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A B S T R A C T   

Background: Artificial intelligence technologies in classification/detection of COVID-19 positive cases suffer from 
generalizability. Moreover, accessing and preparing another large dataset is not always feasible and time- 
consuming. Several studies have combined smaller COVID-19 CT datasets into “supersets” to maximize the 
number of training samples. This study aims to assess generalizability by splitting datasets into different portions 
based on 3D CT images using deep learning. 
Method: Two large datasets, including 1110 3D CT images, were split into five segments of 20% each. Each 
dataset’s first 20% segment was separated as a holdout test set. 3D-CNN training was performed with the 
remaining 80% from each dataset. Two small external datasets were also used to independently evaluate the 
trained models. 
Results: The total combination of 80% of each dataset has an accuracy of 91% on Iranmehr and 83% on Moscow 
holdout test datasets. Results indicated that 80% of the primary datasets are adequate for fully training a model. 
The additional fine-tuning using 40% of a secondary dataset helps the model generalize to a third, unseen 
dataset. The highest accuracy achieved through transfer learning was 85% on LDCT dataset and 83% on Iran-
mehr holdout test sets when retrained on 80% of Iranmehr dataset. 
Conclusion: While the total combination of both datasets produced the best results, different combinations and 
transfer learning still produced generalizable results. Adopting the proposed methodology may help to obtain 
satisfactory results in the case of limited external datasets.   

1. Introduction 

The ongoing global COVID-19 pandemic presents governments and 
healthcare clinics with immense financial and human resources chal-
lenges [1] due to an increased demand for medical professionals, many 
of whom have succumbed to the disease. Clinical resources are tailored 
for non-pandemic operations, and long-term maintenance of extra staff 
in service for pandemic situations is not economically feasible. Conse-
quently, global medical systems have been overwhelmed since the onset 
of the current COVID-19 pandemic [2]. This lack of resources has led to 

repeated failings to meet the diagnostic and therapeutic needs of the 
public. The effectiveness of global vaccination efforts [3] is reduced by 
new variants of COVID-19 [4,5]. Ultimately, controlling the spread of 
the disease is a long-term goal, and clinics will remain under pressure for 
the foreseeable future. 

Clinical studies show that approximately 2–8% of patients infected 
with COVID-19 will develop severe pneumonia [6,7], being the primary 
cause of COVID-19 related death [8]. Although reverse 
transcription-polymerase chain reaction (RT-PCR) is considered as the 
gold standard test for COVID-19 detection [9], challenges include high 
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false-negative rates, time-consuming processing, and low sensitivity 
(60–71%) hinder the use of this technique [10]. X-ray imaging has also 
been used as a common, fast, and cost-effective imaging tool [11] for 
COVID-19 detection. However, X-ray images are imprecise, and radiol-
ogist interpretations of X-ray images are error-prone [12,13]. In contrast 
to standard chest X-ray images, the sensitivity of the chest Computed 
Tomography (CT) image for COVID-19 pulmonary infection is above 
94% [10,14–16], with radiological features showing as small patches 
and ground-glass opacities associated with COVID-19 [17]. Therefore, it 
has been proposed that chest CT could potentially be employed as the 
primary diagnostic modality for examining patients with COVID-19 
[18]. 

AI-based computer vision techniques may be used to automate the 
screening and classification of large volumes of COVID-19 patient im-
ages. For instance, such systems could be used to measure a patient’s 
COVID-19 pulmonary involvement score as an objective measure of 
infection severity or to detect other clinically important COVID-19 
associated lung diseases [19]. If the accuracy/sensitivity of the AI is 
sufficient, then the number of human radiologist-based CT in-
terpretations will be reduced, resulting in less pressure on those radi-
ologists [20]. Of the numerous computer vision systems to have been 
developed, the deep learning (DL) approach is promising since it does 
not require handcrafted feature extraction [21–23]. Manual feature 
extraction is a process that hinders the performance of deep learning 
techniques in new situations and complicated data sets. Several studies 
have previously shown the potential for DL classification in screening 
chest CT scans to diagnose patients with pulmonary COVID-19 
involvement [16,24–26]. 

Three-dimensional imaging data improve the radiological assess-
ment of lung diseases since the spatial relationship between CT slices 
provides valuable information relating to the extent of lung involvement 
and, therefore, more accurate disease diagnosis. Particularly in the 
COVID-19 diagnosis, 3D CT image superiority over chest X-ray, mainly 
due to the higher sensitivity [27] and resolution [28]. Despite the ad-
vantages of 3D CT images, there are relatively few studies on the 
application of 3D convolutional neural network (CNN) for COVID-19 
classification [29–32] compared to a huge number of 2D CT studies 
[33–36]. This is mainly due to more process-intensive computing re-
quirements [37] and the time-consuming process of 3D model training, 
which is in the order of days or weeks. 

A key challenge in relation to deep learning algorithms for COVID-19 
classification is the developed model’s generalization capability with 
respect to external datasets [38]. Although AI model generalization is 
critical to clinical adoption [39,40], there are few published studies that 
perform validation of COVID-19 classification metrics against external 
datasets. One reason for this is the relative scarcity of large, high-quality 
labeled datasets needed for training deep learning models. 

Several studies have combined smaller COVID-19 CT datasets into 
“supersets” to maximize the number of training samples for deep 
learning models. Our main contribution in this work is to thoroughly 
assess generalizability using varied combinations of two large COVID-19 
CT image datasets using state-of-the-art 3D convolutional neural net-
works (CNN), showing that a combination of datasets can assist gener-
alization. We further determine the optimal " combination” 
characteristics of these datasets. 

2. Related work 

Upon the global outbreak of the recent COVID-19 pandemic, the 
need for computer-aided diagnosis methods has significantly increased 
[19,20,41,42]. Most studies conducted on automated COVID-19 diag-
nosis from CT images using a single, internal dataset for training, vali-
dation, and testing deep learning models, resulting in high classification 
metrics [29,43]. It is not possible to assess whether these results are 
driven by classifier sensitivity to disease pathology or bias introduced by 
class imbalance, patient selection, or confounding bias. This is 

particularly a concern where disease-positive and negative disease pa-
tients have been sourced independently, potentially introducing sys-
tematic differences in image classes related to CT acquisition apparatus, 
operational parameters, and regional patient morphological differences. 
Such biases have been found to result in considerably lower classifica-
tion metrics when these models are tested against external datasets [44, 
45]. 

A small number of studies focused on investigating the generaliza-
tion of AI-based COVID-19 diagnosis [24,41,46,47]. Harmon et al. [24] 
combined four datasets into combinations of training, validation, and 
testing image corpora by excluding one dataset consisting of 147 pa-
tients as a holdout test set. They used DenseNet-121 as 3D CNN and 
implemented both lung segmented and full 3D image classification, 
considering one complete volume at a fixed size. They achieved 90.8% 
accuracy, 84% sensitivity, and 93% specificity. In this study, a total 
combination of datasets was performed, and the results were tested on a 
comparably small dataset. The authors considered one fixed dataset as a 
test dataset and there is a lack of external validation on each four 
datasets to demonstrate their network capability to achieve similar re-
sults. In the current study, we seek the results of one trained dataset 
when tested on the other datasets and the effect of data augmentation on 
generalization. 

In separate work, Nguyen et al. [46] used four different datasets, 
including one internal dataset at UT Southwestern (UTSW) (337 pa-
tients) and three external datasets: 1) China Consortium of Chest CT 
Image Investigation (CC–CCII) [30], 2) COVID-CT set [48] and 3) 
MosMedData [49]. They implemented nine combinations of these 
datasets for two classes of COVID-19 positive and COVID-19 negative 
cases. They both trained the different combinations and tested on an 
external test dataset and trained the different combinations and tested 
on a holdout test set from one of the datasets used for training. They used 
different models for training on 3D CT images from which the best re-
sults were for the models trained on multiple datasets and evaluated on a 
test set from one of the datasets used for training (accuracy of 86–97%). 
Despite these promising internal classification results, classification 
metrics for these models were reduced to pure chance when evaluated 
against an external dataset, with an AUC of 0.5 calculated for all models. 
Nguyen et al. [46] adjusted the disease positive probability threshold to 
maximize accuracy in their simulations, thereby tightly binding model 
performance to the test dataset. This study did not segment the lung field 
from the CT images to reduce signal noise from features including 
ribs/bone and surrounding areas. In the present study, we have used 0.5 
as the disease positive probability threshold for all models to decouple 
results from datasets, and lung segmentation was performed in the 
preprocessing part of the current study. 

More recently, two comprehensive studies addressed generalization 
aspect of COVID-19 classification task. Li et al. [50], proposed the 
contrastive multi-task convolutional neural network (CMT-CNN) as a 
multi-task framework to increase generalizability. The authors stated 
that there is no need for further annotation to improve generalization 
using CMT-CNN. They used 3D volumes of CT images from two datasets: 
one from CC-CCII2 [30] with 4356 CT images and one from their hos-
pital consisting of 402 CT images from 108 COVID-19 diagnosed pa-
tients confirmed by RT-PCR test. For X-ray, they used three datasets, 
including two public datasets from Cohen et al. [51] and Kaggle [52] 
and one from their hospital-based dataset with 231 COVID-19 cases in 
total. They used Mendeley Data website [53], containing 4007 pneu-
monia and 1583 normal cases as their normal control instances. Certain 
augmentation methods, including distortion, painting, and perspective 
transformations, improved representational learning capability. The 
results of their study indicate 5.49–6.45% generalization accuracy 
improvement for CT and 0.96–2.42% for X-ray images. 

In another study, Aversano et al. [54] combined three pre-trained 
deep neural networks, including VGG-19 [55], Xception [56], and 
ResNet-50 [57], evolved with a direct coding scheme based on genetic 
programming to develop an ensemble classifier for each lung lobe 
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(superior, middle, and inferior). The main parts of their proposed 
ensemble architecture are multiple deep neural networks based on 
pre-trained models and a voting strategy. For the training phase, they 
used two volumetric CT datasets, Extensive COVID-19 X-Ray and CT 
Chest Images Dataset [58] and Coronavirus (COVID-19) CC-19 dataset 
[59], then clustered them into three sub-datasets comprising images of 
each lung lobe. To evaluate the results on external data, they used 
SARS-COV-2 Ct-Scan Dataset [60]. The pre-trained transfer learning 
CNN models combined with VGG-19, ResNet-50, and Xception were 
re-trained for the binary classification of CT images of COVID-19 versus 
normal cases. The genetic algorithm in this study executes an evolu-
tionary process to identify the best architecture adaptation of the 
pre-trained models. The evaluation results on the external test dataset 
showed F1 score of 0.903 while it was 0.94–0.95 for their integrated 
dataset. In Refs. [50,54] studies, whole datasets were considered 
training and test datasets to assess generalizability. There is a lack of 
true external validation for each dataset (i.e., considering each dataset 
as an external test dataset in different simulations), and the applicability 
of trained models to real-life clinical situations is unknown. 

A few previous studies have assessed the generalizability of CNN 
models trained on 2D CT slices and X-ray images. In a study by Silva 
et al. [40], that was performed on 2D CT slices, EfficientCovidNet, was 
proposed along with a voting-based approach and a cross-dataset anal-
ysis for COVID-19 detection. They evaluated EfficientCovidNet on three 
setups and with the two largest public CT datasets, including a 
cross-dataset analysis. The results of this study indicated the accuracy 
drops from 87.68 to 56.16% for the external COVID-19 test set. 

Ahmed et al. [39] demonstrated a significant gap between the model 
tested on before-seen data (same source) and the model tested on 
external data in COVID-19 detection from X-ray images. Their devel-
oped model reached the AUC of 1.00 when tested on seen data while it 
was only 0.38 on external data. Hence, they recommended further in-
vestigations into finding/focusing on features that can be generalized 
across datasets. 

Bassi et al. [44] tested the effect of segmentation on X-ray image 
classification of COVID-19, normal, and pneumonia cases. It was shown 
that segmenting lung has a positive effect on the model generalization 
capability, increasing the mean accuracy score on the external test 
dataset by 4.7% and the Bayesian estimation means by 4.4%. The results 
when tested on the external dataset, showed 85% sensitivity for 
COVID-19 detection in the case of the segmented lung being used while 
it was 81% for non-segmented lung. They stated that the improvement 
in accuracy might be due to the attention of DNN to the lung region. 
Lung segmentation can also reduce dataset bias and improve 
generalization. 

The key focus of the current study is to assess the generalization of 
computer vision models trained on 3D CT images for automated COVID- 
19 diagnosis. According to the literature above, it can be seen that most 
available studies have selected one fixed dataset as their external test 
dataset. Therefore, there is a need for the study to test external valida-
tion on each dataset involved in the study since the results may vary 
significantly on different external test sets. Hence, we dedicated a part of 
this study to investigating this issue. 

Another research gap identified in the above studies is that all 
available datasets were combined together for training and testing. 
Although a large number of data leads to more accurate results, the 
results from combinations of different data portions have not been 
investigated yet. We addressed the analysis of the results acquired from 
different combinations of dataset portions in both fully trained and 
transfer learning approaches. In the case of satisfactory results, the need 
for large dataset combinations is alleviated. 

Finally, we have found that lung field segmentation plays a pivotal 
role in promoting model generalizations and recommend that this pro-
cedure be a standard part of the 3D CT image preprocessing pipeline for 
CNN-based COVID-19 diagnosis from medical images. 

3. Materials and methods 

The flowchart in Fig. 1 summarizes the procedures implemented in 
this study, and each step is described below. 

3.1. Patients and dataset 

Our study employs four independently sourced datasets. The first 
dataset was collected from Iranmehr hospital, located in Tehran, Iran, 
and we name this dataset as “Iranmehr”. Digital Imaging and Commu-
nications in Medicine (DICOM) data of chest CT images of 1110 patients 
were collected from Iranmehr hospital picture archiving and commu-
nication system (PACS). This dataset was collected from February 2020 
to March 2020, when COVID-19 was at its peak. Imaging was done on 
GE Medical Brightspeed 16 detector multislice CT scan machine; low 
dose spiral high-resolution CT imaging technique was employed. CT 
images were collected as a screening protocol before hospitalization of 
the patients for COVID-19 infection detection. Pulmonary COVID-19 
involvement score was based on the interpretation of two expert inde-
pendent radiologists who had access to clinical data of the patients. 
Radiology specialists validated the gathered data, so only normal and 
COVID-19 patients were included. Iranmehr Hospital specialists super-
vised the collection of all patient data. Data was collected under the 
policies of Iranmehr hospital, which allow anonymized data to be used 
for research purposes. The data collection, subsequent anonymization 
(done onsite under strict supervision), and usage for this study were 
undertaken with proper authorization and following international data 
privacy standards. The second dataset was sourced from hospitals 
located in Moscow and made available by Morozov et al. [49]. This 
dataset has been assessed and labeled by expert radiologists according to 
COVID-19 lung involvement and grouped into four classes at 25% in-
tervals. The first class, named CT-0 contains 254 images with no lung 
involvement representing a normal CT image. Classes CT-1 to CT-4 
represent 25%–100% lung involvement and contain 854 images. This 
dataset is referred to as “Moscow” in this paper. We used two additional 
external test datasets to assess the validity of our results. First, the 
low-dose and ultra-low-dose (LDCT) [61] containing CT images of 104 
COVID-19 positive cases, and 56 normal cases, were collected in Babak 
Imaging Center, Tehran, Iran. The second dataset is the 3DLSC-COVID 
dataset [62] which is publicly available and contains 100 COVID-19 
positive cases and 96 normals. The LDCT image format is DICOM and 
3DLSC is NIFTI. 

3.2. Preprocessing 

The matrix size of all CT images was 512 × 512 pixels, but they had 
different slice numbers. So, after loading DICOM CT images, they were 
initially resampled and interpolated to have the same slice number. We 
prepared two forms of datasets, including cropped and non-cropped 
images, to assess the effect of cropping in the training phase. For crop-
ping sets, all images were cropped to remove surrounding areas that are 
not significant and then resampled to have the same size as 128 × 128 ×
60. All CT images were resampled to a resolution of 1 mm × 1 mm × 1 
mm and intensity clipped to (− 1000, 400) Hounsfield Unit (HU) range 
which is considered as HU window for lung. We are not interested in HU 
values above 400, which are bony structures. The values below − 1000 
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are also out of the range of the lung’s HU. For non-cropping sets, we 
applied the same approach for resampling and kept the whole field of 
view (FOV) of the image. We assigned 1 for positive pulmonary COVID- 
19 involvement and 0 for normal images. We saved the preprocessed 
images as NumPy arrays to be fed as a network’s input. The input of the 
3D networks must have the same slice number. So, for 3D CNNs, 
resampling is of great importance. Additionally, cropping and intensity 
clipping remove the less useful parts of the image, resulting in more 
efficient training. 

3.2.1. Segmentation 
The segmentation results showed that the lung field from the CT 

image improved the results of classification and generalizability. Our 
simulations demonstrated that models trained with segmented lung CT 
images had results approximately 5% better than with non-segmented 
lung CT images. Fig. 2(a) and (b) illustrate the feature map output for 
segmented and non-segmented lungs, respectively. It can be seen from 
the figures that useless areas such as ribs, spine, and surrounding tissues 
exist in non-segmented lungs and affect the classification results. We 
tested three different algorithms on our four datasets to assess whether 
we could have one single lung segmentation approach. The segmenta-
tion methods include DSB Lung Segmentation Algorithm from Kaggle 
[63], an algorithm developed by Zuidhof [64], and a U-net based lung 
segmentation developed by Hofmanninger [65]. Nevertheless, as can be 
seen in Fig. 3, for each data format, one type of segmentation method 
performs better. This is probably due to the Neuroimaging Informatics 
Technology Initiative (NIFTI) format of images compared to the DICOM 
format. The reason for this might be the loss of some information during 
the conversion of original DICOM images to NIFTI format. The DSB al-
gorithm failed to segment peripheral parts of the lung which have 
COVID-19 involvement. Therefore, we applied a U-net based lung 

segmentation module on Iranmehr and LDCT datasets to have 3D 
segmented lung area. For segmentation of Moscow and 3DLSC datasets, 
we used the Zuidhof method. Fig. 4 shows the result of the segmented 
lung used in the present study. On the other hand, the Zuidhof is not 
accurate as the Hofmanninger approach, and there were 17 out of 1110 
images from the Moscow dataset that were not segmented properly. We 
used original CT images for these 17 non-segmented cases. Next, 
normalization, zero-centering, and shuffling were done in a pre-
processing part of the task. 

3.2.2. Patching and augmentation 
Our trial-and-error experimentations found that simulations with 

data augmentation outperformed simulations without data by 2–5%. 
Random data augmentation prevents early overfitting and improves 
model performance. Furthermore, data augmentation produces different 
shapes and orientations of the images while still being recognizable, 
allowing the model to learn more features. Data augmentation steps 
were employed using random noise (mean: 0, standard deviation: 0.08), 
translation (shift with the size of random integer number between 
(− 0.1, 0.1) × patch size in the x-direction), random rotation (random 
rotation between 0◦ and 360◦), distort elastic (alpha: 100, sigma: 10), 
flip (in the direction of x and z-axis), 90-degree rotation (which provides 
random rotation of 90◦, 180◦, 270◦), and scaling (zoom with the random 
size between 0.6 and 1.2). All the augmentations were applied in “on the 
fly” mode in the generator to prevent the network from overfitting. 

We applied patching to train input images of a size that covers most 
of the lung and is a reasonable size for patches. Logically, since the test is 
performed on the full image of the patient, not just a patch, the patch 
size should be large enough to cover most of the lungs. Testing on the full 
image provides the most accurate results. When a patch is normal, it 
means the patient’s decision was normal, however, there may be one 

Fig. 1. The experimental workflow implemented in this study.  
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Fig. 2. (a) A typical segmented CT slice of feature map output from each convolutional layer of 3D ResNet-50 for a COVID-19 positive case; (b) A typical non- 
segmented CT slice of feature map output from each convolutional layer of 3D ResNet-50 for a COVID-19 positive case. Red arrows show the spine as an 
example surrounding area. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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patch that is detected as COVID-19, so the full image is COVID-19. From 
different trials for hyper-parameters’ testing, the patch-size of 115 ×
115 × 55 was applied for images since it had up to 2% better perfor-
mance than other patch sizes. For each dimension of x, y, and z, a 
random number was selected from the difference between the original 
size of the image and the patch size. The patch produced was from that 
random number to the patch size, plus that random number in each 
dimension. For big patch sizes, the overlap would be very high. How-
ever, in the generator part of our network, we first patched the data and 

then implemented augmentation on each patch to have augmented data 
as much as possible. Our trials found that this method improved the 
model performance compared to when patching was performed after 
data augmentation. The reason is that each patch undergoes a set of 
random augmentation and would be unique. The adopted approach for 
patching is shown in pseudocode below:   

Fig. 3. Results of different segmentation methods on DICOM and NIFTI image format. (a) original NIFTI image segmented by (b) Zuidhof method, (c) DSB algorithm, 
and (d) Hofmanninger method. (e) Original DICOM image segmented by (f) Zuidhof method, (g) DSB algorithm, and (h) Hofmanninger method. 

Fig. 4. A typical slice of a) chest CT image and b) segmented lung. This slice is for a COVID-19 positive case.  
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3.3. Classification 

We used Tensorflow [66] library as the platform. Different l1 and l2 
regularization at variable values were tested, and the l2 regularization at 
0.001 was optimal and used. Furthermore, dropout at 0.2 was employed 
for further regularization and “Adam” [67] as model optimizer. To 
overcome the imbalanced number of COVID-19 and normal cases, we set 
a number of 6 patches per image for the majority class and 16 patches 
per image for the minority class. Also, we applied this approach to 
overcome the overfitting of the training. We saved the best weights of 
the trained model, so that overfitting didn’t affect the simulations, even 
if we had overfitting in certain scenarios. 

The network was trained on advanced GPUs provided by the UTS 
Interactive High-Performance Computing (iHPC). 

3.4. Model selection 

For all the experiments in the present work, we employed k-fold 
running. Using the k-fold technique, the dataset is randomly partitioned 
into k groups or folds of roughly equal size. In order to test the model 

performance, the first fold is kept, and the model is trained using k-folds. 
Validation is repeated k times, and each time a different fold or a 
different set of data points is used. Seven common models, including 

Table 1 
Accuracy (mean ± std) for 5-fold cross-validation on cropped and non-cropped 
images of Iranmehr and Moscow datasets.   

Iranmehr 
cropped 

Iranmehr non- 
cropped 

Moscow 
cropped 

Moscow non- 
cropped 

Densenet- 
169 

0.942 ± 
0.012 

0.938 ± 0.004 0.857 ±
0.027 

0.843 ± 0.019 

ResNet-50 0.939 ± 
0.014 

0.938 ± 0.006 0.864 ± 
0.028 

0.855 ± 
0.012 

Resnext-50 0.940 ± 
0.011 

0.932 ± 0.006 0.856 ±
0.029 

0.837 ± 0.007 

Densenet- 
201 

0.937 ± 
0.012 

0.942 ± 0.006 0.862 ±
0.032 

0.834 ± 0.015 

Resnet-152 0.935 ± 
0.012 

0.937 ± 0.006 0.859 ±
0.035 

0.846 ± 0.013 

Seresnet- 
152 

0.936 ± 
0.013 

0.925 ± 0.009 0.857 ±
0.024 

0.838 ± 0.015 

Seresnext- 
50 

0.934 ± 
0.013 

0.931 ± 0.006 0.856 ±
0.027 

0.845 ± 0.013  
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ResNet-50, ResNet-152, DenseNet-169, DenseNet-201, Resnext-50, 
Seresnext-50, and Seresnet-152 were assessed for generalizability. In 
the present study, binary classification was performed using common 
models that have been used in previous studies [68–70]. 

Furthermore, for our 3-dimensional data, more complex models, 
such as ResNets and DenseNets, provided better results than simpler 
models, such as VGG. We used 1110 3D CT images of Iranmehr and 
Moscow dataset in this stage and fed 100% of the data for training. 
Training was carried out on one dataset and was tested against another 
whole dataset, i.e., training on 1110 Iranmehr dataset and testing 
against 1110 Moscow dataset, and training on 1110 Moscow dataset and 
testing on 1110 Iranmehr dataset. Several hyper-parameters were 
tested, including learning rate, different patch sizes, and the number of 
training iterations. After parameter tuning, training was performed 
using seven mentioned models for an initial learning rate of 10− 4 and 
250 epochs for 5-fold as the best-selected hyper-parameters. We selected 
ResNet-50 as the 3D model for the classification due to the better results 
(Table 1) and lower runtime, consistent with previous studies into 
COVID-19 classification from 3D CT images [71]. An overview of 
Table 1 shows that ResNet-50 outperforms other models. In particular, 
the results of the ResNet-50 are better than the DenseNet-169 on the 
Moscow dataset in terms of accuracy and standard deviation. Regarding 
the comparison of cropped and non-cropped images, all models had 
better results on cropped images, except for ResNet-152 and 
DenseNet-201. 

According to our inspections, compared to DenseNet-169 (and like-
wise other models) ResNet-50 focuses on the inner structure of the lung 
rather than borders. It might be a reason that ResNet-50 outperforms 
other models on our datasets. 

From Table 1, we can see that ResNet-50 performs the best on the 
Moscow dataset, specifically on cropped images. For the Iranmehr 
dataset, ResNet-50 performed considerably well compared to the best- 
performed model, DenseNet-169. We want an to highlight that the 
Moscow dataset is in NIFTI image format. On the other hand, the 

Fig. 5. Architecture of 3D ResNet-50. The segmented lung images are fed to the model, and the model output would be the predicted probability of COVID-19 
positive or normal. 

Fig. 6. Learning curve for training on (a) Iranmehr data using ResNet-50, and 
(b) Moscow data using ResNet-50. 
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Iranmehr dataset image type is DICOM which retains image details 
better. Hence, it is of better quality. Our key reason for selecting ResNet- 
50 is that it performs best with the lower quality NIFTI image type from 
the Moscow dataset while performing really well with the better quality 
DICOM image type from the Iranmehr dataset. Furthermore, all deep 
learning models performed better on the DICOM image type, Iranmehr 
dataset, than the NFTI image type, which is the Moscow dataset. 

In the generalizability assessment approach, all models were evalu-
ated by the mean of k-fold running parameters on external tests. Since 
our study is a binary simulation, we used the sigmoid activation function 
[72]. Fig. 5 illustrates 3D ResNet-50 structure [73], and Fig. 6 shows the 
resultant learning curves. The “jitter” that is noticeable on the earlier 
training epochs is caused by fluctuations in training loss which is the 
consequence of training a very large network (ResNet 50 with approx-
imately 50 million trainable parameters) using datasets of 1110 3D CT 
scans. Also, COVID-19 lung involvement is not apparent, or it may be 
very subtle in some patient CT slices. As a result, when there are several 
such slices in a training batch, the validation loss for that batch will be 
very small because gradient descent is minimal. As training proceeds, 
the neural network becomes more tolerant of these adversarial images 
resulting in a smoother training curve in the later training epochs. 

3.5. Generalization 

Based on 1110 3D CT images of the Moscow dataset, we randomly 

used the same number from the Iranmehr dataset. The allocation to 
training, validation, and test groups and splitting was done randomly. 
We split each dataset into five segments of 20% each, with equal dis-
tribution of normal and COVID-19 in each segment. We separated one 
20% segment from each dataset as holdout test set and kept it the same 
for all experiments, and all training parts were performed with the 
remaining 80% from each dataset. The generalization evaluation was 
carried out in three experiments, as follows. 

3.5.1. Base experiment 
Models were fully trained in 3 experiments using 80% Iranmehr, 

80% Moscow, and 80% Iranmehr +80% Moscow data, respectively. 
These models were tested with 20% holdout sets separately from Iran-
mehr and Moscow sets. The details shown in Table 2 serve as the base 
experiment results for generalization tests. 

3.5.2. First experiment 
Models trained with 80% of Iranmehr dataset with the addition of an 

increasing portion of Moscow dataset (20%, 40%, 60%). Similarly, 
Models were trained with 80% Moscow dataset and an increasing 
portion of the Iranmehr dataset (20%, 40%, 60%). All models were then 
tested on one 20% holdout set from each dataset. Additionally, they 
were tested on two external datasets to evaluate the effect of adding 
different combinations to the dataset. Details of these six tests are given 
in Table 3. 

Table 5 
Different model results when trained with Iranmehr dataset and tested against 
Moscow dataset.  

3D Models Accuracy Sensitivity Specificity F1-Score AUC 

DenseNet-169 0.814 0.777 0.888 0.858 87 ± 0.01 
DenseNet-201 0.802 0.762 0.876 0.846 86 ± 0.01 
ResNet-152 0.796 0.775 0.896 0.858 88 ± 0.01 
ResNet-50 0.800 0.799 0.818 0.861 89 ± 0.01 
ResnNext-50 0.788 0.813 0.765 0.862 89 ± 0.02 
Seresnet-152 0.800 0.763 0.889 0.849 88 ± 0.00 
Seresnext50 0.792 0.758 0.9 0.847 88 ± 0.01  

Table 3 
Training and Testing data percentage for the first experiment.  

Test No. Training data Testing data 

1 Iranmehr 80% + Moscow 20% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

2 Iranmehr 80% + Moscow 40% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

3 Iranmehr 80% + Moscow 60% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

4 Moscow 80% + Iranmehr 20% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

5 Moscow 80% + Iranmehr 40% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

6 Moscow 80% + Iranmehr 60% 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC  

Table 4 
Training and Testing data for the second experiment (transfer learning).  

Test No. Training Data Testing Data 

1 80% Iranmehr 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

2 80% Moscow 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC  

Table 2 
Training and Testing data percentage for the base experiment.  

Test No. Training data Testing data 

1 80% Iranmehr 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

2 80% Moscow 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC 

3 80% Iranmehr +80% Moscow 20% Iranmehr holdout set 
20% Moscow holdout set 
LDCT 
3DLSC  

Table 6 
Different model results when trained with Iranmehr dataset and tested against 
LDCT dataset.  

3D Models Accuracy Sensitivity Specificity F1- 
Score 

AUC 

DenseNet- 
169 

0.935 0.901 0.982 0.943 0.96 ± 0.01 

DenseNet- 
201 

0.917 0.875 0.978 0.927 95 ± 0.02 

ResNet-152 0.916 0.892 0.960 0.932 96 ± 0.01 
ResNet-50 0.920 0.892 0.964 0.933 96 ± 0.01 
ResnNext-50 0.910 0.907 0.971 0.943 96 ± 0.00 
Seresnet-152 0.897 0.878 0.957 0.924 95 ± 0.01 
Seresnext50 0.912 0.886 0.964 0.930 94 ± 0.00  
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3.5.3. Second experiment 
Transfer learning was employed to check how it helps with gener-

alization. This task included three steps for each dataset of Moscow and 
Iranmehr datasets.  

1. Using weights of the full trained model with 80% of one dataset.  
2. Retraining three last layers with 80% of the other dataset.  
3. Testing on Iranmehr and Moscow holdout test data, and two external 

datasets: LDCT 

3DLSC (See Table 4). 
This experiment used the last Conv3D layer with 1048576 trainable 

parameters, the last batch normalization with 8192 trainable parame-
ters, and the fully connected layer with 2049 trainable parameters. For 
instance, when we trained 80% of the Moscow dataset using transfer 
learning, we loaded the weight obtained from 80% full training of the 
Iranmehr dataset. A similar approach for transfer learning uses 80% of 
the Iranmehr dataset. Based on trial and error, we selected three last 
layers of the model to have transfer learning with best possible accuracy. 

3.6. Evaluation metrics 

Classification performance for all trained models was evaluated by 
several statistical measures: accuracy (the percentage of correctly clas-
sified test cases, Eq. (1)), sensitivity (the percentage of correct COVID-19 
detected cases, Eq. (2)), specificity (the percentage of correct normal 
classified cases, Eq. (3)), F1-score [74], Eq. (4), and area under the curve 
(AUC) of receiver operating characteristic (ROC) which is the true 
positive rate (TPR) against false positive rate (FPR) [75]. The mathe-
matical formulation of the statistical measures is given below. 

Table 7 
Different model results when trained with Iranmehr dataset and tested against 
3DLSC dataset.  

3D Models Accuracy Sensitivity Specificity F1-Score AUC 

DenseNet-169 0.889 0.794 0.970 0.870 93 ± 0.02 
DenseNet-201 0.869 0.78 0.910 0.832 93 ± 0.03 
ResNet-152 0.871 0.808 0.958 0.873 94 ± 0.01 
ResNet-50 0.857 0.798 0.922 0.850 94 ± 0.03 
ResnNext-50 0.848 0.842 0.887 0.861 94 ± 0.03 
Seresnet-152 0.866 0.844 0.922 0.879 94 ± 0.02 
Seresnext50 0.863 0.786 0.943 0.853 94 ± 0.02  

Fig. 7. Accuracy results for a different portion of datasets when (a) 80% of the dataset is Iranmehr and splits of Moscow are added, and (b) 80% of the dataset is 
Moscow and splits of Iranmehr are added. 
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Accuracy=
TP + TN

TP + FP + TN + FN
(1)  

Sensitivity=
TP

TP + FN
(2)  

Specificity=
TN

TN + FP
(3)  

F1=
TP

TP + 1
2 (FP + FN)

(4)  

where, TP is the number of true positives, TN is true negative, FP stands 
for the number of false positives, and FN indicates the number of false 
negatives. 

4. Results 

The statistic and AUC results for model selection (external-validation 
evaluation) for training on Iranmehr dataset and tested on Moscow 
dataset, LDCT, and 3DLSC are presented in Tables 5–7, respectively. The 

reverse process, i.e., training on the Moscow dataset and testing on the 
Iranmehr dataset, LDCT, and 3DLSC are presented in 8–10, respectively. 
According to the tables, the results of training on Iranmehr and testing 
on LDCT are higher than other test datasets. However, it should be noted 
that compared to LDCT and 3DLSC, Moscow and Iranmehr datasets 
contain 1110 images, which increases the testing validity. 

The accuracy of a different combination of datasets of experiment 
phases is given in Table 11. According to Table 11, the combination of 
80% of one dataset with the addition of different of the other has close 
accuracy to the accuracy of the total combination. Table 12 presents the 
AUC results of different combinations of datasets of experiment phases. 
According to Table 12, all AUC results are near to the AUC of the total 
combination. In Table 13, the statistical transfer learning results are 
presented. By general overview of Table 13, it can be found that for all 
metrics except for specificity, the results of retraining on 80% Moscow 
dataset using the weights of a full run of Iranmehr dataset are higher 
compared to the retraining on 80% Iranmehr dataset using the weights 
of Moscow dataset full run. 

The comparison diagrams of accuracy, sensitivity, specificity, and F1 
score are presented in Figs. 7–10. Additionally, Fig. 11 presents the 

Fig. 8. Sensitivity results for a different portion of datasets when (a) 80% of the dataset is Iranmehr and splits of Moscow are added, and (b) 80% of the dataset is 
Moscow and splits of Iranmehr are added. 
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confusion matrix results for all three experiments. According to Fig. 7, 
the accuracy of different combinations of datasets almost smoothly 
grows. We can see that the combination of 80% from one dataset with 
the addition of a different portion of the other datasets performs simi-
larly on test sets. Fig. 8 illustrates the sensitivity of different combina-
tions. Based on the results shown in Fig. 8, for all the combinations, the 
results of testing on holdout test sets are considerably different from 
each other. Regarding to the specificity, it can be seen from Fig. 9 that 
the combination above 80% from one dataset and 40% of the other have 
similar results to the total combination. For F1 score, as shown in 
Fig. 10, the combination of 80% of one dataset added to 40% of the other 
reaches the results near to the total combination. 

In Fig. 11(a–c), the confusion matrix results are presented when 
different combinations and transfer learning results are tested against 
the unseen holdout dataset. The highest number of TPs belongs to the 
total combination, and other combinations have close results when 
tested on holdout test set of Moscow and Iranmehr. However, when 
testing on the external datasets, 3DLSC, we can see that the numbers of 
FPs are high in combination of 80% Moscow and 20% Iranmehr. 

Following the total combination, 80% Moscow and 20% Iranmehr and 
80% Moscow added to 20% Iranmehr have the lowest number of FNs 
when tested on Iranmehr holdout test set. 

5. Discussion 

The results of AI-based models seem to be more reliable when they 
use 3D CT images and are tested for generalizability. The reason is that 
more features can be extracted in whole 3D slices compared to 2D 
implementations [50,54]. As many COVID-19 CT images show, not all 
slices of a patient’s image contain involvement. Therefore, considering 
the slice-based classification of COVID-19 and normal cases may not be 
as realistic as whole CT slices for each patient. This is especially true 
when the involvement is very small, and its detection is possible only 
when the slice is compared with neighbor slices. 

According to previous studies [24,44], and in our many experimental 
trials, lung segmentation improves the results of COVID-19 and normal 
cases’ classification and should be considered in preprocessing. This is 
probably due to the fact that it prevents the model from focusing on 

Fig. 9. Specificity results for a different portion of datasets when (a) 80% of the dataset is Iranmehr and splits of Moscow are added, and (b) 80% of the dataset is 
Moscow and splits of Iranmehr are added. 
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unwanted targets like bone and soft tissue. Segmentation results are also 
affected by image type. We used two different segmentation approaches 
to segment lung from NIFTI and DICOM CT images since no single 
segmentation method works for all image formats. Also, a patch-based 
approach both for the compensation of imbalanced classes and to 
overcome overfitting showed the capacity to be taken into account for 
3D medical datasets which may suffer from a low number of images and 
imbalanced classes. Through trial and error in the current study, it has 
been shown that patch methods improved results by up to 2% over 
non-patches methods. 

Based on our model selection simulations, which can be considered 
external-validation evaluation, the generalizability of the 3D ResNet-50 
and procedures undertaken in this study indicate that the accuracy when 
trained with Iranmehr and tested on external datasets is above 78% with 
the AUC of around 0.90. According to the statistics presented in 
Tables 5–10, the Iranmehr dataset produces a generalizable model. This 
may be due to the precise data categorization in Iranmehr dataset as 
COVID-19 and normal patients for the training phase. Moreover, a 
general overview of Tables 5–10 reveals that Iranmehr and LDCT 

datasets have better results compared to Moscow and 3DLSC. This also 
may be related to the NIFTI format of these datasets, which seems to 
affect classification results compared to the DICOM format. In the NIFTI 
format, the file no longer contains the granular and detailed information 
to benefit from DICOM’s broad and complex header structures. NIFTI 
images are more pixelated, and the conversion also affects the image. 
These pixelized images of NIFTI format make the inner structure of 
feature maps blurrier, making it more difficult to extract features from 
them. It is one of our findings that when combining different datasets, 
we need to be aware of image types and analyze how they impact the 
performance of deep learning models. Since two out of four external test 
datasets have a large number of images (1110 images), and experiments 
were carried out in a 5-fold approach, the test results are reproducible. 

The main purpose of this study is to evaluate the effect of different 
portion combinations of datasets on generalizability. This study con-
firms that, although the total combination produced the best results with 
less overfitting (as shown in Fig. 12), different combinations of datasets 
provide close results. Moreover, in many studies, especially for the tasks 
related to medical images, accessibility, preparation, preprocessing may 

Fig. 10. F1-score results for a different portion of datasets when (a) 80% of the dataset is Iranmehr and splits of Moscow are added, and (b) 80% of the dataset is 
Moscow and splits of Iranmehr are added. 
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impose difficulties and sometimes be computationally expensive, espe-
cially in training on 3D images [76]. With this aim, we divided two 
available 3D datasets, i.e., Iranmehr and Moscow, into the five 20% 
portions, and we evaluated the different combination results. 

Fig. 11. The results of confusion matrix for (a) base experiment; (b) first experiment; and (c) second experiment (transfer learning).  

Table 8 
Different model results when trained with Moscow dataset and tested against 
Iranmehr dataset.  

3D Models Accuracy Sensitivity Specificity F1-Score AUC 

DenseNet-169 0.765 0.943 0.507 0.765 92 ± 0.01 
DenseNet-201 0.716 0.921 0.636 0.809 92 ± 0.01 
ResNet-152 0.677 0.952 0.552 0.795 92 ± 0.02 
ResNet-50 0.741 0.946 0.595 0.805 92 ± 0.02 
ResnNext-50 0.699 0.96 0.492 0.781 92 ± 0.02 
Seresnet-152 0.716 0.953 0.548 0.797 92 ± 0.01 
Seresnext50 0.745 0.918 0.681 0.822 93 ± 0.01  

Table 9 
Different model results when trained with Moscow dataset and tested against 
LDCT dataset.  

3D Models Accuracy Sensitivity Specificity F1-Score AUC 

DenseNet-169 0.880 0.915 0.764 0.898 94 ± 0.01 
DenseNet-201 0.827 0.905 0.835 0.909 94 ± 0.02 
ResNet-152 0.847 0.930 0.782 0.910 95 ± 0.01 
ResNet-50 0.889 0.913 0.857 0.918 95 ± 0.01 
ResnNext-50 0.850 0.923 0.757 0.900 94 ± 0.01 
Seresnet-152 0.877 0.909 0.775 0.897 94 ± 0.01 
Seresnext50 0.846 0.894 0.814 0.898 94 ± 0.01  

Table 10 
Different model results when trained with Moscow dataset and tested against 
3DLSC dataset.  

3D Models Accuracy Sensitivity Specificity F1-Score AUC 

DenseNet-169 0.728 0.886 0.672 0.805 90 ± 0.03 
DenseNet-201 0.715 0.882 0.693 0.811 90 ± 0.02 
ResNet-152 0.710 0.954 0.472 0.777 91 ± 0.02 
ResNet-50 0.771 0.91 0.662 0.817 92 ± 0.02 
ResnNext-50 0.737 0.9 0.591 0.786 89 ± 0.03 
Seresnet-152 0.765 0.888 0.662 0.805 90 ± 0.03 
Seresnext50 0.727 0.928 0.587 0.800 92 ± 0.02  

Fig. 12. Learning curve for training on 80% Iranmehr 80% Moscow data using 
ResNet-50. 
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Regarding the accuracy, according to the results presented in Fig. 7, 
the combination of 80% of one dataset and 40% or 60% of the other 
reaches to acceptable results close to the results obtained from the total. 
It seems that when only 20% of each dataset is added to the other, the 
model encounters new features trying to learn them. However, since the 
number of images in the 20% portion is much lower than that of the 80% 
portion, the bias occurs, and the results on holdout test sets have a 
higher difference compared to other combinations. According to Fig. 8 
(a), the sensitivity of different combinations succeeded in learning most 

of the features, and the results are near the total combination when the 
training set is Iranmehr. However, when the training set is Moscow, 
while the behavior of different combinations is similar, the results above 
80% and 40% resemble those of the total combination (see Fig. 8(b)). In 
terms of specificity, Fig. 9 (a and b) demonstrate that for different 
combinations, the test on the Iranmehr holdout test set and LDCT is 
more successful than that on the Moscow holdout test set and 3DLSC. 

It was observed that specificity is dramatically low. According to our 

Fig. 13. Some suspected cases involved in Moscow normal dataset folder. (a) case 7 diagnosed with patchy consolidation, which can be pneumonia including COVID- 
19 or tumoral lesions, (b) case 34 is more probably a COVID-19 case with small involvement (c) case 68 diagnosed with honeycombing fibrosis at left lung lower lobe, 
and (d) case 77, diagnosed with wedge consolidation at base of the right lung which may arise due to the pulmonary thromboemboli or segmental pneumonia. 

Table 11 
Accuracy (%) of trained ResNet-50 for base and first experiments.  

Training setting Iranmehr test data 
(20%) 

Moscow test data 
(20%) 

LDCT 3DLSC 

80% Iranmehr 90.5 79.5 90.7 84.28 
80% Moscow 71.8 82.1 86.3 76.5 
80% Iranmehr +

20% Moscow 
91.2 81.0 92.2 88.0 

80% Iranmehr +
40% Moscow 

91.7 81.0 91.4 83.4 

80% Iranmehr +
60% Moscow 

91.3 82.6 91.3 84.0 

80% Moscow + 20% 
Iranmehr 

87.2 80.8 89.8 73.6 

80% Moscow + 40% 
Iranmehr 

89.1 82.1 90.7 77.9 

80% Moscow + 60% 
Iranmehr 

89.7 80.9 90.3 86.5 

80% Iranmehr +
80% Moscow 

91.5 83.6 91.9 73.9  

Table 12 
AUC ± std of trained ResNet-50 for base and first experiments.  

Training setting Iranmehr test 
data (20%) 

Moscow test 
data (20%) 

LDCT 3DLSC 

80% Iranmehr 0.096 ± 0.00 0.87 ± 0.03 0.96 ±
0.01 

0.95 ±
0.02 

80% Moscow 0.92 ± 0.01 0.91 ± 0.01 0.94 ±
0.01 

0.90 ±
0.02 

80% Iranmehr +
20% Moscow 

0.95 ± 0.01 0.86 ± 0.02 0.95 ±
0.01 

0.96 ±
0.01 

80% Iranmehr +
40% Moscow 

0.95 ± 0.01 0.87 ± 0.03 0.95 ±
0.01 

0.96 ±
0.01 

80% Iranmehr +
60% Moscow 

0.94 ± 0.01 0.89 ± 0.01 0.96 ±
0.01 

0.95 ±
0.02 

80% Moscow +
20% Iranmehr 

0.92 ± 0.01 0.88 ± 0.01 0.94 ±
0.00 

0.94 ±
0.01 

80% Moscow +
40% Iranmehr 

0.94 ± 0.00 0.89 ± 0.01 0.95 ±
0.01 

0.95 ±
0.02 

80% Moscow +
60% Iranmehr 

0.94 ± 0.00 0.88 ± 0.02 0.95 ±
0.00 

0.95 ±
0.03 

80% Iranmehr +
80% Moscow 

0.95 ± 0.01 0.90 ± 0.02 0.95 ±
0.01 

0.95 ±
0.01  
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radiologists, and as shown in Fig. 13, there are some cases in CT0 
(normal dataset) of Moscow dataset that is not normal lungs, so they can 
affect the classification results. We didn’t remove any case from the 
Moscow dataset to avoid data manipulation. Also, we see that for almost 
all metrics, the Moscow dataset has an adverse effect. This indicates that 
public datasets still cannot be treated as ideal as real clinical data. 
Specifically, in specificity results illustrated in Fig. 9, the results of 
specificity are much lower when tested on holdout 20% of Moscow test 
set and 3DLSC, even for total combination. 

The high accuracy results in each combination or high F1-score 
(Fig. 10 a and b) show the network’s capability either for COVID-19 
detection or screening of similar disease type and the capability for 
screening. Another reason to demonstrate this capability is the much 
higher TP for each combination (Fig. 11(a–c)). 

Several studies have combined smaller COVID-19 CT datasets into 
“supersets” to maximize the number of training samples for deep 
learning models. Previous studies have not investigated the effect of 
combining CT corpora in this manner. In this study, we proved that 
combining datasets is an effective approach to training deep learning 
models for COVID-19 detection for the CT imaging mode. We found a 
“saddle point” at the 80:40% mix of datasets for the datasets investi-
gated. According to our interpretation, 80% of a primary dataset is 
adequate for fully training a model, and the additional fine-tuning using 
40% of a secondary dataset helps the model generalize to a third, unseen 
dataset. 

Our second experiment used transfer learning as an alternative deep 
learning approach for training models [77]. It is clear that when we use 
the results of the full run for a similar image type, the results are better. 
It means that pretraining on medical images are more suitable for 
retraining medical images than using pretrained JPEG images such as 
ImageNet weights of generic images [78]. Therefore, we used the 
weights from the full run of 80% of each dataset in retraining the last 
three layers using the other 80% dataset. According to Table 13, the 
results show that when the weights come from the more accurate full run 

(here, full run using 80% Iranmehr), the result of retraining is better. 
However, the result of transfer learning is still lower than that of total 
combination full run, i.e., the full run of 80% of one dataset with the 
addition of 80% of the other dataset. Nevertheless, given the results 
presented in Table 13, the transfer learning technique allows for fewer 
data and faster training while providing close AUC and accuracy to those 
of total combination full run. 

6. Limitations 

The available large 3D datasets in DICOM or NIFTI format were 
really rare. The other 3D image format, like JPEG, if they exist, suffers 
from low resolution compared to DICOM or NIFTI, and also, they are not 
considered as clinical image formats to be a real reflection of what is 
used in reality. Consequently, this study was performed only on two 
large datasets available to us for training and two small datasets for 
testing in which their image format was DICOM/NIFTI. In further 
studies, more 3D CT images are needed to be done before this could be 
part of a clinical workflow. Besides, there is a need for one accurate 
approach for lung segmentation that can give accurately segmented 
lungs from different image formats. Therefore, we used two segmenta-
tion approaches for two image types, which made the preprocessing part 
different for each image format. 

7. Conclusion 

This study thoroughly assessed the impact of image preprocessing, 
different 3D CNN models, and different combinations of datasets on 
generalizability. The results indicated that the different combinations of 
3D CT images, lung segmentation to improve the signal-to-noise ratio, 
and patching in the training process to avoid overfitting and dataset 
imbalance improve generalizability. Also, in the absence of a large 
dataset, we showed that combining 80% of one dataset with a 40% or 
greater contribution from another dataset produces results comparable 
to the total combination. This is potentially very helpful in clinical ap-
plications which are often constrained by the lack of a sizable external 
dataset and/or the difficulty of time-consuming image preparation and 
labeling processes. Although the total combination obtained the best 
results, we found diminishing returns after the combination of 80% and 
40%, respectively. About dataset types, studies on real clinical data are 
more reliable with regard to biases that may exist in public datasets since 
most of the public datasets are stored in formats other than DICOM, 
which is used in real clinical modalities, and there are also doubts about 
their correct diagnosis. We saw that public Moscow dataset training 
results were considerably lower than those for Iranmehr data. The same 
was true for LDCT and 3DLSC. This was because of some mistakenly 
grouped cases in the Moscow dataset, adversely affecting transfer 
learning results. The results of the transfer learning approach in this 
study highly suggest that weights of training on a precisely sorted 
dataset should be used to produce more accurate results in future 
studies. The simulations were run on our own medical data without 
using the pre-trained weights of models. Given the limited access to 
medical data, we attempted to achieve good results on our new datasets 
by cropping, segmentation, patching, etc., to improve training perfor-
mance. This study would be useful in practice where datasets are limited 
and may be collected in different locations and settings. 
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Table 13 
Statistics of trained ResNet-50 for transfer learning.    

Training setting  

Test sets Retrain on 80% 
Iranmehr 

Retrain on 80% 
Moscow 

Accuracy (%) Iranmehr test data 
(20%) 

83.2 76.8 

Moscow test data 
(20%) 

64.2 79.1 

LDCT 85 82.3 
3DLSC 77.6 71.2 

Sensitivity 
(%) 

Iranmehr test data 
(20%) 

79.8 96.9 

Moscow test data 
(20%) 

54.2 91.9 

LDCT 78.4 92.6 
3DLSC 63 98.4 

Specificity 
(%) 

Iranmehr test data 
(20%) 

87.3 56.1 

Moscow test data 
(20%) 

100 34 

LDCT 97.5 64.2 
3DLSC 93.1 41.4 

F1-Score Iranmehr test data 
(20%) 

82.9 80.8 

Moscow test data 
(20%) 

70.2 86.9 

LDCT 87.2 87.5 
3DLSC 74.2 77.4 

AUC Iranmehr test data 
(20%) 

89 ± 0.00 0.95 ± 0.00 

Moscow test data 
(20%) 

0.90 ± 0.00 0.86 ± 0.01 

LDCT 0.93 ± 0.00 0.94 ± 0.01 
3DLSC 86 ± 0.00 0.94 ± 0.01  
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Summary 

For detection of COVID-19 positive cases, artificial intelligence (AI)- 
based technologies can be of immense assistance. However, the results 
obtained from one specific dataset may not be consistent with the 
external dataset. Furthermore, a second large dataset is often not 
accessible, and it is very time-consuming to prepare it. We have studied 
how COVID-19 CT image datasets can be combined to assess general-
izability with unique combinations of two large data sets using state-of- 
the-art 3D convolutional neural networks (CNN), which shows that a 
combination of datasets can assist generalization and determining the 
optimal “combined” characteristics. 

In this study, 1110 3D CT images were used from two large datasets; 
one from Iranmehr hospital, Tehran, Iran, and one from publicly avail-
able datasets from hospitals located in Moscow, Russia. We split each 
dataset into five segments of 20% each, with equal distribution of 
normal and COVID-19 in each segment. We separated one 20% segment 
from each dataset as holdout test set and kept it the same for all ex-
periments, and all training parts were performed with the remaining 
80% from each dataset. Two small external test datasets including LDCT 
and 3DLSC were used to evaluate the validity of the present study. We 
carried out three experiments as follows: (a) Base experiment: Models 
were fully trained in 3 experiments using 80% Iranmehr, 80% Moscow, 
and 80% Iranmehr + 80% Moscow data, respectively. These models 
were tested with 20% holdout sets separately from Iranmehr and Mos-
cow sets. (b) First experiment: Models trained with 80% of Iranmehr 
dataset + increasing portion of Moscow dataset (20%, 40%, 60%). 
Similarly, Models were trained with 80% Moscow dataset + an 
increasing portion of Iranmehr dataset (20%, 40%, 60%). All models 
then tested with one 20% holdout set from each dataset and two small 
external test sets(c) Second experiment (transfer learning): weights of 
the full trained model with 80% of one dataset were used. Three last 
layers (including a fully connected layer, batch normalization, and a 3D 
convolution layer) were retrained with 80% of the other dataset. All 
simulations were carried out in a 5-fold manner to increase the reli-
ability of the results. The results were tested on Iranmehr and Moscow 
holdout test data, LDCT, and 3DLSC datasets. 

The total combination of 80% of each dataset has an accuracy of 91% 
on Iranmehr and 83% on Moscow holdout test datasets. The results show 
that all other combinations provided near to that of the total combina-
tion of datasets. The results of the transfer learning study led to the 
accuracy of 83% on Iranmehr holdout test set and 85% on LDCT external 
test set when retrained on 80% of Iranmehr dataset. 

The results of splitting dataset demonstrated that although the total 
combination of 80% of both datasets has the best results; the different 
combinations of datasets still lead to acceptable results in terms of 
generalizability. Transfer learning performed in this study showed lower 
statistical results compared to the total combination, but still gave 
satisfactory results. Adopting the proposed methodology described in 
this work may help to obtain satisfactory results for normal/abnormal 
lung screening and in the case of limited, sparse external datasets. 
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