproteins profile. Our findings are in line with previous works
that evidenced early adaptation of cholesterol metabolism during
short-term HFD, and they further show that such mechanism
occurs more rapidly than previously anticipated (Srivastava et al.,
1991; Hernández Vallejo et al., 2009; Kahle et al., 2013).

We also found that 1-week HFD caused significant reduction
of hepatic VLDL production in mice. Opposite effect has
been reported in rats after 3-day HFD (Lam et al., 2007;
Yue et al., 2012). Apart from possible inter-species differences,
this discrepancy might result from successive and opposite
modifications in hepatic lipid metabolism upon HFD. Such
sequential effect has been already described for the insulin
pathway during the time-course of short-term HFD. Actually,
progressive β-cell mass expansion in pancreas upon HFD might
compensate early hyperglycemia, glucose intolerance, and insulin

resistance (Wang et al., 2001; Ahrén and Pacini, 2002; Winzell
and Ahrén, 2004; Lee et al., 2011; Stamateris et al., 2013). Since
insulin is a strong regulator of cholesterol metabolism (Sparks
and Sparks, 1994; Choi and Ginsberg, 2011), sequential changes
in insulin secretion and sensitivity might also explain fluctuations
in hepatic VLDL release during 1-week HFD. Short-term HFD
is also known to induce gene expression reprogramming in
the liver affecting several enzymes and transporters involved in
the lipoprotein metabolism. For instance, coordinated down-
regulation of Acc, Fas, and Hmgcr, occurs in mouse liver
after 1-week HFD, suggesting a reduction of VLDL synthesis
on HFD (de Fourmestraux et al., 2004; Hernández Vallejo
et al., 2009). These molecular data are consistent with a drop
in VLDL release seen in this study. Altogether, these results
support the concept that metabolism adapts to compensate for
acute cholesterol overload. Such homeostatic response likely
results from complementary mechanisms taking place in various
organs or tissues. Indeed, 1-week HFD is sufficient to change
postprandial release, composition and size of chylomicrons by
modulating intestinal lipid metabolism (Hernández Vallejo et al.,
2009). Early transcriptional regulation of fatty acid metabolism-
related enzymes has been observed in jejunum and duodenum
upon 3-day HFD, indicating that the intestine is highly reactive
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FIGURE 2 | Hypothalamic PSA removal alters plasma lipoproteins homeostasis. (A) Picture showing the experimental protocol used to investigate the

regulation of plasma cholesterol by hypothalamic PSA. Day 0: To remove hypothalamic PSA, endoN was injected bilaterally in the hypothalamus of mice (0.28

(Continued)
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FIGURE 2 | Continued

units/side), targeting the mediobasal hypothalamus (MBH). Control mice received artificial cerebrospinal fluid (aCSF). Mice were given 2 days to recover from

stereotactic surgery prior to the nutritional challenge. Day 2: Mice were fed either a standard (STD) or a high fat diet (HFD) for 8 days and blood samples were

obtained at the end of the experiment (Day 10). (B) Effect of intra-hypothalamic endoN injection on cumulative energy intake over a week in mice fed a STD or a HFD.

(C–F) Effect of intra-hypothalamic endoN injection on plasma total cholesterol, VLDL cholesterol, LDL cholesterol, and HDL cholesterol in mice fed a STD or a HFD for

8 days. (G,H) Effect of intra-hypothalamic endoN injection on LDL/HDL and non-HDL/HDL cholesterol ratios in mice fed a STD or a HFD for 8 days. n = 10 for

STD+aCSF, n = 6 for STD+endoN, n = 8 for HFD+aCSF, n = 8 HFD+endoN, n = 7 for HFD pair-fed+endoN. Data are presented as mean ± SEM and were

analyzed by nonparametric Mann–Whitney test. Bars without a common letter are significantly different.

FIGURE 3 | Hypothalamic PSA does not control hepatic VLDL secretion. (A) Plasma triglycerides concentration after intraperitoneal injection of poloxamer 407

(t = 0) in 4 h fasted mice. Prior to poloxamer injection, mice received bilateral injection of endoN (0.28 units/side) or aCSF in the hypothalamus and were fed a

standard (STD) or a high fat diet (HFD) for 8 days, as described in Figure 2A. (B) Effect of intra-hypothalamic endoN injection on VLDL production rate in mice fed a

STD or a HFD for 8 days. VLDL production rate calculated from the slope of the rise of plasma triglycerides after poloxamer injection. n = 11 for STD+aCSF, n = 13

for STD+endoN, n = 22 for HFD+aCSF, n = 16 HFD+endoN, n = 6 for HFD pair-fed+endoN. Data are presented as mean ± SEM and were analyzed by one-way

ANOVA and parametric Newman–Keuls multiple comparison test. Bars without a common letter are significantly different.

to dietary fat (Clara et al., 2016). In the skeletal muscle, HFD
suppresses lipogenic genes within a week and increases oxidative
metabolism and markers of type I fiber, showing the metabolic
adaptability of this tissue too (de Fourmestraux et al., 2004;
Wilson et al., 2007; de Wilde et al., 2008). Similar transcriptional
effects also occur in the adipose tissue (Voigt et al., 2013). Circuits
in the central nervous system control most, if not all, peripheral
metabolic responses that are triggered during energy imbalance
(Morton et al., 2006; Myers and Olson, 2012). In this work, we
bring the first evidence that hypothalamic PSA, a modulator
of neuronal function, is critical to maintain LDL-to-HDL ratio
upon HFD consumption on the short term. Given the role of
PSA in the control of synaptic plasticity (Rutishauser, 2008),
these findings suggest that blood cholesterol homeostasis might
be regulated via neuronal rewiring within hypothalamic circuits.
Above all, this shows that hypothalamic PSA coordinates many
aspects of metabolism and energy balance including peripheral
lipid metabolism as well as food intake (Benani et al., 2012),
osmoregulation (Theodosis et al., 1999), circadian rhythm (Shen
et al., 1997; Glass et al., 2000; Fedorkova et al., 2002; Prosser et al.,
2003), and sleep (Black et al., 2009). However, mechanisms by
which hypothalamic PSA affects plasma levels of LDL and HDL
cholesterol remains to be elucidated. Current models suggest
that brain controls circulating cholesterol in a neuroendocrine
feedback loop through autonomic effects on liver function
(Perez-Tilve et al., 2011; Bruinstroop et al., 2014; Geerling et al.,
2014). In particular, it has been shown that the melanocortin

system regulates hepatic lipoproteins production and uptake via
sympathetic innervation (Bruinstroop et al., 2012; Rojas et al.,
2015). Nevertheless, removal of hypothalamic PSA did not alter
hepatic VLDL secretion. Thus, to affect plasma levels of LDL and
HDL via the liver, hypothalamic PSA would act on others hepatic
mechanisms that have not been investigated in this work, such
as cholesterol uptake, catabolism, or excretion. Since the brain
also controls lipid uptake in white adipose tissue and intestinal
chylomicron production (Nogueiras et al., 2007; Farr et al., 2015),
it is conceivable that hypothalamic PSA modulates lipoprotein
metabolism other than in the liver.

Neuronal circuits involved in the PSA-mediated regulation
of blood cholesterol metabolism have not been investigated
in this study. Previous studies from our group indicate that
endoN injections lead to a complete loss of PSA in the whole
hypothalamus (Benani et al., 2012). Investigation of circuits
underlying the brain control of peripheral lipid metabolism
reveals several neuronal targets and signaling pathways located
in the hypothalamus, including NPY, POMC, MCH, and
glutamatergic neurons (van Den Hoek et al., 2004; Nogueiras
et al., 2007; Stafford et al., 2008; Perez-Tilve et al., 2010;
Bruinstroop et al., 2012; Rojas et al., 2012; Yue et al., 2012;
Imbernon et al., 2013; Rojas et al., 2015). These pharmacological
studies show a high degree of specialization among the
neuronal circuits that control peripheral lipid metabolism.
Actually, distinct neuronal sub-populations are engaged in either
adipocyte or hepatocyte metabolism modulation (Imbernon
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et al., 2013). Furthermore, hypothalamic pathways seem to
control VLDL production and HDL uptake separately (Stafford
et al., 2008; Perez-Tilve et al., 2010). Since endoN treatment
is not cell-selective, we can suppose that PSA-dependent
regulation of plasma cholesterol likely integrates inputs from
different neuronal circuits. In addition, astrocytes located in the
hypothalamus, which also express PSA (Pierre et al., 2001) and
control several aspects of energy homeostasis (García-Cáceres
et al., 2012; Argente-Arizón et al., 2015), might be involved in
PSA-dependent regulation of peripheral lipoproteins metabolism
as well.

Lipoproteins profile and metabolism differ in the peripheral
circulation and the central nervous system (Pfrieger andUngerer,
2011; Mahley, 2016). In the adult, only HDL particles are found
in the brain. This peculiar feature in lipoproteins reflects the
isolation of the brain from the periphery by the blood–brain
barrier and the specific metabolism of lipoproteins in the brain.
In particular, astrocytes are responsible for the largest production
of the most abundant apoE-containing HDL-like lipoproteins
that redistribute lipids in the central nervous system. Further
studies are needed to examine the potential role of brain PSA,
whose expression declines in Alzheimer’s disease (Murray et al.,
2016), in the maintenance of cholesterol homeostasis in the
central compartment as well.

To conclude, this work uncovers a new role for hypothalamic
PSA inmodulating plasma lipoprotein profile. Although we show
that hypothalamic PSA is beneficial by circumventing elevation
of LDL-to-HDL cholesterol ratio during overfeeding, neuronal

pathways and peripheral mechanisms engaged in this control
remain to be elucidated. Nonetheless, our findings suggest that
reduced level of hypothalamic PSA might be a risk factor for
dyslipidemia and cardiovascular diseases.
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