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B-cell–depleting therapies may lead to prolonged disease and 
viral shedding in individuals infected with severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) and this 
viral persistence raises concern for viral evolution. We report 
sequencing of early and late samples from a 335-day infection 
in an immunocompromised patient. The virus accumulated 
a unique deletion in the amino‐terminal domain of the spike 
protein, and complete deletion of ORF7b and ORF8, the first 
report of its kind in an immunocompromised patient. Unique 
viral mutations found in this study highlight the importance of 
analyzing viral evolution in protracted SARS-CoV-2 infection, 
especially in immunosuppressed hosts.
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Cell-mediated and humoral immunity are necessary to clear se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection [1]. Individuals receiving B-cell–depleting therapies 
can have protracted disease and prolonged viral shedding [2, 3]. 
Persistent shedding of viral RNA for weeks to months after onset 
of symptoms has been reported; however, viable virus is often 
not detected after 9 days after illness onset [4]. In contrast, viral 
replication has been detected in immunocompromised patients 

for several months after initial infection [2, 5, 6]. Persistent 
viral replication in these patients is likely the result of profound 
lymphocyte defects due to B- and T-cell–depleting therapies or 
underlying hematologic disease. Viral persistence in the set-
ting of immunosuppression has raised concern for viral evo-
lution and emergence of variants, especially during treatment 
with convalescent plasma [3]. In addition to single-nucleotide 
variants, recent studies have demonstrated that SARS-CoV-2 in 
immunocompromised hosts is prone to deletion mutations in 
the spike protein, especially in the S1 region [2, 5, 6]. Deletions 
across the genome can reflect virus-host interactions and are 
found in both immunocompetent and immunosuppressed 
hosts.

Here, we report on a patient with persistent symptomatic viral 
infection over a period of 335 days. Viral genome sequencing 
revealed the emergence of 2 unique deletions and showed fixa-
tion of early minority variants, displaying viral evolution, a con-
cern in the context of immunosuppression.

METHODS

Approval

Written consent was obtained for human research subjects, 
as approved by the National Institutes of Health Institutional 
Review Board (protocol No. NCT02659943).

RNA and Subgenomic RNA qPCR

Detection of the N gene or ORF1a/b was performed on all spe-
cimens collected. Amplification of subgenomic transcripts for 
the E gene (sgE) was done prospectively on samples after day 
275, and retrospectively on samples before, as described previ-
ously [5].

SARS-CoV-2 Sequencing and Sequence Analysis

Amplification of viral genomes, library preparation, and genome 
analysis was done according to the protocols available at https://
github.com/GhedinSGS/SARS-CoV-2_analysis. Libraries were 
sequenced on the Illumina NextSeq500 using the 2 × 150  bp 
paired end protocol. Adapters and primers were trimmed, 
reads were aligned to the Wuhan/Hu-1 strain (NC_045512.2), 
and the 2 libraries for each sample were merged. Consensus 
sequences and variants were identified using the timo variant 
calling pipeline.

Phylogeny and Lineage Identification

Phylogenetic trees containing 266 background sequences from 
Maryland (obtained from GISAID; Supplementary Table 1) 
were generated using Nextstrain with default parameters [7]. 
Lineages were called using Pangolin [8].
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RESULTS

Case Presentation

A 48-year-old woman with type 2 diabetes mellitus and in com-
plete remission from past diffuse large B-cell lymphoma pre-
sented with fever, headache, nasal congestion, and productive 
cough on 27 April 2020. The patient’s history is relevant for treat-
ment with multiple lines of therapy and anti-CD19 chimeric an-
tigen receptor‐modified T-cell therapy [9] in December 2017, 
resulting in ongoing B-cell aplasia, hypogammaglobulinemia, 
CD4 lymphopenia, and recurrent upper respiratory infections.

A chest computerized tomography (CT) exam performed 
on admission showed scattered, bilateral, ground-glass 
radiodensities and consolidations, and she required 2 L of sup-
plemental oxygen via nasal cannula (NC). Laboratory eval-
uation revealed a white blood cell count of 4.67 × 109 cells/L 
(normal range [NR], 3.98 × 109–10.04 × 109 cells/L), abso-
lute lymphocyte count of 0.81 × 109 cells/L (NR, 1.18 × 109–
3.74 × 109 cells/L), absolute neutrophil count of 3.41 × 109 
cells/L (NR, 1.56 × 109–6.13 × 109 cells/L), IgG of 144  mg/dL 
(NR, 700–1600  mg/dL), IgM 12  mg/dL (NR, 40–230  g/dL), 
IgA 31 mg/dL (NR, 70–400 mg/dL), and CD4 count of 202/µL 
(NR, 354–1565/µL). Nasopharyngeal (NP) swabs were nega-
tive for SARS-CoV-2 by polymerase chain reaction (PCR) on 
19, 28, and 29 April 2020. Bronchoalveolar lavage (BAL) was 
performed on 1 May 2020 (day 1) following worsening symp-
toms and increased oxygen requirement. Broad microbiolog-
ical testing of the BAL fluid was negative, except for a positive 
PCR test for SARS-CoV-2. The patient’s supplemental oxygen 
requirement increased, and a vasopressor was initiated, in ad-
dition to broad-spectrum antibiotics. On day 2, she received 
convalescent plasma and 40 g of 10% immune globulin IV for 
her underlying hypogammaglobulinemia. Remdesivir was not 
available at the time of initial disease presentation and robust 
clinical trial data surrounding use of corticosteroids in the acute 
setting of coronavirus disease 2019 (COVID-19) was not yet 
available, thus neither were administered at the time.

The patient was discharged a month later but continued 
to have temperatures of 99–100°F, intermittent episodes of 
worsening cough and to require 3  L NC supplemental ox-
ygen. Testing for SARS-CoV-2 by PCR on NP swabs was per-
formed monthly for 3 months and every 3 months, thereafter. 
These were positive intermittently with cycle threshold (Ct) 
values above 37 (Figure 1). Due to the patient’s overall mild 
to absent symptoms, positive SARS-CoV-2 tests during this 
period were thought to probably reflect shedding of nonviable 
virus particles. Chest CTs over the same period showed bilat-
eral increasing multifocal ground-glass opacities with crazy 
paving pattern and mixed changes and, therefore, organizing 
pneumonia and superimposed bacterial or fungal infection 
were considered. The patient preferred conservative manage-
ment and declined bronchoscopy to rule out a superimposed 

infection. Induced sputum was negative for bacterial, fungal, or 
mycobacterial pathogens.

On day 242, prednisone 50 mg daily was initiated for the treat-
ment of COVID-19–related cryptogenic organizing pneumonia 
and resulted in moderate symptom and slight radiographic im-
provement. SARS-CoV-2 PCR from a NP sample on day 284 
was positive with a Ct value of 27.5, a marked decrease from the 
previous Ct value, indicating a substantial increase in viral load. 
This increase in the setting of steroids and only modest decrease 
in symptoms was concerning for COVID-19 relapse. A Ct value 
of 32.7 from subgenomic RNA real-time PCR indicated recent 
virus replication [5] (Figure 1). SARS-CoV-2 antibody testing 
was negative. Shortly after, the patient reported worsening res-
piratory symptoms and required increased supplemental ox-
ygen. C-reactive protein (CRP) rose to 144 mg/L (<3.0 mg/L) 
after prednisone initiation. She was admitted to the hospital 
in March 2021 (day 313), treated with high-titer convalescent 
plasma and a 10-day course of remdesivir, and was discharged 
on day 324 with supplemental oxygen. Prednisone was tapered 
to physiologic doses of hydrocortisone. Three months later, 
CRP had normalized, CT chest showed significant decrease in 
ground glass opacities, and the patient no longer needed sup-
plemental oxygen at rest. She remained SARS-CoV-2 PCR and 
anti-S and N antibody negative.

Genomic Analyses

Because diagnostic testing for SARS-CoV-2 indicated high 
viral load 10 months after initial diagnosis, whole-genome 
sequencing was performed on 5 samples from the original 
presentation in May 2020 and 2 samples from March 2021 to 
determine prolonged infection versus reinfection. Assembled 
consensus sequences were assigned lineage and indicated 
viral genomes from this patient mapped to the Pango lineage 
B.1.332. Global surveillance of SARS-CoV-2 genomes reveals 
that B.1.332 was circulating in March/April of 2020 but was no 
longer prevalent by March 2021 [8]. Consensus sequences were 
mapped onto a phylogenetic tree containing 266 background 
samples from Maryland collected between May 2020 and 
March 2021 (Supplementary Table 1), using the publicly avail-
able Nextstrain software package (Figure 1B) [7]. All samples 
from this patient clustered on the same branch of the tree, with 
no intermixed background samples, indicative of a prolonged 
infection over 335 days rather than a reinfection in March of 
2021 (Figure 1B).

The original sample, taken on 1 May 2020, contained 11 con-
sensus changes from the Wuhan/Hu-1 strain (NC_045512.2). 
To visualize evolution of the virus over time, we compared 
the consensus nucleotides in the later 6 samples to that of the 
first sample (day 1). Other samples collected the first month 
of infection had between 1 and 5 nucleotide level consensus 
changes, whereas the March 2021 samples had 28 (day 313) 
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and 26 (day 314) compared to the initial sample. Of those, 19 
and 17, respectively, were nonsynonymous, with 4 substitu-
tions in the spike protein (Figure 2A). More interestingly, the 
March 2021 samples contained 2 deletions: a gap at nt 22290 
to 22298 that led to a unique S:del244‐246 and, consequently, 
a A243G substitution (Figure 2B); and a 497-nt deletion span-
ning the entire length of the ORF7b coding region and all but 
2 amino acids of ORF8 (Figure 2C). Of note, some amino acid 

changes identified in the March 2021 samples were present as 
minority variants in the initial samples, suggesting a hetero-
geneous infection early on (Figure 2D, smaller circles) with 
eventual fixation, as observed for ORF1a: A3070V, ORF7a: 
S37F, and N: P365L. Conversely, a consensus change present 
in the early samples also existed as a minority variant in the 
last sample in March 2021 (Figure 2D). The observed number 
of consensus changes in the March 2021 specimens from the 
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initial sample indicates that the virus acquired the expected 
number of mutations based on the error rate of the polymerase 
and evolved within this patient at approximately the same ev-
olutionary rate that has been reported for SARS-CoV-2 in the 
global population [10], estimated to be around 2 fixed muta-
tions per month.

DISCUSSION

Sequencing data confirmed this patient exhibited a prolonged 
SARS-CoV-2 infection over 335 days, one of the longest infections 
reported to date. The existence of ongoing infection is further 

illustrated by significant clinical improvement and normalization 
of CRP after viral clearance. The patient displayed COVID-19–
like symptoms over the entirety of the infection; however, lower 
respiratory samples that may have confirmed ongoing viral repli-
cation between the patient’s 2 admissions were not available.

During the infection, the virus accumulated mutations at ap-
proximately the same rate as expected based on the error rate 
of the polymerase. This was not surprising given the error rate 
of the polymerase is likely to remain constant regardless of im-
mune status, although which mutations are selected for may 
differ due to the lack of immune pressure on the virus. Two 
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Figure 2. Mutations and deletions in sequenced samples over time. A, Tile plot showing consensus changes across the genome as compared to the initial infectious sample 
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Coverage plot, tile plot, and schematic showing the 497-nt deletion in the ORF7b and ORF8 coding regions. Coverage plot represents log10 raw coverage. Dotted line is at 5 
× coverage. Tile plot represents aa changes in this region, as compared to initial infectious sample (collection date: 1 May 2020, day 1), colored by residue as above in (A). 
Deletions identified in previous studies are shown as schematics and labeled by their country of origin. D, Circle plot showing major (larger, outer circle) and minor (smaller, 
inner circle) at locations where a minority variant in one sample exists as a major aa in another sample, colored by residue as in (A). ORFs and aa positions within the encoded 
protein are listed. Abbreviations: aa, amino acid; nt, nucleotide; ORF, open reading frame.



1122 • JID 2022:225 (1 April) • BRIEF REPORT

important deletions were identified in the later samples, one in 
the spike protein, and one in the ORF7b and ORF8 regions. The 
specific spike N-terminal domain (NTD) deletion, del244‐246, 
would impact the supersite and could induce resistance against 
NTD-directed antibodies [11]. This type of deletion has also 
been observed in variant B.1.351 (Beta), which contains NTD 
deletion 242‐244 and a R246I mutation [11]. The appearance 
of this deletion in this patient supports previous observations 
where chronic SARS-CoV-2 infection in severely immunocom-
promised hosts receiving convalescent plasma, as was the case 
for this patient, can lead to variant emergence and reduced sen-
sitivity to neutralizing antibodies [3].

The 497-nt deletion in the ORF7b and ORF8 genes is the 
longest deletion reported in this region of the genome, and 
the first in an immunocompromised patient. Other reported 
ORF7b/ORF8 deletions range from 62 nt to 382 nt in length, 
with the first instance identified in Singapore in January of 2020 
[12, 13]. In vitro analyses of similar deletions indicated mu-
tants replicated to slightly higher levels than wild type (WT) 
following infection with equal multiplicity of infection (MOI), 
but showed similar levels of cytopathic effect. This same study 
further showed that deletion mutant viruses are transmissible, 
but may be less effective at establishing infection in a new host 
due to loss of immune evasion features of ORF8 [13]. ORF8 has 
been established as a key antagonist of innate immunity, eliciting 
a robust and highly specific antibody response during infection, 
suggesting that the deletion in competent hosts may be due to 
immune driven selection [14]. In our case, it is possible that the 
immunocompromised nature of this patient removes a need for 
ORF8 during infection. A retrospective cohort study performed 
on patients in Singapore found that the deletion mutant virus 
was able to outcompete the WT in some patients that carried a 
mix of WT and a 382-nt ORF7‐ORF8 deletion viruses [15]. We 
found evidence of a few WT reads in the days 313–314 samples, 
indicating a possible mixed infection, suggesting that the same 
competition may have occurred in this patient (Figure 2C).

This case demonstrates that severely immunocompromised 
patients may experience protracted SARS-CoV-2 infection with 
mild symptoms and persistent virus replication for a very long 
period of time. More importantly, it is an example of how pro-
longed infection can open the door to viral evolution leading to 
the occurrence of unique mutations, a concern for viral trans-
mission and variant emergence.

Supplementary Data
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Infectious Diseases online. Supplementary materials consist of 
data provided by the author that are published to benefit the 
reader. The posted materials are not copyedited. The contents of 
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Questions or messages regarding errors should be addressed to 
the author.
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