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Background: Mendelian Randomization (MR) studies show conflicting causal
associations of genetically predicted serum urate with cardiovascular risk factors
(i.e., hypertension, diabetes, lipid profile, and kidney function). This study aimed to
robustly investigate a causal relationship between urate and cardiovascular risk factors
considering single nucleotide polymorphisms (SNPs) as instrumental variables using
two-sample MR and various sensitivity analyses.

Methods: Data on SNP-urate associations were taken from the Global Urate Genetics
Consortium and data on SNP-cardiovascular risk factor associations were taken from
various consortia/UK Biobank. SNPs were selected by statistically and biologically driven
approaches as instrumental variables. Various sensitivity analyses were performed
using different MR methods including inverse variance weighted, MR-Egger, weighted
median/mode, MR-PRESSO, and the contamination mixture method.

Results: The statistically driven approach showed significant causal effects of urate on
HDL-C and triglycerides using four of the six MR methods, i.e., every 1 mg/dl increase
in genetically predicted urate was associated with 0.047 to 0.103 SD decrease in HDL-
C and 0.034 to 0.207 SD increase in triglycerides. The biologically driven approach
to selection of SNPs from ABCG2, SLC2A9, SLC17A1, SLC22A11, and SLC22A12
showed consistent causal effects of urate on HDL-C from all methods with 0.038
to 0.057 SD decrease in HDL-C per 1 mg/dl increase of urate, and no evidence of
horizontal pleiotropy was detected.

Conclusion: Our study suggests a significant and robust causal effect of genetically
predicted urate on HDL-C. This finding may explain a small proportion (7%) of the
association between increased urate and cardiovascular disease but points to urate
being a novel cardiac risk factor.

Keywords: cardiovascular risk factor, instrumental variable, Mendelian Randomization, urate, urate transporter
gene
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INTRODUCTION

Cardiovascular disease (CVD) carries the greatest global
disease burden (World Health Organization, 2017). It can be
caused by various risk factors including serum urate (Feig
et al., 2008). Previous meta-analyses have shown that elevated
urate/hyperuricemia is associated not only with CVD (Kim et al.,
2010) but also with CVD risk factors, i.e., hypertension (Grayson
et al., 2011), type 2 diabetes mellitus (T2DM) (Kodama et al.,
2009), metabolic syndrome (Yuan et al., 2015), and chronic
kidney disease (CKD) (Li et al., 2014). Some studies also show
that colchicine, a drug used for treatment of gout induced by
urate crystal deposition, can reduce the risk of CVD (Tardif et al.,
2019; Nidorf et al., 2020). However, it is unclear whether urate
is truly causal for CVD, and if it is, whether this is through
traditional risk factors or via a novel route.

Mendelian Randomization (MR) has been increasingly used to
assess causal inference between gene(s), exposure/phenotype and
clinical outcomes, considering that alleles are randomly allocated
at meiosis and hence can be used as instrumental variables
(IV) to test causation (Lawlor et al., 2008). Meiosis is similar
to a randomized trial in that alleles are randomly assigned at
conception, and hence unconfounded, except for ethnicity. The
effect size of a single nucleotide polymorphism (SNP) is often
too weak to serve as a robust IV, and thus genetic risk scores
consisting of many SNPs are used to boost the effect size and
increase the strength of the IV.

Two-sample MR is commonly used to assess causal
association. It requires summary statistic data for SNP-
phenotype and SNP-outcome associations that are derived from
meta-analyses of genome-wide association studies (GWAS).
Various statistical methods have been applied, e.g., inverse
variance weighted (IVW) (Lawlor et al., 2008; Burgess et al.,
2013), MR-Egger regression (Bowden et al., 2015), weighted
median estimator (Bowden et al., 2016), weighted mode estimator
(Hartwig et al., 2017), MR-PRESSO (Verbanck et al., 2018), and
the contamination mixture method (Burgess et al., 2020b).

Several MR studies have been conducted to assess causal
associations of genetic IVs related to urate and coronary heart
disease (CHD) (Yang et al., 2010; Kleber et al., 2015; Keenan et al.,
2016; White et al., 2016; Efstathiadou et al., 2019), hypertension
(Kleber et al., 2015), body mass index (BMI) (White et al., 2016),
fasting glucose (Yang et al., 2010; White et al., 2016), T2DM
(Sluijs et al., 2015; Keenan et al., 2016; White et al., 2016),
estimated glomerular filtration rate (eGFR) (Yang et al., 2010;
Jordan et al., 2019), CKD (Yang et al., 2010; Jordan et al., 2019),
and lipid profile (White et al., 2016). None suggested a causal
association between urate and CHD (Yang et al., 2010; Kleber
et al., 2015; Keenan et al., 2016; White et al., 2016), except one
study (Efstathiadou et al., 2019) which suggested a modest causal
association between urate and CHD, and one study (White et al.,
2016) which found causal associations between 31 urate-SNPs
and some CVD risk factors using the IVW method, which can
be biased in the presence of pleiotropy (i.e., the IVs are associated
with the outcome through pathways other than urate). Therefore,
sensitivity analyses using other MR methods are recommended
(Bowden et al., 2016; Burgess et al., 2020a). This study aimed
to investigate a causal relationship between urate and CVD

risk factors using genetic variants as the IVs, and two-sample
MR with various sensitivity analyses to explore the robustness
of the findings.

MATERIALS AND METHODS

We implemented two-sample MR complying with the STROBE-
MR guidelines (Davey Smith et al., 2019) and the guidelines for
performing MR (Burgess et al., 2020a). A MR causal-diagram
was composed of genetic IVs, urate (as the exposure), and CVD
risk factors (as outcomes, see Figure 1). Three IV assumptions
were considered (Bowden et al., 2015); genetic IVs are strongly
associated with urate; genetic IVs are associated with CVD risk
factors only through urate; the associations between genetic IVs
and urate and CVD risk factors are unconfounded.

Data Sources
Summary data were retrieved from GWAS datasets via the
MR-Base platform developed by the Medical Research Council
Integrative Epidemiology Unit (MRC IEU); these datasets have
already undergone the recommended quality control processes
as previously described (Hemani et al., 2018). The data
characteristics and the CVD risk factors considered are described
in Table 1. Ethics approval and informed consent were previously
obtained for all individual studies included. Data were retrieved
for two pathways as follows:

SNP → Urate Association
Single nucleotide polymorphism-urate associations were
obtained from the Global Urate Genetics Consortium (GUGC),
i.e., a meta-analysis of 48 GWAS in 110,347 Europeans (Kottgen
et al., 2013). Mean age and percentage of males were 52.12 years
and 45.15%, respectively. Mean (standard deviation; SD) urate
ranged from 3.86 (0.92) to 6.10 (1.46) mg/dl; most studies used
the uricase method for measuring urate. SNPs were selected as
genetic IVs based on two approaches (Burgess et al., 2020a).
First, a statistically driven approach was used to select SNPs
that were highly associated with urate (P-value < 5 × 10−8)
and in low linkage-disequilibrium with other SNPs (r2 < 0.001)
within a clumping distance of 10,000 kb. Second, a biologically
driven approach was used considering candidate genes ABCG2,
SLC2A9, SLC22A12, SLC22A11, SLC17A1, and SLC17A3
which encode urate transporters (Yang et al., 2010; Kottgen
et al., 2013; Merriman, 2017); SNPs that were associated with
urate (P-value < 5 × 10−8) and independent at r2 < 0.1
were selected. The summary data of the IVs on urate were
extracted, F-statistic > 10 was used to evaluate if those SNPs
were qualified IVs.

SNP → CVD Risk Factor Associations
Cardiovascular disease risk factors included blood pressure [i.e.,
systolic blood pressure (SBP)/diastolic blood pressure (DBP) and
hypertension], T2DM and fasting glucose, renal outcomes (i.e.,
CKD and eGFR), lipid profile (i.e., LDL-C, HDL-C, triglycerides,
total cholesterol, and hyperlipidemia), and BMI, see Table 1.

Summary data for SNP-BP associations (SBP/DBP and
hypertension, defined as clinically diagnosed high blood
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FIGURE 1 | A two-sample Mendelian Randomization causal diagram with three instrumental variable assumptions. (1) IVs are associated with urate; (2) IVs have no
direct effect on the CVD risk factors, except through urate; (3) IVs are not associated with confounders of urate -CVD risk factor association. Arrows represent
associations. Dashed lines with a cross in the middle represent no associations. BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular disease;
DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; IV, instrumental variable; LDL-C, low-density
lipoprotein cholesterol; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus.

pressure) were obtained from the MRC-IEU UK Biobank
GWAS pipeline (Elsworth et al., 2017), see more details
in Supplementary Note 1. Associations of SNP-SBP, SNP-
DBP, and SNP-hypertension were obtained from >436,000
European participants.

Summary data for SNP-T2DM associations were obtained
from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) Consortium (Morris et al., 2012) and SNP-fasting
glucose associations were from the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC) (Manning et al.,
2012). The DIAGRAM Consortium data was extracted from the
DIAGRAMv3 GWAS meta-analysis comprised of 12,171 T2DM
cases and 56,862 controls of Europeans from 12 GWAS. T2DM
was defined by original studies using several criteria including
a fasting glucose ≥ 126 mg/dl, HbA1c ≥ 6.5%, self-report,
medications used, etc. For MAGIC, data was included from
>58,000 Europeans across 29 cohorts from the discovery stage.

Associations of SNP-CKD and SNP-eGFR were retrieved from
the Chronic Kidney Disease Genetics (CKDGen) Consortium
consisting of 43 studies for CKD (12,385 CKD cases and
104,780 controls) and 48 studies with 133,814 individuals
for creatinine-based eGFR (eGFRcrea) (Pattaro et al., 2016).
Participants were mainly of European descent. CKD was defined
as eGFRcrea <60 ml/min/1.73m2. SNP-BMI summary data were
retrieved from the Genetic Investigation of ANthropometric
Traits (GIANT) Consortium (Locke et al., 2015), which included
125 studies from 322,154 European participants.

The SNPs-lipid profile data (i.e., LDL-C, HDL-C, triglycerides,
and total cholesterol) were obtained from the Global Lipids
Genetics Consortium (GLGC) (Willer et al., 2013), which
pooled 23 GWAS from 94,595 Europeans. In addition, summary
statistics for hyperlipidemia (3,439 cases and 459,571 controls),
defined by ICD-10, were also retrieved from the MRC-IEU
UK Biobank.

The effects of the genetic IVs on each CVD risk factor were
extracted from source data as described above. Where specific

SNP data was missing, a proxy SNP in linkage disequilibrium
(r2

≥ 0.8) was used instead (Hemani et al., 2018). All data
were aligned to the Genome Reference Consortium Human
Build 37 (GRCh37) and SNP identifiers were mapped to dbSNP
build 144.

Data Harmonization
Summary data for the SNP-urate and SNP-CVD risk factor
associations [beta coefficient (β) and standard error (SE)] were
retrieved and harmonized for comparisons of minor versus
major (reference) alleles across databases. Palindromic SNPs
(i.e., SNPs with A/T or G/C) with a minor allele frequency
above 0.42 were excluded given the difficulty in identifying the
reference strand when the minor allele frequency was close to 0.5
(Hemani et al., 2018).

Statistical Analysis
The two-sample MR analyses were performed according to
the guidelines (Burgess et al., 2020a). The main causal
effect was estimated by a ratio of beta-coefficients of SNP-
CVD risk factors to SNP-urate, and this was combined
across all genetic IVs using the IVW method (Burgess
et al., 2013) with a random-effect model. Five additional
sensitivity analyses [i.e., MR-Egger (Bowden et al., 2015),
weighted median (Bowden et al., 2016) and mode (Hartwig
et al., 2017), MR-PRESSO (Verbanck et al., 2018), and
the contamination mixture methods (Burgess et al., 2020b)]
were performed to assess whether the causal estimates were
robust to potential horizontal pleiotropy, see more details in
Supplementary Note 2. Furthermore, leave-one-out analysis
was conducted by removing one SNP at a time to observe
the individual contributions to the IVW causal effects. In
addition, bidirectional MR analysis was performed to identify
the direction of any causal association. Steiger filtering was used
to remove SNPs that were more correlated to the outcome
than the exposure. Power calculations were performed, see
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TABLE 1 | Characteristics of data sources.

Genetic associations Consortium Year Sample size Population GWAS ID Category Unit of continuous traits

SNP-exposure

SNP-urate GUGC (Kottgen et al., 2013) 2013 110,347 European ancestry ieu-a-1055 Continuous mg/dl

SNP-outcome (CVD risk factor)

SNP-SBP MRC-IEU (Elsworth et al., 2017) 2018 436,419 European ancestry ukb-b-20175 Continuous SD

SNP-DBP MRC-IEU (Elsworth et al., 2017) 2018 436,424 European ancestry ukb-b-7992 Continuous SD

SNP-hypertension MRC-IEU (Elsworth et al., 2017) 2018 461,880 124,227 cases 337,653 controls European ancestry ukb-b-14177 Binary NA

SNP-fasting glucose MAGIC (Manning et al., 2012) 2012 58,074 European ancestry ieu-a-773 Continuous mmol/l

SNP-T2DM DIAGRAM (Morris et al., 2012) 2012 69,033 12,171 cases 56,862 controls European ancestry ieu-a-26 Binary NA

SNP-eGFR CKDgen (Pattaro et al., 2016) 2015 133,814 Mainly European ancestry ieu-a-1105 Continuous Log ml/min/1.73 m2

SNP-CKD CKDgen (Pattaro et al., 2016) 2015 117,165 12,385 cases 104,780 controls Mainly European ancestry ieu-a-1102 Binary NA

SNP-BMI GIANT (Locke et al., 2015) 2015 322,154 European ancestry ieu-a-835 Continuous SD (1 SD: 4.77 kg/m2)

SNP-LDL-C GLGC (Willer et al., 2013) 2013 94,595 European ancestry ebi-a-GCST002222 Continuous SD (1 SD: 38.67 mg/dl)

SNP-HDL-C GLGC (Willer et al., 2013) 2013 94,595 European ancestry ebi-a-GCST002223 Continuous SD mg/dl (1 SD: 15.51 mg/dl)

SNP-triglycerides GLGC (Willer et al., 2013) 2013 94,595 European ancestry ebi-a-GCST002216 Continuous mg/dl (1 SD: 90.72 mg/dl)

SNP-total cholesterol GLGC (Willer et al., 2013) 2013 94,595 European ancestry ebi-a-GCST002221 Continuous mg/dl (1 SD: 41.75 mg/dl)

SNP-hyperlipidemia MRC-IEU (Elsworth et al., 2017) 2018 463,010 3439 cases 459,571 controls European ancestry ukb-b-17462 Binary NA

BMI, body mass index; CKD, chronic kidney disease; CKDgen, the Chronic Kidney Disease Genetics; CVD, cardiovascular disease; DBP, diastolic blood pressure; DIAGRAM, the DIAbetes Genetics Replication And
Meta-analysis; eGFR, estimated glomerular filtration rate; GIANT, the Genetic Investigation of ANthropometric Traits; GLGC, the Global Lipids Genetics Consortium; GUGC, the Global Urate Genetics Consortium; GWAS,
genome-wide association study; HDL-C, high-density lipoprotein cholesterol; ID, identification number; kg/m2, kilograms per square meter; LDL-C, low-density lipoprotein cholesterol; MAGIC, the Meta-Analyses of
Glucose- and Insulin-related traits Consortium; NA, not applicable; mg/dl, milligrams per deciliter; ml/min/1.73 m2, milliliters per minute per 1.73 of square meter of body surface area; mmol/l, millimoles per liter;
MRC-IEU, the MRC Integrative Epidemiology Unit; NA, not applicable; SBP, systolic blood pressure; SD, standard deviation; T2DM, type 2 diabetes mellitus.
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Supplementary Tables 1A,B. R software version 3.6.3 was used
for all analyses.

RESULTS

Selection of Genetic IVs Based on the
Statistically Driven Approach
There were 2,450,547 autosomal SNP-urate associations in the
GUGC, of which 27 were significantly associated with urate with
F statistics ranging from 35.39 to 1406.25 with corresponding
P-values of 2.36 × 10−8 to 1.00 × 10−200; the proportion
of phenotypic variance explained by each SNP (R2) ranged
from 0.00032 to 0.01262, see Supplementary Table 2. Two
palindromic SNPs (rs17632159 and rs6830367) were removed
leaving 25 SNPs for SNP-urate and SNP-outcome associations,
except for hyperlipidemia, where an additional two SNPs
(rs7654258 and rs1825043) did not have outcome data, leaving
23 SNPs in total.

Mendelian Randomization results are described in
Figures 2A,B. Between 15 and 25 SNPs were significantly
associated with continuous outcomes through urate. Results
from the six different MR methods were largely consistent
for BMI, LDL-C, triglycerides, and total cholesterol with
inconsistent causal effects for SBP, DBP, and HDL-C. For
instance, two or three of the six MR methods showed significant
causal effects of urate on SBP (i.e., MR-Egger, MR-PRESSO, and
the contamination mixture method) and DBP (i.e., MR-Egger
and MR-PRESSO) but the direction of the effects differed
depending on the MR approach used. Four MR methods (i.e.,
IVW, weighted median, weighted mode, and MR-PRESSO)
consistently showed significant causal effects of urate on HDL-C,
i.e., for each 1 mg/dl increase in urate determined by genetic
variants, there was a 0.047 to 0.103 SD decrease in HDL-C.
In addition, the IVW method, weighted median estimator,
MR-PRESSO, and the contamination mixture methods also
demonstrated that for each 1 mg/dl increase in urate determined
by genetic variants, there was a 0.034 to 0.207 SD increase in
triglycerides, see Figure 2A. No causal effects of urate on fasting
glucose and eGFR were observed.

For dichotomous outcomes, no causal effects of urate
on T2DM or hyperlipidemia were identified but inconsistent
causal effects on hypertension were observed. For hypertension,
two of the six MR methods (i.e., MR-PRESSO and the
contamination mixture method) detected causal risk effects
with odds ratio (ORs) between 1.018 and 1.025, whereas MR-
Egger detected an OR of 0.965. For CKD, two of the six
MR methods (i.e., weighted-mode and MR-PRESSO) identified
significant causal effects of urate with ORs of 1.109 and
1.125, respectively.

Heterogeneity was detected for all outcomes, see
Supplementary Table 3. In addition, the pleiotropy test using
the MR-Egger method identified significant pleiotropy with SBP,
DBP, hypertension, LDL-C, and HDL-C, see Supplementary
Table 3. It was noted that the contamination mixture method
identified bimodal causal estimates of urate on LDL-C and
T2DM, see Supplementary Table 4.

Additional leave-one-out plots were constructed, see
Supplementary Figures 1A–M. Omitting a single SNP at a
time did not significantly change the IVW causal estimates for
any outcome, except BMI, SBP, CKD, and triglycerides, where
the confidence intervals shifted from/to the null indicating
non-robust causal estimates potentially due to outliers;
scatter plots between genetically predicted urate and BMI,
SBP, CKD, and triglycerides are shown in Supplementary
Figures 2–5, respectively.

Selection of Genetic IVs Based on the
Biologically Driven Approach
Single nucleotide polymorphisms in six genes regulating urate
transport were considered. Of these, 15 SNPs were significantly
associated with urate (i.e., three SNPs in ABCG2, six SNPs in
SLC2A9, four SNPs in SLC17A1, one SNP in SLC22A11, and
one SNP in SLC22A12) with F-statistics of 49.00 to 2243.77 and
corresponding P-values of 1.30 × 10−10 to 1.00 × 10−200 and
R2 of 0.00045 to 0.01999, see Supplementary Table 5. Three
SNPs in SLC2A9 (rs10516194, rs13128385, and rs16891971) and
rs10498730 in SLC17A1 were removed due either to outcome
data not being available or SNPs being palindromic; therefore,
11–14 SNPs remained in the analyses.

Mendelian Randomization results from the biologically driven
approach are summarized (see Figures 3A,B), and were largely
similar to those from the statistically driven approach but were
more precise. For example, the causal estimates of urate on HDL-
C were significant for all methods, i.e., for each 1 mg/dl increase
in genetically predicted urate, HDL-C decreased by 0.038 to 0.057
SD. Sensitivity analysis to determine the validity of the genetic
IVs using the contamination mixture method by varying SD (i.e.,
ψ) yielded consistent results, see Supplementary Table 6. Leave-
one-out analysis also showed robust results for all outcomes, see
Supplementary Figures 2A–M.

Heterogeneity was identified as borderline for HDL-C
(P-value = 0.073 and 0.077 for IVW and MR-Egger methods,
respectively), see Supplementary Table 7. The pleiotropy test
assessed by the MR-Egger method was not significant for any
causal estimates, see Supplementary Table 7. The confidence
intervals for the causal estimates of urate on hypertension using
the contamination mixture method did not converge and showed
multiple ranges of values, see Supplementary Table 8.

We further performed bidirectional MR analysis to explore
if genetically predicted HDL-C was causally associated with
urate. A total 87 SNPs were highly associated with HDL-C with
F-statistics ranging from 29.95 to 1749.13. Two palindromic SNPs
were removed leaving 85 SNPs as genetic IVs. It was found that all
MR methods except MR-Egger showed significant causal effects
of HDL-C on urate, i.e., for each one SD increase in genetically
predicted HDL-C, there was a 0.066 to 0.115 mg/dl decrease in
urate, see Supplementary Note 3 and Supplementary Table 9.

DISCUSSION

We conducted two-sample MR assessing causal associations
between genetically predicted urate and CVD risk factors
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FIGURE 2 | Summary causal effects of genetically predicted urate on cardiovascular risk factors by a statistically driven approach. (A) Continuous outcomes.
(B) Binary outcomes. Refer to the unit of continuous outcomes in Table 1. Confidence interval (CI) from the contamination mixture method for LDL-C and T2DM
contained multiple ranges of values (not shown in the figure). IVW, inverse variance weighted; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and
Outlier; OR, odds ratio. For abbreviated outcomes, refer to abbreviation lists in Figure 1.
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FIGURE 3 | Summary causal effects of genetically predicted urate on cardiovascular risk factors by a biologically driven approach. (A) Continuous outcomes.
(B) Binary outcomes. Refer to the unit of continuous outcomes in Table 1. Confidence interval (CI) from the contamination mixture method for hypertension
contained multiple ranges of values (not shown in the figure). IVW, inverse variance weighted; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and
Outlier; OR, odds ratio. For abbreviated outcomes, refer to abbreviation lists in Figure 1.
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using six analysis methods. Our results show robust causal
associations between genetically predicted urate and HDL-C
from the biologically driven approach. In addition, from the
statistically driven approach, leave-one-out analyses suggested
that rs1260326 in GCKR was the main genetic driver of
urate on increased triglycerides and removing it resulted in a
loss of significance. This finding is consistent with previous
reported associations between rs1260326 and increased plasma
triglycerides (Vaxillaire et al., 2008).

Six genes encoding urate transporters were considered
in the biologically driven approach, i.e., ABCG2, SLC17A1,
and SLC17A3 involved in urate excretion whereas SLC2A9,
SLC22A12, and SLC22A11 regulated urate reabsorption in the
renal proximal tubule (Merriman, 2017). The results showed
significant causal estimates of these genetically predicted urate
levels on decreased HDL-C, which were consistent across
different MR methods. Sensitivity analyses using the leave-
one-out method and varying the SD of invalid IVs using
the contamination mixture method indicated robust results. In
addition, the MR-Lasso and MR-RAPS methods also showed
consistent significant results, see Supplementary Tables 10, 11.
Furthermore, the causal estimates showed low heterogeneity and
no evidence of pleiotropy, indicating valid genetic IVs. Our
findings suggested that a genetically predicted increase of one
unit in urate would decrease HDL-C by approximately 0.05 SD.
A previous MR study (Allara et al., 2019) suggested that 1 SD
increase in HDL-C would result in OR of CHD of 0.91. In other
words, the OR for 1 SD decrease in HDL-C on CHD is about 1.10.
The causal effects of 28 SNPs on CHD through urate was reported
with an OR (estimated by MR-PRESSO) of 1.07 (Efstathiadou
et al., 2019). If these causal effects are truly present, combining
these figures using a mediation framework (Burgess et al., 2015),
i.e., HDL-C mediates the effect of urate on CHD, leads to the
estimate that 7% of the causal effect of genetically predicted urate
on CHD is through HDL-C, see Supplementary Note 4. This
would indicate that urate may be a novel risk factor for CVD and
does not mediate its effect simply through other traditional risk
factors. Inflammation plays a crucial role in CVD progression and
emerging evidence suggests that colchicine, an anti-inflammatory
medication used to treat gout, may also prove beneficial for the
treatment of chronic coronary artery disease and the progression
of atherosclerosis (Opstal et al., 2020).

Several studies previously conducted two-sample MR analysis
with a statistically driven approach to assess causal relationships
between urate and CVD risk factors. One study reported small
causal effects of urate on HDL-C, triglycerides, SBP, and DBP, and
no significant causal effects of urate on LDL-C, total cholesterol,
fasting glucose, T2DM, and BMI (White et al., 2016). However,
their results were based solely on the IVW method with no other
MR methods to evaluate pleiotropy, so the causal effects may
have been biased.

Another study identified inconsistent causal estimates of urate
on SBP using different MR methods (Efstathiadou et al., 2019).
Based on our statistically driven approach, only MR-PRESSO
and the contamination mixture methods were able to identify
the causal estimates of urate on SBP but these may have been
biased as heterogeneity and pleiotropy were significantly present.

In addition, a sensitivity analysis by varying the SD of invalid
genetic IVs (ψ) in the contamination mixture method shifted
the lower confidence interval toward the null, questioning the
validity of the instruments. This method also detected multiple
ranges across the confidence intervals of the causal estimates on
both SBP and hypertension, implicating more than one biological
mechanism linking urate and SBP or hypertension (data not
shown). Our leave-one-out analyses also showed that rs2231142
in ABCG2 was influential on the effect of urate on SBP.

Another recent study revealed no evidence of causal effects of
urate on either eGFR or CKD from different MR methods (Jordan
et al., 2019), which was similar to our statistically driven approach
by the contamination mixture method. Furthermore, we found
no causal effects of urate on fasting glucose and T2DM in line
with other MR studies using individual level data and different
MR approaches (Kleber et al., 2015; Sluijs et al., 2015).

Our findings suggest that urate may be causally related
to HDL-C levels. This supports a previous meta-analysis
demonstrating a significant inverse relationship between urate
and HDL-C (Chen et al., 2020b), although longitudinal studies
reported inconsistent findings (Gonçalves et al., 2012; Babio
et al., 2015). One small study observed significantly higher
HDL-C after 3 months of allopurinol administration, a xanthine
oxidase inhibitor used for hyperuricemia treatment (Ziga and
Becic, 2013). However, randomized controlled trials did not
find a significant change in HDL-C levels in CKD and CVD
patients receiving xanthine oxidase inhibitors (Bowden et al.,
2013; Nakagomi et al., 2015). Nevertheless, there are a number
of biological mechanisms suggesting that urate may reduce
HDL-C. It has been shown that higher fructose consumption
leads to increased circulating urate and metabolic syndrome,
and, by reducing urate through allopurinol, the derangements
in the metabolic features can be alleviated (Nakagawa et al.,
2006). Another potential mechanism may be mediated through
fibroblast growth factor 21 (FGF21), a metabolic regulator
that demonstrates glucose and lipid-lowering effects in various
animal models (Xie and Leung, 2017). In diabetic monkeys,
the administration of recombinant FGF21 improves the blood
lipid profile including increasing HDL-C in a dose-dependent
manner (Kharitonenkov et al., 2007). Recently, miR-149-5p,
which targets FGF21, was shown to be significantly up-regulated
in uric acid-stimulated hepatocytes, leading to aggregated uric
acid-induced triglyceride accumulation (Chen et al., 2020a).
Taken together, it is probable that urate is causally related
to reduced HDL-C. Surprisingly, bidirectional MR indicated
that a reverse causal association between genetically predicted
HDL-C and urate may also be present; the mechanism for
this may be that an increase in apolipoprotein-A1 (the main
component of HDL-C) is associated with high eGFR (Goek et al.,
2012), which consequently increases uric acid excretion through
urine, thus lowering serum urate level as previously proposed
(Peng et al., 2015).

Our study has several strengths. Two-sample MR analysis
increases study power through the inclusion of larger sample
sizes from GWAS consortia. MR is also less influenced by
potential confounding due to the random allocation of alleles
at conception. The genetic IVs were carefully selected by the
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statistically and biologically driven hypotheses to strengthen the
robustness of the results. Our findings favor the biologically
driven approach, where SNPs were selected from genes with
biological plausibility, leading to lower heterogeneity and
pleiotropy than the statistically driven approach. The data
sources used were mostly selected from populations of European
ancestry, therefore, population stratification is much less likely.
These data also originate from public sources, so our approach
is transparent and reproducible. We have comprehensively
performed six different MR methods to account for pleiotropy
and observed robust results, including the contamination
mixture method, a novel MR method that has been proposed
to better address the issue of invalid instruments (Burgess
et al., 2020b). The urate and HDL-C causal relationship was
supported by the robust identification of genetic variants in
urate transporters.

Limitations
Some limitations could be not avoided. We used two-sample MR
methods, where datasets for SNP-urate and SNP-outcomes were
derived from different individuals. A degree of overlap in data
sources for SNP-urate (i.e., GUGC) and the outcome consortia
(i.e., CKDgen, DIAGRAM, MAGIC, GIANT, and GLGC) might
also affect causal estimates. The results of LD score regression
analysis provided in LD Hub (Bulik-Sullivan et al., 2015; Zheng
et al., 2017) indicate that the intercept of genetic correlations
between urate and HDL-C was 1.057, indicating some degree
of sample overlap. Lastly, some outcome data (e.g., T2DM and
hypertension) were defined slightly differently across GWAS,
making absolute standardization impossible based on summary-
aggregated data.

CONCLUSION

Our data indicates a significant causal effect of genetically
predicted urate on HDL-C and supports recent randomized
controlled trial data suggesting that colchicine, a commonly
prescribed drug for the treatment of gout, reduces the risk
of CVD. Furthermore, our results suggest that only a small
component (7%) of this association may be mediated by known
risk factors, especially HDL, and that the majority of this effect is
likely mediated by other, novel routes.
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