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Abstract
This research paper designs the noninteger order SEITR dynamical model in the
Caputo sense for tuberculosis. The authors of the article have classified the infection
compartment into four different compartments such as newly infected unrecognized
individuals, diagnosed patients, highly infected patients, and patients with delays in
treatment which provide better detail of the TB infection dynamic. We estimate the
model parameters using the least square curve fitting and demonstrate that the
proposed model provides a good fit to tuberculosis confirmed cases of India from the
year 2000 to 2020. Further, we compute the basic reproduction number as �0 ≈ 1.73
of the model using the next-generation matrix method and the model equilibria. The
existence and uniqueness of the approximate solution for the SEITR model is
validated using the generalized Adams–Bashforth–Moulton method. The graphical
representation of the fractional order model is given to validate the result using the
numerical simulation. We conclude that the fractional order model is more realistic
than the classical integer order model and provide more detailed information about
the real data of the TB disease dynamics.
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1 Introduction
Tuberculosis is a disease instigated by Mycobacterium tuberculosis bacteria (MTB), which
commonly affects the lungs; however, it can also harm other parts of the body. It is an in-
fectious disease; around ten percent of the latent infection develops into a highly infected
disease and results in death. The transmission of TB from one person to another occurs
through air droplets when an infectious person sneezes or coughs [2]. Generally, indica-
tions include fever, feeling of coldness, sweats at night, lost appetite, loss of weight, and
weakness [2]. Tuberculosis has existed in the world for ages, which is apparent from the
Egyptian mummy stored in the British Museum that reveals the infection in its spine due
to tuberculosis; however, in the nineteenth and early twentieth centuries, the threat of
prevalence in public increased, especially among urban [2]. Visibly the number of cases
eventually degraded since the year 2000 [6]. By the year 2018, one-fourth population of the
world was assumed to have a latent infection of tuberculosis, and there were around ten
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million active cases with one and half million deaths in the same year. This history ranks
TB as the number one infectious disease causing death [6]. Eighty percent of the positive
tested patients are from Asia and Africa, whereas only five to ten percent are tested positive
in the USA by the tuberculin test [28]. For five decades, rampant and efficacious treatment
for actively infected and inertly infected people has been made accessible. Medicines like
Streptomycin combined with Pyrazinamide have been used to cure TB, whereas the two
most impactful medications believed to combat Mycobacterium tuberculosis are Isoni-
azid and Rifampin [39].

In the wake of the COVID-19 pandemic, India has observed a drop in detecting new TB
cases by 1.3 million from 2019 to 2020 [1]. Additionally, according to the global 2021 tuber-
culosis report released by WHO, the number of deaths due to TB has increased thereafter,
ranking India among the top countries contributing towards the deduction of diagnosis
of TB during the COVID-19 crisis [1]. Approximately 4.1 million undiagnosed individu-
als are suffering from TB presently. Due to lockdown, the number of people visiting for
treatments has also fallen notably [1]. India shared 34% of the total predicted 1.48 million
deaths occurred by TB globally, whereas it surged to 13% within the country as compared
to 2019 [1].

Mathematical modelling for infectious diseases has been developed and studied thor-
oughly by many researchers for decades now. In comparison to the traditional integer-
order models, the fractional-order models offer more precise and in-depth knowledge re-
lated to the complex patterns of numerous diseases owing to their inherited properties
and explanation of memory [10, 27, 38]. For instance, Khan et al. [25] developed a novel
fractional model for TB, [37] analysed the tuberculosis–HIV system, and [20] discussed
a fractional model for fever named dengue. Furthermore, [17] developed a fractional or-
der discrete differential model with a time delay to study the effects of endogenetic and
exogenic recurrence in the qualitative behavior of tuberculosis. Moreover, Yang explained
the impacts of being dormant for a long time and numerous contagions in the changing
patterns of tuberculosis [51]. Bowong [14] examined the slow-moving and speedy evolu-
tion of the TB model that includes slow and fast development. The conclusion was if the
number of elementary reproductions is smaller than one, the steady-state of disease-free
is constant in contradiction to when it is larger than one. The optimal control problem for
fractional TB disease model incorporating the effect of diabetes and stress was studied in
[42]; besides, its analysis using Atangana–Baleanu derivative was carried out in [10, 45].

The evolution of TB was studied mathematically using epidemiological modeling [13,
21] for a long time; however, Waaler bagged the initial effort to model the disease epidemi-
ology of TB [48]. Later, Kermack and McKendrick bifurcated various stages of disease into
diverse compartments, which were originated by [24] and expounded by Baile [33], An-
derson and May [9]. In [46], the C-F fractional-order derivative is applied to analyze the
TB model. Agusto and Cook analyzed a deterministic model to study transmission after
separation, cases that forgot to turn up for checkups, and cases with drug resistance [7].
Melsew, Adekunle, and Cheng worked to prove the presence of widespread heterogeneity
among infections of people with active TB [31].

Furthermore, researchers developed mathematical models to study the treatments and
ways of cure like vaccination. The mathematical model in [32] demonstrates the efficiency
of the vaccination to cure an infection of TB. Egonmwan et al. [36] established a new-
fangled TB model to inspect the effect of diagnosis and treatment for the infectious mass of
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TB. The study in [12] shows that diagnosis, proper vaccination drives, and treatments can
restrain uncertain aspects of TB; however [40] mentions that even deficient vaccination
of tuberculosis plays a role in inhibiting the spread of the disease. Robert studied a TB
system with the consequence of reversion of infection [49].

Some authors have also analyzed the relation between TB and coronavirus looking for-
ward to the recent pandemic. The interpretations given by Marimuthu, Nagappa, Sharma,
Basu, and Kishore Chopra. suggest a considerable hike of COVID infection among the
patients with TB [30]. Also, Iyengar and Jain predicted that due to distributed attention
during COVID-19 pandemic the tracking of TB patients and the vital activities for TB
may be affected [23]. Besides, the work of Cilloni and Fu suggested to act aptly towards
combating TB to avoid the adverse situation as a result of COVID-19 pandemic [18].

The integer-order derivative is local in nature, which means that the integer-order
derivative is useful in understanding nature of the function at one point only and in the
neighborhood of that point. The fractional-order derivatives can overcome the challenges
imposed by traditional integer-order derivatives, and it also covers the aspects of integer
order derivatives. There are various fractional order derivatives, the most notable of which
are the Riemann–Liouville fractional derivative and the Caputo fractional derivative in ap-
plications. The Caputo fractional derivative is more suitable than the Riemann–Liouville
fractional derivative as it requires initial conditions containing limit values at t = 0. The
former gives more accurate and precise information regarding the complexities of numer-
ous diseases. Fractional order models are better than conventional integer-order models
because of hereditary properties and memory description [42, 43]. However, in reality,
any phenomena of nature can be expressed better by a biological system of noninteger-
order rather than integer-order models [17]. The fractional-order derivatives can appre-
hend nonlocal relationships in time and space, and they also offer more degree of freedom
and a precise representation of nonlinear phenomena [17]. Saeed Ahmad et al. stated the
use of the fusion method to develop a series solution for the analytical solution differential
equations of fractional order which includes nonsingular derivative [8]. For TB disease, a
three-strained noninteger order model is studied in [41]. A fractional order model is also
used by [16] to analyze the dynamics of TB. Weronika used Lypanove theory to check
whether a noninteger order system for tuberculosis is globally stable or not [50]. More-
over, [44] modeled a fraction order TB model using Caputo derivative from the factual
data of Khyber Pakhtunkhwa.

This research paper establishes a fractional-order mathematical model in the Caputo
sense to analyze the dynamical behavior of the spread of tuberculosis infection. The study
represents various compartments of TB transmission infection for the dormant individ-
uals (not diagnosed as infected) and individuals identified as infected with TB. The fol-
lowing system considers more intermediate compartments as diagnosis, high infection,
and cure, to study different treatment and recovery aspects. Basic definitions are given
in Sect. 2. Section 3 contains model formulation. The basic reproduction number and
endemic equilibria are given in Sect. 4 and Sect. 5. In Sect. 6, parameter estimation and
model fitting with the real data of the reported cases in India during the year 2000 to 2020
are given. The existence and uniqueness of the solution for the model is proved in Sect. 7.
The numerical results of the approximate solution for the fractional-order model in the
Caputo sense are given in Sect. 8. Numerical simulations with different scenarios for the
model are given in Sect. 9, which are useful for the Ministry of Health and Family Welfare,
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Government of India to implement an action plan to control TB infection in India. Finally,
conclusion is provided in Sect. 10.

2 Prerequisites
This section discusses the prerequisites and elementary notions used throughout this pa-
per.

Definition 2.1 ([35, 36]) For an integrable function f, the Caputo derivative of fractional
order α ∈ (0, 1) is given by

CDαf (t) =
1

�(m – α)

∫ t

0

f (m)(v)
(t – v)α–m+1 dv, m = [α] + 1.

Also, the fractional integral of order α with Re(α) > 0 is given by

CIαf (t) =
1

�(α)

∫ t

0
(t – v)α–1f (v) dv.

Definition 2.2 ([11, 15]) For f ∈ H1(c, d) and d > c, the C-F derivative of fractional order
α ∈ (0, 1) for f is given by

CFDαf (t) =
M(α)

(1 – α)

∫ t

c
exp

(
–α

1 – α
(t – v)

)
f ′(v) dv,

where t ≥ 0, M(α) is a normalization function that depends on α and M(0) = M(1) = 1. If
f /∈ H1(c, d) and 0 < α < 1, this derivative for f ∈ L1(–∞, d) is given by

CFDαf (t) =
αM(α)
(1 – α)

∫ d

–∞

(
f (t) – f (v)

)
exp

(
–α

1 – α
(t – v)

)
f ′(v) dv.

Also, the C-F fractional integral is presented by

CFIαf (t) =
2(1 – α)

(2 – α)M(α)
f (t) +

2α

(2 – α)M(α)

∫ t

0
f (v) dv.

Definition 2.3 ([35, 36]) The L. T. of Caputo fractional differential operator of order α is
given by

L
[CDαf (t)

]
(s) = sαLf (t) –

m–1∑
i=0

sα–i–1f (i)(0), m – 1 < α ≤ m ∈ N ,

which can also be written as

L
[CDαf (t)

]
(s) =

smL[f (t)] – sm–1f (0) – · · · – f (m–1)

sm–α
.

3 Model formulation
The compartmental model for the transmission dynamics of TB is represented graphically
in Fig. 1. The list of state variables and their description with values are given in Table 1.
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Figure 1 Transmission dynamics of TB

Table 1 List and description of the model parameters

Symbol Description Value Reference

λ Contact rate 0.1938 Fitted
� Birth rate 2,00,00,063.55072464 Estimated [5]
μ Natural mortality rate 1/69 = 0.014493 Estimated [4]
a1 Rate at which S(t) is determined as I(t) and remaining people

join E(t) compartment
0.7971 Fitted

a2 Rate at which E(t) join E1(t) or E2(t) compartment 0.4131 Fitted
σ Rate at which E(t) is classified as E1(t) or E2(t) 0.1995 Fitted
a3 Rate at which E2(t) join E1(t) compartment 0.3012 Fitted
a4 Rate at which E2(t) join I(t) compartment 0.3410 Fitted
k1 Progression rate at which E2(t) directly join I(t) compartment 0.3269 Fitted
a5 Rate at which T (t) join I(t) compartment 0.2848 Fitted
a6 Rate at which I(t) join I1(t) or I2(t) compartment 0.6102 Fitted
k2 Rate at which I(t) is classified as I1(t) or I2(t) compartment 0.4213 Fitted
a7 Rate at which E1(t) join I(t) compartment 0.5654 Fitted
a8 Rate at which R(t) becomes S(t) individual 0.7139 Fitted
r0 Rate at which E1(t) join T (t) compartment 0.1512 Fitted
r1 Rate at which I1(t) join T (t) compartment 0.2177 Fitted
r2 Rate at which I2(t) join T (t) compartment 0.4913 Fitted
r3 Rate at which T (t) becomes R(t) individual 0.3761 Fitted

The population is separated into nine compartments which are classified based on the
infection status. Here, λ is the contact rate. At time t, S(t) represents the number of sus-
ceptible individuals at risk of getting infected. a1λ is the rate of the susceptible individual
classified as infected and joining I(t) class. E(t) is the number of the new latently infected
individual being in sufficient contact with an infected person but not contagious. a2σ is
the rate at which the new latently infected individual joins the diagnosed latently infected
E1(t) and others associated with the undiagnosed latently infected E2(t) class based on
the TB test result. The undiagnosed actively infected people I(t) are those who become
contagious and can spread infection to others. a7λ and a4λ + k1 are the rates at which
individuals from E1(t) and E2(t) become actively infected. The individual from I(t) class
diagnosed as actively infected with rate a6k2 joins the class I1(t), which represents the in-
dividuals diagnosed as actively infected with speedy treatment. The people diagnosed as
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actively infected but delayed in treatment are joining I2(t) at rate (1 – a6)k2. r0, r1, and
r2 are the rates at which infected individuals from E1(t), I1(t), and I2(t) started treatment
and moved to treatment compartment T(t). R(t) represents the number of recovered or
removed individuals as well as those who stopped treatments after partial recovery. A
person who has completed treatment and recovered moves to R(t) at rate r3. In MDR and
XDR compartments of TB, an individual from T(t) class is moved to I(t) compartment at
rate a1a5λ. The recovered people can become susceptible at the rate a8. The integer-order
model is unable to represent the dynamics of the real-world problem between two points.
The fractional-order mathematical model is a more reliable and powerful tool for mini-
mizing error created by neglected parameters in modeling [27, 34]. The fractional order
dynamical system of the TB infection model using Caputo derivative of order α ∈ (0, 1) is
given by

CDα
t S = � + a8R – (λ + μ)S,

CDα
t E = (1 – a1)λ(S + a5T) – (σ + μ)E,

CDα
t E1 = a2σE + a3E2 – a7λE1 – (r0 + μ)E1,

CDα
t E2 = (1 – a2)σE – (a4λ + k1 + a3 + μ)E2,

CDα
t I = a1λ(S + a5T) + a7λE1 + (a4λ + k1)E2 – (k2 + μ)I, (1)

CDα
t I1 = a6k2I – (r1 + μ)I1,

CDα
t I2 = (1 – a6)k2I – (r2 + μ)I2,

CDα
t T = r0E1 + r1I1 + r2I2 – (a1a5λ + r3 + μ)T ,

CDα
t R = r3T – (a8 + μ)R

with the nonnegative initial condition

S(0) ≥ 0, E(0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0,

I(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, (2)

T(0) ≥ 0, R(0) ≥ 0.

Therefore, we can observe that the solution of system (1) is nonnegative and bounded
[29].

The overall dynamics of the population attained by adding all six equations of model (1)
is as follows:

dN
dt

= � – μN .

System (1) is moderated by substituting the Caputo fractional time-derivative. In this
moderate system, the dimension of the system will not remain the same for the right and
left sides. We use �- an auxiliary parameter to resolve this problem. As per the discussion,
the fractional-order model for t > 0 and α ∈ (0, 1) with the same initial conditions is given
by

�α–1CDα
t S(t) = � + a8R – (λ + μ)S,
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�α–1CDα
t E(t) = (1 – a1)λ(S + a5T) – (σ + μ)E,

�α–1CDα
t E1(t) = a2σE + a3E2 – a7λE1 – (r0 + μ)E1,

�α–1CDα
t E2(t) = (1 – a2)σE – (a4λ + k1 + a3 + μ)E2,

�α–1CDα
t I(t) = a1λ(S + a5T) + a7λE1 + (a4λ + k1)E2 – (k2 + μ)I, (3)

�α–1CDα
t I1 = a6k2I – (r1 + μ)I1,

�α–1CDα
t I2 = (1 – a6)k2I – (r2 + μ)I2,

�α–1CDα
t T = r0E1 + r1I1 + r2I2 – (a1a5λ + r3 + μ)T ,

�α–1CDα
t R = r3T – (a8 + μ)R.

The feasible region for model (1) is given by

� =
{

S(t), E(t), E1(t), E2(t), I(t), I1(t), I2(t), T(t), R(t) ∈R
9
+ : N(t) ≤ �

μ

}
. (4)

We prove that the closed set � is the feasible region of system (3).

Lemma 3.1 The closed set � is a positive invariant concerning fractional system (3).

Proof We add all the terms in system (3) to obtain the overall population in the fractional
order, i.e., �α–1CDα

t N(t) = � – μN(t), where N(t) = S(t) + E(t) + E1(t) + E2(t) + I(t) + I1(t) +
I2(t) + T(t) + R(t).

To obtain the population size, we use the Laplace transform as follows:

N(t) = N(0)Eα

(
–μ�1–αtα

)
+
∫ t

0
��1–αθα–1Eα,α

(
–μ�1–αθα

)
dθ ,

where N(0) is the initial population size. After simplifying we get

N(t) = N(0)Eα

(
–μ�1–αtα

)
+
∫ t

0
��1–αθα–1

∞∑
i=0

(–1)iμi� i(1–α)θ iα

�(iα + α)
dθ

=
�

μ
+ Eα

(
–μ�1–αtα

)(
N(0) –

�

μ

)
.

Thus, if N(0) ≤ �
μ

, then for t > 0, N(t) ≤ �
μ

.
The following table represents the parametric values used for model (1) fitted or esti-

mated using data available and reported cases of TB infection in India.
Consequently, the closed set � is positive invariant concerning fractional-order model

(3). The solutions of system (1) are known as equilibrium points, and they have two equi-
librium points as follows:

(1) Infection-free equilibrium points;
(2) Endemic equilibrium points,

which are discussed in the following sections. �
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4 Infection-free equilibrium points
The basic reproduction number �0 (also known as threshold parameter) is used to analyze
the average number of secondary infected users rising from an average primary infected
users in entirely susceptible population for the stability of system (1). �0 is obtained by
using the next generation matrix [47]. The new infectious rates represented using matrix
F , and other transferred rates within compartments by matrix V are given as follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 λa5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎛
⎜⎜⎜⎜⎜⎝

σ + μ 0 0 0 0 0 0
–a2σ a7λ + r0 + μ –a3 0 0 0 0

–σ (1 – a2) 0 a4λ + k1 + a3 + μ 0 0 0 0
0 –a7λ –(a4λ + k1) k2 + μ 0 0 0
0 0 0 –a6k2 r1 + μ 0 0
0 0 0 –k2(1 – a6) 0 r2 + μ 0
0 –r0 0 0 –r1 –r2 a1a5λ + r3 + μ

⎞
⎟⎟⎟⎟⎟⎠

.

The basic reproduction number of system (3) is given by the spectral radius

γ
(
FV –1) = �0

=

⎛
⎜⎜⎜⎝

λa5(k2 + μ)(r2 + μ)(a3r0σ (1 – a2) + r0a2σ (a4λ + k1 + a3 + μ))
+ λa5k2(r1a6(r2 + μ)

+ r2(1 – a6))(σ (1 – a2))((a4λ + μ)(a7λ + r0 + μ) + a3a7λ)
+ (a2a7λσ )(a4λ + k1 + a3 + μ)

⎞
⎟⎟⎟⎠

(k2 + μ)(r2 + μ)(σ + μ)(a7λ + r0 + μ)(a4λ + k1 + a3 + μ)(a1a5λ + r3 + μ)
.

The basic reproduction number is obtained as �0 = 1.7307 using the parameter values
given in Table 1 for India.

If �0 > 1 then the disease will persist in the community since one diseased individual
will infect more than one susceptible individual on average. This is possible if

(k2 + μ)(r2 + μ)(σ + μ)(a7λ + r0 + μ)(a4λ + k1 + a3 + μ)(a1a5λ + r3 + μ) < 1,

i.e., the values of parameters k1, k2, a1, a4, a5,and a7 decrease, which means that the latently
or actively infected individual remains in the population and may spread the infection to
others. Also, the decrement of the parameters r2, r3, σ , r0, and a3 means that the infected
individuals and relapse cases are not taking proper treatment or left treatments before
recovery and may propagate infection to others.

If �0 < 1 then on average one diseased individual can only infect one other person, and
the disease will eventually die out.

Theorem 4.1 The TB-infection free equilibrium E0 = ( �
μ

, 0, 0, 0, 0, 0, 0, 0, 0) for model (3) is
locally asymptotically instable if �0 > 1.
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Proof To obtain the TB-infection free equilibrium at a point E0, the Jacobian matrix [19,
22] is as follows:

J =

⎛
⎜⎜⎜⎜⎝

–(λ + μ) 0 0 0 0 0 0 0 a8

(1 – a1 )λ –(σ + μ) 0 0 0 0 0 (1 – a1 )a5λ 0
0 a2σ –(a7λ + r0 + μ) a3 0 0 0 0 0
0 (1 – a2 )σ 0 –(a4λ + k1 + a3 + μ) 0 0 0 0 0

a1λ 0 a7λ (a4λ + k1 ) –(k2 + μ) 0 0 a1 a5λ 0
0 0 0 0 a6 k2 –(r1 + μ) 0 0 0
0 0 0 0 (1 – a6 )k2 0 –(r2 + μ) 0 0
0 0 r0 0 0 r1 r2 –(a1 a5λ + r3 + μ) 0
0 0 0 0 0 0 0 r3 –(a8 + μ)

⎞
⎟⎟⎟⎟⎠.

Define s(J) = max{�λ : λ is an eigenvalue of J}, where s(J) is the simple eigenvalue of ma-
trix J with positive eigenvector, then we have �0 < 1 ⇔ s(J) < 0, see [47] for more details.
Therefore,

s(J) = max
{

–(λ + μ), –(σ + μ), –(a7λ + r0 + μ),

– (a4λ + k1 + a3 + μ), –(k2 + μ), –(r1 + μ),

– (r2 + μ), –(a1a5λ + r3 + μ), –(a8 + μ)
}

< 0.

Hence, if �0 < 1, then s(J) < 0, E0 is locally asymptotically instable. �

5 Endemic equilibria
We use the following equations to determine the equilibrium points for the fractional-
order model (3):

CDαS(t) = CDαE(t) = CDαE1(t) = CDαE2(t) = CDαI(t) = CDαI1(t) = CDαI2(t)

= CDαT(t) = CDαR(t) = 0.

The algebraic solution of the equation provides equilibrium points of the system, and if
�0 > 1, then system (3) has a positive endemic equilibrium E∗

1 = (S∗, E∗, E∗
1 , E∗

2 , I∗, I∗
1 , I∗

2 , T∗,
R∗) and the Jacobian is given as

J1 =

⎛
⎜⎜⎜⎜⎝

–(λ + μ) 0 0 0 0 0 0 –λa5 a8

(1 – a1 )λ –(σ + μ) 0 0 0 0 0 (1 – a1 )a5λ 0
0 a2σ –(a7λ + r0 + μ) a3 0 0 0 0 0
0 (1 – a2 )σ 0 –(a4λ + k1 + a3 + μ) 0 0 0 0 0

a1λ 0 a7λ (a4λ + k1 ) –(k2 + μ) 0 0 a1 a5λ 0
0 0 0 0 a6 k2 –(r1 + μ) 0 0 0
0 0 0 0 (1 – a6 )k2 0 –(r2 + μ) 0 0
0 0 r0 0 0 r1 r2 –(a1 a5λ + r3 + μ) 0
0 0 0 0 0 0 0 r3 –(a8 + μ)

⎞
⎟⎟⎟⎟⎠,

where S∗ = (�+a8R∗)
(λ+μ) , E∗ = λ(1–a1)(S∗+a5T∗)

(σ+μ) , E1∗ = 1
(a7λ+r0+μ) (a2σE ∗ +a3E2∗),

E2∗ =
σ (1 – a2)

(a4λ + k1 + a3 + μ)
E∗,

I∗ =
1

(k2 + μ)
(
a1λ(S ∗ +a5T∗) + a7λE1 ∗ +(a4λ + k1)E2∗

)
,

I1∗ =
(

a6k2

r1 + μ

)
I∗, I2∗ =

(
(1 – a6)k2

r2 + μ

)
I∗,

T∗ =
(a8 + μ)

r3
× R ∗ or

(r0E1 ∗ +r1I1 ∗ +r2I2∗)
(a1a5λ + r3 + μ)
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R∗ = ((r0�)
{(

a2(a4λ + k1 + μ) + a3
)(

r0λσ (r2 + μ)
(
k2
(
r1a6 + (1 – a6)r2

)
(a7λ + r0 + μ)

)

× ((1 – a2)(a4λ + k1 + a3 + μ)
)}× (�0 – 1)

)

/
((

r1a6(r2 + μ)(σ + μ)(a7λ + r0 + μ) – λσ (a4λ + k1 + a3 + μ)(1 – a1)(1 – a2)
)

× �0
)
.

From the above equations, we observe that the endemic equilibrium E∗
1 = (S∗, E∗, E∗

1 , E∗
2 ,

I∗, I∗
1 , I∗

2 , T∗, R∗) only exists if �0 > 0.

6 Model fitting and parameter estimation
Figure 2 represents the reported cases of TB infected people in India from the year 2000
to 2020 [1, 3] by the Central Tuberculosis Division, Government of India under National
Tuberculosis Elimination Programme.

In order to obtain a good fit to the real data, we use the least square curve fitting al-
gorithm given by Khan et al. [26] for our model except the birth rate � and the natural
mortality rate μ. The average life span in India is 69 years mentioned in Press Information
Bureau, Government of India [4]. The natural mortality rate is considered as the reciprocal
of average life expectancy of the people of India and estimated value as μ = 1/69 per year.
To estimate the birth rate, we considered the population of India as �/μ = 1,380,004,385
for the year 2020 [5]. So, the limiting population in absence of infection is obtained as
� = 20,000,063.55072464 per year. Figure 3 represent the model fitting to the real data for
various fractional order.

From Fig. 4, we can see the long-term trend in the number of reported cases of tu-
berculosis infection in India, which demonstrates a significant increase in the number of
recorded cases and gives a terrible sign to the Ministry of Health and Family Welfare, Gov-
ernment of India. The model parameters given in Table 1 are calculated from the reported
data and will be employed in numerical simulations.

Figure 2 The number of TB infected individuals reported in India from Central Tuberculosis Division,
Government of India under National Tuberculosis Elimination Programme
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Figure 3 Real data fitting using model (1) for α = 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1

Figure 4 Predicted behavior of TB infection for long period of time in India for our model (1)

7 Existence and uniqueness of solution
In this section, we use the generalized Adams–Bashforth–Moulton technique given in
[35] to prove the uniqueness of the solution for system (3) as follows:

�α–1CDα
t S(t) = Q1

(
t, S(t)

)
,

�α–1CDα
t E(t) = Q2

(
t, E(t)

)
,

�α–1CDα
t E1(t) = Q3

(
t, E1(t)

)
,

�α–1CDα
t E2(t) = Q4

(
t, E2(t)

)
,

�α–1CDα
t I(t) = Q5

(
t, I(t)

)
,

�α–1CDα
t I1(t) = Q6

(
t, I1(t)

)
,

�α–1CDα
t I2(t) = Q7

(
t, I2(t)

)
,
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�α–1CDα
t T(t) = Q8

(
t, T(t)

)
,

�α–1CDα
t R(t) = Q9

(
t, R(t)

)
.

By using Lemma 3.1, the system is given as

S(t) – S(0) =
�1–α

�α

∫ t

0
Q1(τ , S)(t – τ )α–1 dτ ,

E(t) – E(0) =
�1–α

�α

∫ t

0
Q2(τ , E)(t – τ )α–1 dτ ,

E1(t) – E1(0) =
�1–α

�α

∫ t

0
Q3(τ , E1)(t – τ )α–1 dτ ,

E2(t) – E2(0) =
�1–α

�α

∫ t

0
Q4(τ , E2)(t – τ )α–1 dτ ,

I(t) – I(0) =
�1–α

�α

∫ t

0
Q5(τ , I)(t – τ )α–1 dτ , (5)

I1(t) – I1(0) =
�1–α

�α

∫ t

0
Q6(τ , I1)(t – τ )α–1 dτ ,

I2(t) – I2(0) =
�1–α

�α

∫ t

0
Q7(τ , I2)(t – τ )α–1 dτ ,

T(t) – T(0) =
�1–α

�α

∫ t

0
Q8(τ , I)(t – τ )α–1 dτ ,

R(t) – R(0) =
�1–α

�α

∫ t

0
Q9(τ , R)(t – τ )α–1 dτ .

In the ensuing theorem the kernels Qi, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, satisfy the Lipschitz con-
dition and contraction.

Theorem 7.1 The kernel Q1 satisfies the Lipschitz condition and contraction if the inequal-
ity given below holds 0 ≤ λ + μ < 1.

Proof For S and S∗ we have

∥∥Q1(t, S) – Q1(t, S∗)
∥∥≤ (λ + μ)‖S – S∗‖.

Suppose that d1 = λ + μ, where ‖S‖ ≤ M1, ‖E‖ ≤ M2, ‖E1‖ ≤ M3, ‖E2‖ ≤ M4, ‖I‖ ≤ M5,
‖I1‖ ≤ M6, ‖I2‖ ≤ M7‖T‖ ≤ M8 and ‖R‖ ≤ M9 is a bounded function. So

∥∥Q1(t, S) – Q1(t, S∗)
∥∥≤ d1

∥∥S(t) – S∗(t)
∥∥. (6)

Thus, for Q1 the Lipchitz condition is obtained, and if 0 ≤ λ + μ < 1 then Q1 is a con-
traction.

Similarly, the Lipschitz condition for Qi, i = 2, 3, 4, 5, 6, 7, 8, 9, is given as follows:

∥∥Q2(t, E) – Q2(t, E∗)
∥∥≤ d2

∥∥E(t) – E∗(t)
∥∥,

∥∥Q3(t, E1) – Q3(t, E1∗)
∥∥≤ d3

∥∥E1(t) – E1∗(t)
∥∥,
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∥∥Q4(t, E2) – Q4(t, E2∗)
∥∥≤ d4

∥∥E2(t) – E2∗(t)
∥∥,

∥∥Q5(t, I) – Q5(t, I∗)
∥∥≤ d5

∥∥I(t) – I∗(t)
∥∥,

∥∥Q6(t, I1) – Q6(t, I1∗)
∥∥≤ d6

∥∥I1(t) – I1∗(t)
∥∥,

∥∥Q7(t, I2) – Q7(t, I2∗)
∥∥≤ d7

∥∥I2(t) – I2∗(t)
∥∥,

∥∥Q8(t, T) – Q8(t, T∗)
∥∥≤ d8

∥∥T(t) – T∗(t)
∥∥,

∥∥Q9(t, R) – Q9(t, R∗)
∥∥≤ d9

∥∥R(t) – R∗(t)
∥∥,

where d2 = σ +μ, d3 = a7λ+r0 +μ, d4 = a4λ+k1 +a3 +μ, d5 = k2 +μ, d6 = r1 +μ, d7 = r2 +μ,
d8 = a1a5λ+r3 +μ,and d9 = a8 +μ are bounded functions, if 0 ≤ di < 1, i = 2, 3, 4, 5, 6, 7, 8, 9,
then Qi, i = 2, 3, 4, 5, 6, 7, 8, 9, are contractions. According to system (5), consider the fol-
lowing recursive forms:

P1n(t) = Sn(t) – Sn–1(0) =
�1–α

�α

∫ t

0

[
Q1(τ , Sn–1) – Q1(τ , Sn–2)

]
(t – τ )α–1 dτ ,

P2n(t) = En(t) – En–1(0) =
�1–α

�α

∫ t

0

[
Q2(τ , En–1) – Q2(τ , En–2)

]
(t – τ )α–1 dτ ,

P3n(t) = (E1)n(t) – (E1)n–1(0)

=
�1–α

�α

∫ t

0

[
Q3
(
τ , (E1)n–1

)
– Q3

(
τ , (E1)n–2

)]
(t – τ )α–1 dτ ,

P4n(t) = (E2)n(t) – (E2)n–1(0)

=
�1–α

�α

∫ t

0

[
Q4
(
τ , (E2)n–1

)
– Q4

(
τ , (E2)n–2

)]
(t – τ )α–1 dτ ,

P5n(t) = In(t) – In–1(0) =
�1–α

�α

∫ t

0

[
Q5(τ , In–1) – Q5(τ , In–2)

]
(t – τ )α–1 dτ ,

P6n(t) = (I1)n(t) – (I1)n–1(0) =
�1–α

�α

∫ t

0

[
Q6
(
τ , (I1)n–1

)
– Q6

(
τ , (I1)n–2

)]
(t – τ )α–1 dτ ,

P7n(t) = (I2)n(t) – (I2)n–1(0) =
�1–α

�α

∫ t

0

[
Q7
(
τ , (I2)n–1

)
– Q7

(
τ , (I2)n–2

)]
(t – τ )α–1 dτ ,

P8n(t) = Tn(t) – Tn–1(0) =
�1–α

�α

∫ t

0

[
Q8(τ , Tn–1) – Q8(τ , Tn–2)

]
(t – τ )α–1 dτ ,

P9n(t) = Rn(t) – Rn–1(0) =
�1–α

�α

∫ t

0

[
Q9(τ , Rn–1) – Q9(τ , Rn–2)

]
(t – τ )α–1 dτ

with the initial conditions

S0(t) = S(0), E0(t) = E(0), (E1)0(t) = (E1)(0),

(E2)0(t) = (E2)(0), I0(t) = I(0),

(I1)0(t) = (I1)(0), (I2)0(t) = (I2)(0), T0(t) = T(0) and R0(t) = R(0).

We take the norm of the first equation in the above system, then

∥∥P1n(t)
∥∥ =

∥∥Sn(t) – Sn–1(0)
∥∥
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=
∥∥∥∥�1–α

�α

∫ t

0

[
Q1(τ , Sn–1) – Q1(τ , Sn–2)

]
(t – τ )α–1 dτ

∥∥∥∥

≤ �1–α

�α

∫ t

0

∥∥[Q1(τ , Sn–1) – Q1(τ , Sn–2)
]
(t – τ )α–1∥∥dτ .

With Lipchitz condition (6), we have

∥∥P1n(t)
∥∥≤ �1–α

�α
d1

∫ t

0

∥∥P1(n–1)(τ )
∥∥dτ . (7)

As a similar way, we obtained

∥∥Pin(t)
∥∥≤ �1–α

�α
di

∫ t

0

∥∥Pi(n–1)(τ )
∥∥dτ , i = 2, 3, . . . , 9. (8)

Thus, we can write that

Sn(t) =
n∑

j=1

P1j(t), En(t) =
n∑

j=1

P2j(t), (E1)n(t) =
n∑

j=1

P3j(t),

(E2)n(t) =
n∑

j=1

P4j(t),

In(t) =
n∑

j=1

P5j(t), (I1)n(t) =
n∑

j=1

P6j(t), (I2)n(t) =
n∑

j=1

P7j(t),

Tn(t) =
n∑

j=1

P8j(t), Rn(t) =
n∑

j=1

P9j(t).
�

The existence of a solution is given in the next theorem.

Theorem 7.2 A system of solutions given by the fractional SEITR model (1) exists if there
exists t1 such that

�1–α

�α
t1di < 1.

Proof From the recursive technique and Eq. (7) and Eq. (8) we conclude that

∥∥P1n(t)
∥∥≤ ∥∥Sn(0)

∥∥
[

�1–α

�α
d1t
]n

,

∥∥P2n(t)
∥∥≤ ∥∥En(0)

∥∥
[

�1–α

�α
d2t
]n

,

∥∥P3n(t)
∥∥≤ ∥∥(E1)n(0)

∥∥
[

�1–α

�α
d3t
]n

,

∥∥P4n(t)
∥∥≤ ∥∥(E2)n(0)

∥∥
[

�1–α

�α
d4t
]n

,
∥∥P5n(t)

∥∥≤ ∥∥In(0)
∥∥
[

�1–α

�α
d5t
]n

,

∥∥P6n(t)
∥∥≤ ∥∥(I1)n(0)

∥∥
[

�1–α

�α
d6t
]n

,
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∥∥P7n(t)
∥∥≤ ∥∥(I2)n(0)

∥∥
[

�1–α

�α
d7t
]n

,
∥∥P8n(t)

∥∥≤ ∥∥Tn(0)
∥∥
[

�1–α

�α
d8t
]n

,

∥∥P9n(t)
∥∥≤ ∥∥Rn(0)

∥∥
[

χ1–α

�α
d9t
]n

.

Thus, the system has a continuous solution. To prove that the above functions construct
a solution for model (2), we assume that

S(t) – S(0) = Sn(t) – W1n(t), E(t) – E(0) = En(t) – W2n(t),

(E1)(t) – (E1)(0) = (E1)n(t) – W3n(t),

(E2)(t) – (E2)(0) = (E2)n(t) – W4n(t), I(t) – I(0) = In(t) – W5n(t),

(I1)(t) – (I1)(0) = (I1)n(t) – W6n(t),

(I2)(t) – (I2)(0) = (I2)n(t) – W7n(t), T(t) – T(0) = Tn(t) – W8n(t),

R(t) – R(0) = Rn(t) – W9n(t).

So

∥∥W1n(t)
∥∥≤ �1–α

�α

∫ t

0

∥∥Q1(τ , S) – Q1(τ , Sn–1)
∥∥dτ ≤ �1–α

�α
d1‖S – Sn–1‖t.

By repeating the method, we obtain

∥∥W1n(t)
∥∥≤

[
�1–α

�α
t
]n+1

dn+1
1 h.

At t1, we get

∥∥W1n(t)
∥∥≤

[
�1–α

�α
t1

]n+1

dn+1
1 h.

As n approaches to ∞, this implies ‖W1n(t)‖ → 0. Similarly, we can obtain ‖Win(t)‖ →
0, i = 2, 3, 4, 5, 6, 7, 8, 9. Hence the theorem is proved.

To prove the uniqueness of the solution, consider that the system has another solution
such as S
 (t), E
 (t), E1
 (t), E2
 (t), I
 (t), I1
 (t), I2
 (t), T
 (t), and R
 (t), then we have

S(t) – S
 (t) =
�1–α

�α

∫ t

0

(
Q1(τ , S) – Q1(τ , S
 )

)
dτ .

We take the norm of this equation

∥∥S(t) – S
 (t)
∥∥≤ �1–α

�α

∫ t

0

∥∥(Q1(τ , S) – Q1(τ , S
 )
)∥∥dτ .

It follows from Lipschitz condition (3) that

∥∥S(t) – S
 (t)
∥∥≤ �1–α

�α
d1t
∥∥S(t) – S
 (t)

∥∥.
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Thus,

∥∥S(t) – S
 (t)
∥∥
(

1 –
�1–α

�α
d1t
)

≤ 0. (9)

�

Theorem 7.3 The solution of model (3) is unique if the following condition holds:

(
1 –

�1–α

�α
d1t
)

> 0.

Proof Suppose that condition (9) holds

∥∥S(t) – S
 (t)
∥∥
(

1 –
�1–α

�α
d1t
)

≤ 0.

Then ‖S(t) – S
 (t)‖ = 0. Therefore, we get S(t) = S
 (t). Likewise, the same equality can
be shown for E, E1, E2, I , I1, I2, T , and R. �

8 Numerical results
In this section, we present the numerical results for the TB-model (3). We used the
Adams–Bashforth–Moulton scheme [11]. Set h = T

N , tn = nh, n = 0, 1, 2, . . . , N ∈ Z
+, we

can write system (3) as follows:

Sn+1 = S0 +
hα�1–α

�(α + 2)
[
� + a8Rp

n+1 – (λ + μ)Sp
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
� + a8Ri – (λ + μ)Si

]
,

En+1 = E0 +
hα�1–α

�(α + 2)
[
(1 – a1)λ

(
Sp

n+1 + a5Tp
n+1
)

– (σ + μ)Ep
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
(1 – a1)λ(Si + a5Ti) – (σ + μ)Ei

]
,

(E1)n+1 = (E1)0 +
hα�1–α

�(α + 2)
[
a2σEp

n+1 + a3(E2)p
n+1 – a7λ(E1)p

n+1 – (r0 + μ)(E1)p
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
a2σEi + a3(E2)i – a7λ(E1)i – (r0 + μ)(E1)i

]
,

(E2)n+1 = (E2)0 +
hα�1–α

�(α + 2)
[
(1 – a2)σEp

n+1 – (a4λ + k1 + a3 + μ)(E2)p
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
(1 – a2)σEi – (a4λ + k1 + a3 + μ)(E2)i

]
,

In+1 = I0 +
hα�1–α

�(α + 2)
[
a1λ
(
Sp

n+1 + a5Tp
n+1
)

+ a7λ(E1)p
n+1 + (a4λ

+ k1)(E2)p
n+1 – (k2 + μ)Ip

n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
a1λ(Si + a5Ti) + a7λ(E1)i + (a4λ + k1)(E2)i – (k2 + μ)Ii

]
,
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(I1)n+1 = (I1)0 +
hα�1–α

�(α + 2)
[
a6k2Ip

n+1 – (r1 + μ)(I1)p
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
a6k2Ii – (r1 + μ)(I1)i

]
,

(I2)n+1 = (I2)0 +
hα�1–α

�(α + 2)
[
(1 – a6)k2Ip

n+1 – (r2 + μ)(I2)p
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
(1 – a6)k2Ii – (r2 + μ)(I2)i

]
,

Tn+1 = T0 +
hα�1–α

�(α + 2)
[
r0(E1)p

n+1 + r1(I1)p
n+1 + r2(I2)p

n+1 – (a1a5λ + r3 + μ)Tp
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
r0(E1)i + r1(I1)i + r2(I2)i – (a1a5λ + r3 + μ)Ti

]
,

Rn+1 = R0 +
hα�1–α

�(α + 2)
[
r3Tp

n+1 – (a8 + μ)Rp
n+1
]

+
hα�1–α

�(α + 2)

n∑
i=0

ai,n+1
[
r3Ti – (a8 + μ)Ri

]
,

where

Sp
n+1 = S0 +

�1–α

�α

n∑
i=0

φi,n+1
[
� + a8Ri – (λ + μ)Si

]
,

Ep
n+1 = E0 +

�1–α

�α

n∑
i=0

φi,n+1
[
(1 – a1)λ(Si + a5Ti) – (σ + μ)Ei

]
,

(E1)p
n+1 = (E1)0 +

�1–α

�α

n∑
i=0

φi,n+1
[
a2σEi + a3(E2)i – a7λ(E1)i – (r0 + μ)(E1)i

]
,

(E2)p
n+1 = (E2)0 +

�1–α

�α

n∑
i=0

φi,n+1
[
(1 – a2)σEi – (a4λ + k1 + a3 + μ)(E2)i

]
,

Ip
n+1 = I0 +

�1–α

�α

n∑
i=0

φi,n+1
[
a1λ(Si + a5Ti) + a7λ(E1)i + (a4λ + k1)(E2)i – (k2 + μ)Ii

]
,

(I1)p
n+1 = (I1)0 +

�1–α

�α

n∑
i=0

φi,n+1
[
a6k2Ii – (r1 + μ)(I1)i

]
,

(I2)p
n+1 = (I2)0 +

�1–α

�α

n∑
i=0

φi,n+1
[
(1 – a6)k2Ii – (r2 + μ)(I2)i

]
,

Tp
n+1 = T0 +

�1–α

�α

n∑
i=0

φi,n+1
[
r0(E1)i + r1(I1)i + r2(I2)i – (a1a5λ + r3 + μ)Ti

]
,

Rp
n+1 = R0 +

�1–α

�α

n∑
i=0

φi,n+1
[
r3Ti – (a8 + μ)Ri

]
,
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in which

ai,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nηj+1 – (n – αj)(n + 1)αj ; i = 0,

(n – i + 2)αj+1 + (n – i)αj+1 – 2(n – i + 1)αj+1; 1 ≤ i ≤ n,

1; i = n + 1

and

φi,n+1 =
hαj

αj

(
(n – i + 1)αj – (n – i)αj

)
; 0 ≤ i ≤ n, and j = 1, 2, 3, 4, 5.

9 Numerical simulations
The following are the graphical simulations for the fractional orders α = 0.5, 0.6, 0.7, 0.8,
0.9, 0.99, 1.

In many countries, the BCG vaccine is given to a newly born baby. It can be observed
from the figure that the number of susceptible individuals decreases over time as people
are immunized through BCG vaccination. In Fig. 5, we can observe that the number of
susceptible individuals decreases over time.

In Fig. 6, due to vaccination, the number of exposed individuals to TB also decreases
over time. However, many people are still reported as TB-infected with different compart-
ments. As NLI individuals do not have any symptoms and feel sick, they are not spreaders
of TB bacteria to others; but can be identified using skin or blood tests. We can also ob-
serve from Fig. 3 that initially the number of NLI individuals increases, and then due to
the decrease in the number of susceptible individuals concerning time, the number of NLI
individuals decreases slowly over time.

Because of awareness regarding TB infection, people are taking precautions in the initial
compartments, and if diagnosed as TB-infected, the person becomes diagnosed latently
infected (DLI) and then starts taking treatment. In Fig. 7, we can observe that the number
of DLI individuals is increasing slowly over time as NLI individuals are diagnosed positive.

Figure 5 Number of susceptible individuals S(t) v/s time (t)
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Figure 6 Number of new latently infected individuals E(t) v/s time (t)

Figure 7 Number of diagnosed latently infected Individuals E1(t) v/s time (t)

In Fig. 8, as discussed earlier, from the symptoms of NLI-TB we can observe that the
number of ULI individuals is increasing over time. As the duration of the treatment is long,
some people stop taking treatment as they feel better and hence do not recover completely,
which may convert them into actively infected and spread the infection to other people.

In Fig. 9, due to the awareness about TB disease, infected people start taking medication
immediately. We can observe that the number of DAI with prompt treatment increases
over the time after diagnosed as positively infected.

The individual who is not diagnosed in the initial compartment may become actively in-
fected and also spread the infection to others. People having symptoms of TB infection but
not diagnosed as TB-infected and people diagnosed as positive but not starting treatment
may move to treatment class after reaching more severe conditions. In Fig. 10, we can
observe that the infection of some people who are diagnosed as infected becomes quite
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Figure 8 Number of undiagnosed latently infected individuals E2(t) v/s time (t)

Figure 9 Number of diagnosed individuals as actively infected with prompt treatment I1(t) v/s time (t)

severe, and then they start taking medication, due to which the number of DAI individuals
with delay in treatment increases after some time.

Figure 11 represents the number of individuals under the treatment after diagnosed as
infected. This includes the number of individuals in DLI, DLI with prompt treatment and
DLI with delay treatment. Perhaps, during the treatment some people may become drug-
resistant and can be classified as MDR and XDR. As in all compartments, people are get-
ting TB infection, the number of infected individuals increases initially and then decreases
over time.

Figure 12 represents the number of recovered/removed individuals. The duration of
medication or treatment takes longer time for TB. So, after getting partial recovery, some
people stop medication or treatment. The individual recovered from this stage may be-
come susceptible for the infection and may have chance of getting infected again.



Panchal et al. Advances in Continuous and Discrete Models         (2022) 2022:27 Page 21 of 25

Figure 10 Number of individual diagnosed as actively infected with delay treatment individuals I2(t) v/s time
(t)

Figure 11 Number of treated individuals T (t) v/s time (t)

From Fig. 13 we observe that if the contact rate λ of an infected individual is considered
as lower than the recovery rate r3, the number of infected people rises at first, then drops
significantly.

Figure 14 represents the behavior of the infected individual when the contact rate λ,
treatment rates r1 and r2 are considered as 1 and the recovery rate as r3 = 0.1, then we
can observe a rapid increase in the number of infected individuals and increased burden
on treatment class. Moreover, the recovery rate is lower than the contact rate and the
treatment rate, which decreases the number of infected individuals due to the mortality
through infection.

For Fig. 15, we have considered the values of the contact rate λ = 1, the rate at which an
individual from the treatment class joins the infected class a1 = a5 = 1, the treatment rates
r1 and r2 are considered as 0.5 and the recovery rate as r3 = 0.1. As the recovery rate is
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Figure 12 Number of recovered/removed or stop treatment individuals R(t) v/s time (t)

Figure 13 Number of infected individual I(t) over the time(t) when λ < r3

very low in comparison to other rates, the number of infected individuals in the infected
class increases promptly.

10 Conclusion
In this paper, a dynamical fractional-order mathematical model in the Caputo sense is pro-
posed for the behavioral investigation of TB infection in India. Using the nonlinear least
square algorithm, we estimated the parameters used in this model using TB-infected cases
reported in India from the year 2000 to 2020, which shows that the model curve provides a
good fit to the real data. Moreover, the future trend of the model curve provides indication
to the decision maker or policy maker for better devising disease prevention and control
measures. Further, we present the endemic equilibria, locally asymptotically stable, and
the TB infection-free equilibrium in terms of the basic reproduction number. The value
of the basic reproduction is obtained as �0 = 1.7307 demonstrating the importance of ap-
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Figure 14 Number of infected individuals I(t) over the time(t) when λ = r1 = r2 = 1 and r3 = 0.1

Figure 15 Number of infected individuals I(t) over the time(t) when λ = a1 = a5 = 1, r1 = r2 = 0.5,and r3 = 0.1

propriate control and prevention strategies. The existence and uniqueness of the approxi-
mate solution for the model is derived using the generalized Adams–Bashforth–Moulton
method in the numerical results. The graphical representation is provided to demonstrate
the flow of all compartments for α = 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1. The integer order model
represents the rate of infection at order 1, but fails to provide any information between or-
der 0 and 1, which is important to identify the initial behavior of the infection. However,
our model represents the fractional rate of infection at different order between 0 and 1 to
capture the significant information and analyze the intricate dynamics of the infection of
tuberculosis for better apprehension, which can be observed in all the above graphical rep-
resentation. Tuberculosis infection is curable, but still the infection is transmitting rapidly
between the community. Also, from the real data of TB infection in India [3] we can ob-
serve that the confirmed cases of TB infection decreased during the COVID-19 lockdown
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in India from March 2020 to December 2020. During the lockdown, people were using
masks, sanitizer, maintained social distancing, and followed COVID-19 guidelines; and
this action plan played a vital role inpreventing TB infection among the population of In-
dia. Further, we can extend this model by considering the regimen changed compartment
or the exempted compartment for non-evaluate individual or both separately.
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