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Abstract

Motivation

Selecting the most relevant genes for sample classification is a common process in gene

expression studies. Moreover, determining the smallest set of relevant genes that can

achieve the required classification performance is particularly important in diagnosing can-

cer and improving treatment.

Results

In this study, I propose a novel method to eliminate irrelevant and redundant genes, and

thus determine the smallest set of relevant genes for breast cancer diagnosis. The method

is based on random forest models, gene set enrichment analysis (GSEA), and my devel-

oped Sort Difference Backward Elimination (SDBE) algorithm; hence, the method is named

GSEA–SDBE. Using this method, genes are filtered according to their importance following

random forest training and GSEA is used to select genes by core enrichment of Kyoto Ency-

clopedia of Genes and Genomes pathways that are strongly related to breast cancer. Sub-

sequently, the SDBE algorithm is applied to eliminate redundant genes and identify the

most relevant genes for breast cancer diagnosis. In the SDBE algorithm, the differences in

the Matthews correlation coefficients (MCCs) of performing random forest models are com-

puted before and after the deletion of each gene to indicate the degree of redundancy of the

corresponding deleted gene on the remaining genes during backward elimination. Next, the

obtained MCC difference list is divided into two parts from a set position and each part is

respectively sorted. By continuously iterating and changing the set position, the most rele-

vant genes are stably assembled on the left side of the gene list, facilitating their identifica-

tion, and the redundant genes are gathered on the right side of the gene list for easy

elimination. A cross-comparison of the SDBE algorithm was performed by respectively com-

puting differences between MCCs and ROC_AUC_score and then respectively using 10-

fold classification models, e.g., random forest (RF), support vector machine (SVM), k-near-

est neighbor (KNN), extreme gradient boosting (XGBoost), and extremely randomized trees
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(ExtraTrees). Finally, the classification performance of the proposed method was compared

with that of three advanced algorithms for five cancer datasets.

Results showed that analyzing MCC differences and using random forest models was

the optimal solution for the SDBE algorithm. Accordingly, three consistently relevant genes

(i.e., VEGFD, TSLP, and PKMYT1) were selected for the diagnosis of breast cancer. The

performance metrics (MCC and ROC_AUC_score, respectively) of the random forest mod-

els based on 10-fold verification reached 95.28% and 98.75%. In addition, survival analysis

showed that VEGFD and TSLP could be used to predict the prognosis of patients with

breast cancer.

Moreover, the proposed method significantly outperformed the other methods tested as

it allowed selecting a smaller number of genes while maintaining the required classification

accuracy.

Introduction

Selecting relevant genes to distinguish patients with or without cancer is a common task in

gene expression research [1,2]. For genetic diagnosis in clinical practice, it is important to effi-

ciently identify relevant genes and eliminate irrelevant and redundant genes to obtain the

smallest possible gene set that can achieve good predictive performance [3].

To this end, genetic selection methods are of great importance. These methods can be

roughly divided into three categories: filters, wrappers, and mixers [4]. In a previous study, I

focused on a hybrid approach that combines the advantages of filter and wrapper methods [5].

For cancer classification, previous hybrid approaches have utilized symmetrical uncertainty to

analyze the relevance of genes based on support vector machines [6], employed minimum

redundancy and maximum relevance feature selection to select a subset of relevant genes [7],

and applied Cuckoo search to select genes from microarray technology [8]. The hybrid

approach essentially includes two processes, selecting relevant genes and eliminating redun-

dant genes. To select relevant genes, previous research has utilized semantic similarity mea-

surements of gene ontology terms based on definitions for similarity analysis of gene function

[9], applied the concept of global and local gene relevance to calculate the equivalent principal

component analysis load of nonlinear low-dimensional embedding [10], and obtained relevant

features from the Cancer Genome Atlas (TCGA) transcriptome dataset by cooperative embed-

ding [11]. Because relevant genes often contain redundant genes, the process of gene elimina-

tion is important for obtaining the minimal number of relevant genes that can function

effectively in a classification model. Many methods can be applied including feature similarity

estimated by explicitly building a linear classifier on each gene [12], homology searching

against a gene or protein database [13], or the Cox-filter model [14].

In the present study, I propose a novel hybrid method that can determine the smallest set of

relevant genes required to achieve accurate classification of breast cancer diagnosis. Breast can-

cer transcriptome data can be downloaded from the TCGA database; this unbalanced data was

used in the current analyses. RF [15] and gene set enrichment analysis (GSEA) [16] were

applied to select relevant breast cancer genes and the proposed Sort Difference Backward

Elimination (SDBE) algorithm was then used to eliminate redundant genes from these relevant

genes; hence, the proposed method was named GSEA–SDBE. First, a random forest model

was constructed and trained with all the differential gene expression data and then the genes

for which importance was almost zero were deleted. Subsequently, GSEA was applied to
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analyze the remaining differentially expressed genes (DEGs) according to Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment and those genes that were strongly

related to breast cancer were selected from the enriched KEGG pathways. Then, the SDBE

algorithm was applied to identify the important relevant genes from the selected genes. The

SDBE algorithm includes a process by which the difference in the Matthews correlation coeffi-

cients (MCCs) of random forest models is calculated before and after the deletion of a given

gene, which indicates the degree of redundancy of the corresponding deleted gene on the

remaining genes according to backward elimination. Using the SDBE algorithm, the most rele-

vant genes are stably collected on the left side of the gene list while the redundant genes are

gathered on the right side of the gene list. Through the GSEA–SDBE method, an optimal

model was created that could determine the smallest set of relevant genes for breast cancer

diagnosis. Results showed that this method could achieve excellent classification performance

for breast cancer. Furthermore, some of the selected relevant genes could be used to predict

prognosis in patients with breast cancer.

Materials and methods

Data preparation

Breast cancer transcriptome data. Transcriptome data from breast cancer samples and

the clinical data of corresponding patients were downloaded from TCGA database (https://

gdc.cancer.gov/). A total of 1222 transcriptome samples, wherein each sample contained

expression of 18584 genes, were obtained. This unbalanced dataset, which includes 113 normal

and 1109 tumor tissues, was named BCT_1222 (113: 1109). In addition, the clinical data of

1109 patients with breast cancer were obtained.

Differential expression analysis and normalization. By performing the Mann–Whit-

ney–Wilcoxon test in R software 3.6.2 (wilcox.tes) with |logFC| > 1.0 and p.FDR< 0.05 as the

thresholds, 4579 DEGs were screened between the normal samples and tumor samples from

the BCT_1222 dataset. These samples were randomly shuffled and the expression values of

each DEG in all samples were respectively standardized via min–max normalization.

Selecting genes by importance based on a random forest model

The random forest method can provide an assessment of variable importance to variable selec-

tion [17,18]. A random forest model was constructed and trained using Sklearn 0.22.2.post1 in

python 3.6 with 4579 DEGs. The model was used to calculate the importance of variables

(genes) and the genes were sorted by their importance in descending order. From these genes,

a certain number of top genes were selected based on experience to reduce the burden of sub-

sequent procedures.

Gene selection by GSEA

GSEA [19] can be used to determine whether a group of genes shows statistically significant

and concordant differences between two biological states according to enrichment analysis;

here, it was performed by the JAVA program. The KEGG database includes a collection of

manually drawn graphical maps known as KEGG pathway maps [20]. KEGG in the Molecular

Signatures Database (MSigDB) [21] was chosen as the back-end database of GSEA. GSEA was

run and genes were selected through the core enrichment [22] of KEGG pathways strongly

related to breast cancer. Therefore, it was possible to screen for DEGs that were closely associ-

ated with breast cancer. Genes that were weakly associated with or were unrelated to breast

cancer were filtered out, even if they had high importance in a random forest model.
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Metrics and benchmark methods

The performances of all classification models applied in this study were evaluated by 10-fold

cross-validation. The models were trained and tested with 10-fold cross-validation. According

to the prediction results and tested data, they were respectively merged in a given order. By

comparing the prediction results with the tested data, true positives (TP), false positives (FP),

false negatives (FN), and true negatives (TN) were obtained. Normal samples were negatives

and tumor samples were positives. Tests were conducted on a real dataset with unbalanced

data. Therefore, the effectiveness of the binary classification model was measured by several

performance metrics [23] including accuracy (Acc), recall (Re), F1_score (F1), false positive

rate (FPR), computed area under the receiver operating characteristic curve from prediction

scores (ROC_AUC_score), and MCC. The formulas and functions are as follows:

ROC AUC score ¼ sklearn:metrics:roc auc score ð1Þ

Acc ¼
TN þ TP

TN þ TPþ FPþ FN
ð2Þ

Re ¼
TP

TP þ FN
ð3Þ

F1 ¼
2� ðPr� ReÞ

Prþ Re
ð4Þ

FPR ¼
FP

FPþ TN
ð5Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð6Þ

In addition, MCC [24,25] and ROC_AUC_score [26,27] are shown to better handle numer-

ically unbalanced data sets.

SDBE algorithm

The training, testing, and calculation of various performance metrics for all classification mod-

els were based on 10-fold cross-validation. The focus was on finding a high-performance clas-

sification model with the fewest variables (genes); subsequently, a novel algorithm, namely

SDBE, was proposed. The underlying principle of the SDBE algorithm is that the performance

metrics of the classification model will not change significantly after a redundant gene is

deleted. Therefore, the differences in the chosen performance metrics were computed before

and after deletion of each gene to indicate the degree of redundancy of the corresponding

deleted gene on the remaining genes in backward elimination based on the random forest

method. These deleted genes were collected into a list in reverse order during backward elimi-

nation [28].

From a set position, genes were sorted by their corresponding performance metric differ-

ences in descending order into the two parts and the two parts were then merged. Through

continuously iterating and changing the set position, the important relevant genes were stably

assembled on the left side of the gene list to facilitate their easy identification, whereas redun-

dant genes were gathered on the right side of the gene list for easy elimination. The procedure
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underlying the SDBE algorithm is provided in Fig 1. The SDBE algorithm consists of seven

stages as follows.

Stage 1: In each loop of backward elimination, 10-fold random forest models were trained

and tested to calculate various performance metrics and the average importance of each vari-

able, i.e., each gene. Next, these genes were sorted in descending order of average importance.

After each loop of backward elimination, the deleted gene with the least importance and vari-

ous metrics of the model were added to various dedicated lists. Thus, by respectively transpos-

ing all the lists, a list of genes Gðgk; 0 � k � nÞ in descending order of importance and various

metric lists were obtained. These lists were provided to the stages that followed. Importantly,

gene g0 at the first position in the list of the genes was determined at this stage because the posi-

tion of this gene would not change in subsequent stages.

Stage 2: One of model performance metrics, such as MCC or ROC_AUC_score, was cho-

sen as the object of difference analysis for subsequent stages and the index variable ST was ini-

tialized to 0.

Fig 1. Procedure of the Sort Difference Backward Elimination (SDBE) algorithm.

https://doi.org/10.1371/journal.pone.0263171.g001
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Stage 3: The following formula was used to compute the difference in the performance met-

ric before and after gene deletion during backward elimination based on random forest model-

ing:

dmi ¼ mi � mi� 1; 0 < i � n; ð7Þ

where mi and mi−1 respectively denote the metric before and after deleting gene gið0 < i � nÞ
from sublist Gsðgu; 0 � u � i; 0 < i � nÞ of gene list Gðgk; 0 � k � nÞ in backward elimina-

tion. Only one gene was deleted from the end of list Gs at each loop in backward elimination.

The performance metric difference dmið0 < i � nÞ could indicate the degree of redundancy

of the corresponding deleted gene gið0 < i � nÞ on the remaining genes of sublist Gs.
Stage 4: The value of the variable ST was used as the index position to search forward in the

metric difference list DMðdmi; 0 < i � nÞ until an element <0 was encountered; the index of

this element was used to update the variable ST.

Stage 5: The metric difference list DM was split into two parts, part1 and part2 (including

the element at index ST) by index ST, and then the elements in part1 and part2 were respec-

tively sorted in descending order.

Stage 6: The elements of part1 and part2 were replaced with genes by the corresponding

relationship between dmið0 < i � nÞ and gið0 < i � nÞ, and then the two parts were merged

into a new gene list NG. Subsequently, g0 in the list G was added to the end of the new list NG.

Then, the list NG was transposed.

Stage 7: The genes of the list NG were analyzed by backward elimination. At each step of

backward elimination, the 10-fold classification mode, e.g., random forest (RF), support vector

machine (SVM), k-nearest neighbor (KNN), extreme gradient boosting (XGBoost), and

extremely randomized trees (ExtraTrees), and ExtraTrees, was trained and tested to calculate

various performance metrics. After each step of backward elimination, the performance met-

rics were respectively added to the corresponding metric lists. Then, the iteration was termi-

nated and the data were saved. However, if the number of iterations set based on experience

was not reached, the metrics lists, which were respectively transposed, and the list NG were

sent to stage 3 to start a new iteration.

Stage 8: Mapping analysis of the metrics lists and the list NG was performed and the small-

est set of relevant genes needed to achieve the required sample classification performance was

determined.

The entire pipeline of the GSEA–SDBE method

The gene selection procedure followed in the GSEA–SDBE method is provided in Fig 2.

Results

Differential expression analysis and normalization

From 4579 DEGs identified in the BT_1222 dataset, 2702 were upregulated and 1877 were

downregulated. These genes are represented in a volcano plot in Fig 3.

Random forest models

Having trained a random forest model with data on 4479 DEGs, the out-of-bag error was

0.01%. Genes were sorted by their importance in descending order, as shown in Fig 4. Select-

ing the top 2000 genes from the 4579 DEGs was optimal in the experiments; thus, the remain-

ing 2579 genes, for which the importance was close to zero, were deleted.
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GSEA

GSEA 3.0 was applied to analyze 2000 DEGs with KEGG pathways enrichment; the gene sets

database was set to c2.cp.kegg.v7.1.symbols.gmt of the MSigDB. In enrichment results, 30 gene

sets were obtained. These included five and 15 upregulated and downregulated gene sets in the

phenotype “Tumor” (S1 Table), respectively. Four gene sets (Table 1) were selected that were

strongly associated with breast cancer (Fig 5). Altogether, 60 genes were identified, including

20 upregulated genes and 40 downregulated genes, after deleting 12 repeated downregulated

genes from 72 genes in the core enrichment of the four gene sets.

Fig 2. Gene selection procedure in the GSEA–SDBE method.

https://doi.org/10.1371/journal.pone.0263171.g002
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SDBE algorithm

In the SDBE algorithm, the training, testing, and calculation of various performance metrics

for all classification models were based on 10-fold cross-validation. The expression data of 60

genes from the GSEA enrichment analysis results were used in the SDBE algorithm. From

stage 1 of the algorithm, 60 genes were listed in descending order of importance, as shown in

S2 Table, and various metric lists (including Acc, Re, FPR, F1_score, ROC_AUC_score, and

MCC) were illustrated using matplotlib in python 3.6 for comparison. It was difficult to select

the smallest gene set that could still achieve good predictive performance by sorting genes by

their importance, although ranking gene stages by importance was vital to the process. The

most important part of this step was determining the top gene in the list as this gene does not

change in subsequent stages. From this stage, the gene and metric lists were passed to the

stages that followed.

In stage 2 of the SDBE algorithm, the performance metrics ROC_AUC_score and MCC

were respectively chosen as the objects of difference analysis for subsequent iterations; each

iteration included stage 3–7 and the number of iterations was set at 19. To compare the influ-

ence of different classification models in the SDBE algorithm, the following were respectively

Fig 3. Volcano plot of differentially expressed genes. The red and blue dots represent upregulated and

downregulated genes, respectively.

https://doi.org/10.1371/journal.pone.0263171.g003
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chosen for use as the classification model: RF, SVM, KNN, XGBoost [29], and ExtraTrees [30].

Therefore, the SDBE algorithm was cross-tested. Regardless of the object chosen for difference

analysis (ROC_AUC_score or MCC; Fig 6A and 6B) and the classification model (RF, SVM,

KNN, XGBoost, or ExtraTrees) used, as the iteration progressed the most relevant genes were

assembled in a stepwise manner on the left side of the gene list, whereas the redundant genes

were gathered in a stepwise manner on the right side of the gene list (Fig 6). On the left side

of the gene list, the identity and number of stable relevant genes differed depending on the

analysis target and classification model, with three stable relevant genes being the maximum

(S3 Table).

To cross-compare the SDBE algorithm, I used the 19th iterations of the algorithm and com-

pared the same performance metrics of multiple classification models (RF, SVM, KNN,

XGBoost, and ExtraTrees; Fig 6). As shown by the shapes of the polylines in Fig 7A, using

Fig 4. Genes sorted by importance in descending order.

https://doi.org/10.1371/journal.pone.0263171.g004

Table 1. Gene sets (pathways) that were strongly related to breast cancer.

Gene set name ES NES NOM

P value

FDR

Q value

Gene number (core enrichment)

KEGG_CELL_CYCLE 0.60 1.37 0.201 0.319 20

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −0.29 −0.96 0.496 0.726 17

KEGG_JAK_STAT_SIGNALING_PATHWAY −0.48 −1.34 0.143 1.000 11

KEGG_PATHWAYS_IN_CANCER −0.23 −0.84 0.720 0.790 24

ES: Enrichment score; NES: Normalized enrichment scores; NOM p-val: Nominal p value; FDR: False discovery rate.

https://doi.org/10.1371/journal.pone.0263171.t001
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MCC as the object of difference analysis produced better results than using ROC_AUC_score

(Fig 7B). With MCC, the performance metrics of the RF model were better than the perfor-

mance metrics of the other classification models; the blue polyline of the RF model was always

Fig 5. Enrichment plots for the four gene sets (pathways) that were strongly related to breast cancer.

https://doi.org/10.1371/journal.pone.0263171.g005

Fig 6. Polylines of classification metrics, MCC, and ROC_AUC_score in 19 iterations. (a) MCC as the object of difference analysis. (b) ROC_AUC_score as

the object of difference analysis.

https://doi.org/10.1371/journal.pone.0263171.g006
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above the other polylines. Therefore, I assessed the polyline of RF and found that the top three

genes did not reach the peak or trough of the polyline but were close to each other (Fig 6A).

More importantly, the top three genes were stable and repeatable. Therefore, I extracted per-

formance metrics of classification models trained and tested using the top three genes from

Fig 6 for comparison (Tables 2 and 3). Except for FPR (1.77%), the relative performance met-

rics of the RF model in Table 2, showing MCC as the object, were superior to those in Table 3

(ROC_AUC_score as the object); moreover, the top three genes from the classification models

RF, KNN, XGBoost, and ExtraTrees were identical when MCC was the object (Table 2) but

typically differed among the models when ROC_AUC_score was the object (Table 3). Because

the data used to train and test the classification models were unbalanced (113 vs. 1109

Fig 7. Polylines of classification metrics at the 19th iteration of the Sort Difference Backward Elimination (SDBE) algorithm. (a) MCC as the object of

difference analysis. (b) ROC_AUC_score as the object of difference analysis. Various metric lists from stage 1 of the algorithm were illustrated by red polylines

(RF_improtance).

https://doi.org/10.1371/journal.pone.0263171.g007

Table 2. MCC as the object of difference analysis: 10-fold cross-validation classification metrics of the top three genes.

Modes ROC_AUC_score MCC Recall FPR F1_score Accuracy Top three genes

RF 0.9875 0.9528 0.9928 0.0177 0.9955 0.9918 VEGFD, TSLP, PKMYT1

SVM 0.9684 0.8832 0.9810 0.0442 0.9882 0.9787 VEGFD, PKMYT1, BUB1B�

XGBoost 0.9861 0.9396 0.9900 0.0177 0.9941 0.9893 VEGFD, TSLP, PKMYT1

KNN 0.9653 0.8897 0.9837 0.0531 0.9891 0.9803 VEGFD, TSLP, PKMYT1

ExtraTrees 0.9818 0.9345 0.9900 0.0265 0.9937 0.9885 VEGFD, TSLP, PKMYT1

Genes marked with � are unstable genes in the SDBE algorithm.

https://doi.org/10.1371/journal.pone.0263171.t002
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samples), the performance metrics MCC and ROC_AUC_score of the RF model were focused

upon.

In summary, using MCC as the object of difference analysis and RF as the classification

mode in the SDBE algorithm was optimal. In addition, three stable relevant genes, namely

VEGFD, TSLP, and PKMYT1, were chosen for the diagnosis of breast cancer. Moreover, based

on 10-fold verification, the performance metrics MCC and ROC_AUC_score for RF models

were 95.28% and 98.75%, respectively.

Survival analysis of patients

First, patients were divided into two groups, high and low risk, based on the median expres-

sion of a certain gene (S4 Table). If the gene was downregulated, the patients whose expression

of the gene was lower than the median expression were classified as high risk, whereas the

remaining patients were low risk. If the gene was upregulated, the method of grouping was

reversed.

Kaplan–Meier survival analysis [31] and log-rank tests were used to determine the prognos-

tic significance of expression of the three genes, VEGFD, TSLP, and PKMYT1, in patients with

breast cancer. VEGFD and TSLP were downregulated genes, whereas PKMYT1 was upregu-

lated. A log-rank test revealed that patients with low VEGFD and TSLP expression had signifi-

cantly shorter overall survival (OS) times than those patients with high expression of these

genes (P = 0.0466 and P = 0.0003, respectively; Fig 8); the median OS times in months (with

95% confidence intervals) were 129 (114–142) and 116 (102–132), respectively; Fig 8 and

Table 4). In contrast, the result of the log-rank test for PKMYT1 was not significant

Table 3. ROC_AUC_score as the object of difference analysis: 10-fold cross-validation classification metrics of the top three genes.

Modes ROC_AUC_score MCC Recall FPR F1_score Accuracy Top three genes

RF 0.9799 0.8840 0.9774 0.0177 0.9877 0.9779 VEGFD, SPRY2, BUB1B�

SVM 0.9828 0.8501 0.9657 0.0 0.9825 0.9689 VEGFD, CCNB1�, TSLP�

XGBoost 0.9812 0.8952 0.9801 0.0177 0.9890 0.9803 VEGFD, CCL14, TSLP

KNN 0.9771 0.8627 0.9720 0.0177 0.9849 0.9710 VEGFD, TSLP, CCL14

ExtraTrees 0.9809 0.9260 0.9883 0.0265 0.9927 0.9869 VEGFD, TSLP, CDC25C

Genes marked with � are unstable genes in the SDBE algorithm.

https://doi.org/10.1371/journal.pone.0263171.t003

Fig 8. Kaplan–Meier survival graphs for expression of VEGFD, TSLP, and PKMYT1. Red and blue curves denote high-risk and low-risk groups,

respectively.

https://doi.org/10.1371/journal.pone.0263171.g008
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(P = 0.2095) and the polylines of the high-risk and low-risk groups for this gene crossed at 120

months (Fig 8). Therefore, VEGFD and TSLP could be used to predict prognosis in patients

with breast cancer, whereas PKMYT1 is not suitable for this purpose.

Relevance of the selected genes to cancer

VEGF-D induces the formation of lymphatics within tumors, thereby facilitating the spread of

the tumor to lymph nodes, and promotes tumor angiogenesis and growth [32–36]. TSLP is an

interleukin-7 (IL-7)-like cytokine that is involved in the progression of various cancers and is a

key mediator of breast cancer progression [37–40]. Human PKMYT1 is an important regulator

of the G2/M transition in the cell cycle. Studies have demonstrated that PKMYT1 might be a

therapeutic target in hepatocellular carcinoma and neuroblastoma [41–43].

Performance comparison of GSEA–SDBE with that of other models

To test the feature selection performance of the GSEA–SDBE method, a simplified version,

named Pre-SDBE, which does not use GSEA to filter out genes weakly associated with or unre-

lated to cancer, was used.

The three advanced gene selection algorithms were the genetic algorithm (GA), particle

swarm optimization (PSO) algorithm, and cuckoo optimization algorithm and harmony

search (COA-HS). These algorithms use 100 relevant genes selected via the minimum redun-

dancy and maximum relevance (MRMR) as input data and the SVM as a classifier [7].

The classification performance of Pre-SDBE was compared with that of the three advanced

algorithms for five cancer datasets composed of DEGs in breast, lung, and liver cancers and

genes expressed in prostate and colon cancers (Table 5).

Table 4. Results of survival analysis for high-risk and low-risk groups according to three genes.

Gene

name

Expression

in tumor

P value High risk Low risk

SP (5 y) M-OS [95% CI] N SP (5 y) M-OS [95% CI] N

VEGFD Downregulated 0.0466 0.8088 129 [114–142] 846 0.8552 149 [122–inf] 262

TSLP Downregulated 0.0003 0.7896 116 [102–132] 786 0.8837 248 [122–inf] 322

PKMYT1 Upregulated 0.2095 0.7743 149 [102–inf] 419 0.8494 131 [115–215] 689

P value: Comparison between high risk and low risk; Inf: Data points not obtained; SP (5 y): 5-year survival probability; M-OS (95% CI): Median overall survival time in

months with 95% confidence intervals; N: Number of patients.

https://doi.org/10.1371/journal.pone.0263171.t004

Table 5. Information on the datasets used for performance comparison.

Name Data sources #Genes #DEGs #Samples Normal Tumor

Breast TCGA a 56,536 4,579 1,222 113 1,109

Lung TCGA a 56,536 7,483 1,146 108 1,038

Liver TCGA a 56,536 8,772 465 58 407

Prostate Microarray dataset b 12,600 − 102 50 52

Colon Microarray dataset c 7,457 − 62 22 40

a Database (https://gdc.cancer.gov/)
b Singh et al. [44]
c Alon et al. [45].

#Genes: Number of genes; #DEGs: Number of differentially expressed genes (obtained using wilcox.tes with |logFC| >1.0 and p.FDR <0.05); #Samples: Number of

selected samples.

https://doi.org/10.1371/journal.pone.0263171.t005
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In the step of the Pre-SDBE algorithm selecting genes by their importance, the top 50 rele-

vant genes were selected based on a random forest model (S1 Fig). Next, these genes were fed

into the SDBE algorithm to identify the most relevant genes with the highest accuracy. The

number of iterations in the SDBE algorithm was set at 6, 7, 23, 3, and 10 for the breast, lung,

liver, colon, and prostate cancer datasets, respectively. The Fitness of PSO, GA, and COA-HS

over 100 iterations for each cancer dataset are shown in S2 Fig.

Table 6 shows that for unbalanced data (breast, lung, and liver cancers), the classification

metrics (MCCs) of PSO, GA, and COA-HS algorithms were much lower than those of Pre-

SDBE (98.07, 97.45, and 96.98 for breast, lung, and liver cancers, respectively). This indicated

that the PSO, GA, and COA-HS algorithms did not perform well for unbalanced data.

For the five cancer datasets, whether the data were balanced or unbalanced, Pre-SDBE out-

performed the other three algorithms, achieving the highest classification accuracy while iden-

tifying fewer number of genes (Table 6). More details are shown in S3 Fig, S5 and S6 Tables.

Discussion

In this study, DEGs were extracted from a breast cancer data set. Genes that are not signifi-

cantly differentially expressed but have important biological significance for breast cancer

could easily be missed in this process; however, even if these lost genes are retained, they may

be deleted in subsequent processing. Indeed, such genes would be ignored by the classification

model used in the GSEA–SDBE method described here. Nevertheless, this did not affect the

ability of the method to identify some key genes for the diagnosis of breast cancer.

Dimensionality reduction runs through the entire GSEA–SDBE method; each step in the

method prepares for dimensionality reduction in the next step. According to experience,

selecting too few genes leads to some important pathways not being enriched, whereas select-

ing too many genes overfills the core enrichment of pathways with genes that make subsequent

gene elimination difficult and GSEA time consuming. Therefore, the list of DEGs was sorted

in descending order by variable importance according to a random forest model; the top 2000

genes were selected for analysis and some genes with importance close to zero were removed

based on experience.

Table 6. Classification metrics (%) of four optimization algorithms for five cancer datasets.

Algorithm Breast Lung

#Genes MCC RA F1 SE SP #Genes MCC RA F1 SE SP

Pre-SDBE 4 98.07 99.42 99.82 99.73 99.12 3 97.45 98.93 99.76 99.71 98.15

PSO a 30 82.98 95.56 98.18 97.00 94.12 29 88.29 98.72 98.70 97.44 100

GA a 18 88.87 98.80 98.78 97.60 100 15 90.88 99.04 99.03 98.08 100

COA-HS a 11 90.93 97.78 99.09 98.50 97.06 8 89.56 98.88 98.87 97.76 100

Liver Colon Prostate

#Genes MCC RA F1 SE SP #Genes AC SE SP #Genes AC SE SP

3 96.98 98.12 99.63 99.75 96.49 2 100 100 100 5 98.99 98.99 98.99

24 62.03 91.87 91.15 83.74 100 11a 96.42a 85.80a 100a 19a 98.04a 91.80a 100a

16 68.30 93.90 93.51 87.80 100 14a 95.16a 84.60a 100a 28a 98.04a 91.80a 100a

9 72.73 95.12 94.87 90.24 100 5a 100a 100a 100a 5a 100a 100a 100a

a Elyasigomari et al. [7]; Pre-SDBE: Simplified version of the GSEA–SDBE method; RA: ROC_AUC_score; F1: F1_score; AC: Accuracy; SE: Sensitivity; SP: Specificity

#Genes: Number of selected genes.

Note: For unbalanced (breast, lung, and liver) and balanced data (colon and prostate), the performance metrics of the model are different.

https://doi.org/10.1371/journal.pone.0263171.t006
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Although the selection of KEGG pathways in GSEA based on experience is subjective, it

does not prevent obvious DEGs with no important biological significance for breast cancer

being filtered out. In addition, these genes may also enhance the performance of classification

models and the selection of important genes would be compromised. To eliminate redundant

genes from the selected genes, the SDBE algorithm was applied. This algorithm computed the

difference in performance metrics of the classification model before and after gene deletion

during backward elimination, which indicated the degree of redundancy of the deleted gene

on the remaining genes. When a gene was deleted from the gene list in this manner, the perfor-

mance metrics of the classification model did not change significantly. Therefore, the deleted

gene was similar to some remaining genes, and thus considered redundant.

Given the underlying principle of the SDBE algorithm, the top gene in the gene list would

not participate in the sorting process and would not be recognized as redundant; additionally,

the first gene in a similar gene group in the gene list would not be recognized as redundant or

deleted. Therefore, stage 1 of the SDBE algorithm is particularly important because genes are

sorted by their importance in RF during backward elimination at this stage.

At stage 5 of the SDBE algorithm, to speed up the sorting process and reduce the number of

cycles, the metric difference list was divided into two parts from a set position and these two

parts were respectively sorted in descending order. The change of the set position occurred at

stage 4. From the set position in the metric difference list, a forward search was conducted

until an element with a value less than the threshold, which was set at zero, was encountered;

the index of this element was used to update the set position. If the threshold was set to a cer-

tain value greater than zero, this may be more conducive to sorting. However, from the 19 iter-

ations shown Figs 2 and 3, the polylines of the performance metrics for the classification

models, particularly RF with MCC as the object of difference analysis, met the requirements.

Including many more iterations would have been more time consuming. However, setting

ROC_AUC_score as the object of difference analysis was less effective compared with using

MCC, which might be related to the complexity of the ROC_AUC_score formula.

In contrast to Pre-SDBE, the three advanced algorithms (GA, PSO, and COA-HS) did not

filter out genes without biological significance for cancer and were much more time-consum-

ing. This is likely because the three algorithms used MRMR to select input genes (S6 Table).

Selecting fewer than 50 genes by their importance based on a random forest model as the

input to the SDBE algorithm might save time. However, the 10-fold cross-validation was the

main time-consuming factor in the GSEA–SDBE method and its simplified version (Pre-

SDBE).

Here, the proposed GSEA–SDBE method was used to analyze breast cancer datasets. It

allowed determining the smallest set of biologically relevant genes for cancer diagnosis. The

simplified GSEA–SDBE method (Pre-SDBE) was used to select genes to classify cancer data-

sets to test the feature selection performance of GSEA–SDBE. The results showed that the

GSEA–SDBE and Pre-SDBE methods were excellent. In the future, I will apply the GSEA–

SDBE method to many types of cancer data and Pre-SDBE to feature selection for various

types of data.
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