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Abstract

Exposure to traumatic events is common. While many individuals recover following trauma 

exposure, a substantial subset develop adverse posttraumatic neuropsychiatric sequelae (APNS) 

such as posttraumatic stress, major depression, and regional or widespread chronic 

musculoskeletal pain. APNS cause substantial burden to the individual and to society, causing 

functional impairment and physical disability, risk for suicide, lost workdays, and increased health 

care costs. Contemporary treatment is limited by an inability to identify individuals at high risk of 

APNS in the immediate aftermath of trauma, and an inability to identify optimal treatments for 

individual patients. Our purpose is to provide a comprehensive review describing candidate blood-

based biomarkers that may help to identify those at high risk of APNS and/or guide individual 

intervention decision-making. Such blood-based biomarkers include circulating biological factors 

such as hormones, proteins, immune molecules, neuropeptides, neurotransmitters, mRNA and 

noncoding RNA expression signatures, while we do not review genetic and epigenetic biomarkers 

due to other recent reviews of this topic. The current state of the literature on circulating risk 

biomarkers of APNS is summarized, and key considerations and challenges for their discovery and 

translation are discussed. We also describe the AURORA study, a specific example of current 
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scientific efforts to identify such circulating risk biomarkers and the largest study to date focused 

on identifying risk and prognostic factors in the aftermath of trauma exposure.

Keywords

Trauma; PTSD; Pain; Depression; Substance Abuse; RNA; microRNA; prediction; resilience

Introduction

Exposure to traumatic events is common2, 3. While many individuals recover following 

trauma exposure, a substantial subset develop adverse posttraumatic neuropsychiatric 

sequelae (APNS). APNS, as previously defined4, can include a wide range of 

neuropsychiatric outcomes; three of the most common APNS are posttraumatic stress (PTS), 

major depression, and regional or widespread chronic musculoskeletal pain (CMP). These 

APNS cause tremendous suffering, functional impairment, high health care costs, and are a 

leading cause of disability among current and former members of the armed forces.5–14

Individuals who develop APNS often present for emergency care or other health care in the 

immediate/early aftermath of the inciting event, creating the opportunity to initiate 

secondary preventive interventions to those at high risk. Risk stratification tools are applied 

to tens of thousands of trauma survivors in Emergency Departments throughout the US 

every day, including both clinician assessments (e.g., CCR and NEXUS17 criteria for 

cervical fracture risk) and blood-based biomarkers (e.g., lactate18–20, base deficit28, 29). 

Unfortunately, no risk prediction tools are in common use that identify trauma survivors at 

risk of APNS. Such tools could potentially identify at-risk individuals during an early 

neuroplastic period, when APNS treatments might be most efficacious.22–24, 30

Several clinical prediction tools for PTS have been developed using sociodemographic and 

self-report data (e.g.31–40). A number of previous studies have also examined the role of 

genetic and biological factors on APNS risk41–51, overall suggesting that biomarkers may 

improve risk stratification and/or treatment selection vs. clinical and self-report factors 

alone. Additionally, identification of blood-based risk biomarkers can provide insight into 

neurobiolgic changes occurring in the early aftermath of trauma exposure that mediate 

APNS and could identify novel targets for preventative interventions. The purpose of this 

review is to summarize current literature regarding circulating risk biomarkers of APNS, as 

well as to examine key considerations and challenges for their discovery and translation. We 

will also highlight the potential of the AURORA study, a large-scale longitudinal study of 

trauma survivors that seeks to identify such circulating risk biomarkers.

Circulating biomarkers

The NIH Biomarkers Definitions Working Group defines biomarkers as “characteristics that 

are objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention”52. 

Continued intensive interest in biomarker identification, together with increasing ambiguity 

regarding the nomenclature for biomarker subtypes, led the FDA and NIH to develop the 
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Biomarkers, EndpointS and other Tools (BEST) resource. This initiative seeks to improve 

communication, align expectations, and improve scientific understanding of biomarkers and 

created definitions for diagnostic biomarkers and susceptibility (“risk”) biomarkers.

Diagnostic biomarkers are defined as those that detect or confirm the presence of a disease 

or condition.52 Such biomarkers are the most common type of blood-based biological 

markers identified for APNS to-date53–55, and include circulating biomarkers cataloged in 

the PTSD Biomarker Database.56 Risk biomarkers are defined as biomarkers that indicate 

the potential for developing a disease that is not yet clinically apparant. Examples of 

circulating blood-based biomarkers that have been assessed via previous research as risk 

factors for APNS are displayed in Figure 1. Of note, genetic polymorphisms and epigenetic 

factors are also promising biomarkers of APNS, however, these will not be reviewed here as 

a number of review articles have recently covered this topic57–66.

Summary of current literature

In this review, we surveyed all literature published in NCBI PubMed since its inception and 

through the end of 2018, using the search strategy provided in Supplementary Figure 1. This 

search retrieved longitudinal human studies that examined blood-based, circulating 

biomarkers collected before or proximally to (soon after) trauma exposure that predicted 

three of the most common APNS outcomes (PTS, depression, and regional or widespread 

pain) over time. While APNS includes other sequelae (e.g. substance abuse and somatic 

(“post-concussive”) symptoms), they are not included in this review. In particular, and given 

our focus on circulating biomarkers, our search strategy a priori selected original research 

studies that assess hormones, proteins, cell-free DNA (cfDNA), mRNA and non-coding 

RNAs, immune markers, neuropeptides, and neurotransmitters, and (as noted above) it 

excluded studies that examined genotypes and epigenetic modifications. A large number of 

studies have assessed trauma exposure, APNS outcomes, and circulating biomarkers either 

retrospectively or cross-sectionally; while these studies examine the diagnostic value of 

putative biomarkers for APNS, they do not determine whether such biomarkers predict risk 

for APNS outcomes over time. Thus, such biomarkers were excluded from the present 

review. All articles retrieved were assessed for their appropriateness by two independent 

raters (SDL and ASZ), and appropriate results were supplemented with any manually 

identified articles.

Longitudinal studies to date that examine whether circulating biomarkers predict 

susceptibility or risk for APNS outcomes over time are summarized in Table 1. The majority 

of this work has focused on PTS symptoms44, 67–81 but studies have also examined 

depressive symptoms73, 74, 76 and CMP75, 82–85 as primary phenotypic endpoints. Given the 

well-established role of the hypothalamic-pituitary adrenal axis (HPA) and glucocorticoid 

signaling in stress-related disease,86, 87 many studies to date have examined various 

components of glucocorticoid signaling, including cortisol levels, glucocorticoid sensitivity, 

glucocorticoid receptor abundance, cortisol awakening response, and mRNA levels of 

notable glucocorticoid-responsive genes (e.g., FKBP5, GILZ, and SGK1) in whole blood or 

peripheral blood monocytes (PBMC).68, 69, 71, 73, 74 Other studies have examined genome-

wide mRNA expression in PBMC or leukocytes,67, 70, 88 microRNA levels and mRNA 
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expression of X chromosome gene transcripts in whole blood,75, 82 cell-free DNA,83 

Vitamin D85, C-reactive protein (CRP),80, 83 proinflammatory cytokines,44, 78, 89 

norepinephrine90, and neuropeptides and neurotransmitters including oxytocin, vasopressin, 

GABA, and neuropeptide Y in either serum or plasma.72, 76, 77, 81 While several (but not all) 

of these studies have found significant associations between biological markers and 

longitudinal APNS outcomes, to our knowledge no susceptibility/risk biomarkers have been 

replicated across research groups. Two studies, however, did observe independent replication 

across two trauma cohorts84, 88.

Furthermore, and as shown in Table 1 and discussed in the next section, there is considerable 

heterogeneity in terms of not only the type of biomarker studied but also in the 

methodololgical details, the phenotypic outcomes, and the characteristics of trauma 

exposure examined across studies, rendering cross-study comparisons challenging. 

Importantly, the type, intensity, duration, and timing of trauma are all likely to involve 

distinct biological responses and molecular changes potentially emerging at different 

timepoints following trauma exposure. Disentangling the mechanisms of pleiotropic APNS 

will be a critical task for future research endeavors and a major contribution towards 

personalized medicine and psychiatry.

One interesting observation from our literature search is that the risk biomarkers assessed 

included both those biomolecules that are predominantly considered peripherally acting (e.g. 

cortisol and inflammatory cytokines) and also those biomolecules that are thought to 

originate from and play a role in the central nervous system (e.g. GABA, NPY). Multiple 

reports evaluating PTSD and related outcomes suggest that circulating biomarkers that 

predict APNS might also reflect neurobiological changes occurring centrally91–95. For 

example, one study found a substantial overlap between biomarkers identified in post-

mortem brain tissue and previously identified blood biomarkers of schizophrenia92. Another 

study found that gene expression in the blood and brain are comparable96, suggesting that 

peripheral transcriptional programs can be representative of those in the central nervous 

system. If it is thought that peripherally detected biomarkers reflecting brain changes are 

particularly important to risk biomarker discovery for APNS, it might also be useful for 

researchers in the APNS field to consider examining neuronally derived microvesicles that 

transport specific biomolecules (e.g. miRNA, siRNA, mRNA) from the brain to peripheral 

tissues97, 98. These neuronal microvesicles are thought to communicate pathologic brain 

processes.

Key methodological considerations

Characteristics used to evaluate the potential utility of an APNS risk biomarker are 

summarized in Box 1.99 In Figure 2 we outline key steps in the discovery pipeline of 

circulating blood-based risk biomarkers of APNS. Careful methodologic design is critical, 

because small differences in collection, isolation, and quantitation can greatly influence 

validity and translation. While myriad methodologic decisions must be made for every study, 

a selection of examples from various stages of the biomarker evaluation process will be 

presented here, using the evaluation of microRNA (miRNA) as an example.
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• Cohort and participant characteristics: Perhaps one of the most critical factors 

influencing biomarker discovery is the quality of the epidemiological study in 

which biological samples are collected. This is because effect estimates of risk 

biomarker associations with APNS outcomes can be influenced by both selection 

biases, e.g. loss to follow-up100, missing data101, sampling bias102 and 

information biases, e.g. due to interviewer103, recall104, or reporting105 bias. 

Confounding106 due to various participant characteristics and participant-

centered factors (Figure 2) can also influence effect estimates.

• Biofluid evaluated: Biofluid selection must balance important trade-offs. For 

example, the use of serum or plasma (vs. whole blood) when searching for 

miRNA biomarkers has the advantages of enriching for non-blood based miRNA 

(such as neuronal-specific miRNA), and miRNA are stable in serum or plasma. 

However, the majority of miRNA in serum and plasma originate from blood cells 

(e.g. miR-451, miR-486) and inconsistent processing of serum and plasma can 

lead to inconsistent levels of these miRNA to be released into the extracellular 

compartment107.

• Timing of processing: Time variation prior to processing (the amount of time that 

blood sits at room temperature following blood draw) can lead to inconsistent 

miRNA levels across samples due to ex-vivo transcription, degradation, and red 

blood cell lysis108. (Of note, plasma proteins are also susceptible to degradation, 

but might be stable for slightly longer periods of time than plasma based nucleic 

acids109, 110)

• Blood collection tube type: Tube type (e.g., type and amount of anticoagulant) 

can influence miRNA quantification111.

• Sample storage: Sample storage conditions, including storage temperature, 

number of freeze-thaw cycles, buffer used for storage, and length of time in 

storage can influence biomarker detection and quantification.112

• Isolation method: Methods of isolation and detection of the molecular 

component can influence biomarker detection. For example, miRNA can be 

isolated from plasma, serum, or whole blood using a variety of methods 

including both column-based (e.g. RNeasy kit) and column-free (e.g. Trizol) 

techniques. These techniques can affect downstream analyses and quantification,
113 and potential introduction of RNases at this step can degrade isolated 

miRNA.

• Detection method: Different biomarker detection methods have different 

technical biases that can create cross-method variation.114–118 For example, 

different miRNA library preparation protocols for sequencing have been shown 

to generate discrepant results119–121. Fortunately, substantial efforts are being 

made to reduce technical biases122, 123. Additionally, due to the predominance of 

only a few highly abundant circulating biomolecules (e.g. the 22 most abundant 

circulating proteins account for 99% of the total protein concentration124, and a 

small handful of miRNAs make up the vast majority of detectable miRNA), the 
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dynamic range of detection is greatly affected by the choice of processing 

platform. Therefore, detection methods (e.g. targeted arrays vs sequencing or 

mass-spectrometry) can influence the sensitivity of detection.

Following successful isolation and quantitation of biomarker data, it is important to perform 

proper quality control steps, such as examining the full cohort for outliers, technical errors, 

and batch effects. Quality controlled data is usually then normalized (e.g., for small RNA-

seq reads, data normalization is standard, however, the normalization methods are not125) 

and in cases where the data is non-normally distributed, the data is often log transformed. 

Statistical and/or bioinformatics-based analyses are then applied to assess the relationship 

between candidate biomarkers and longitudinal APNS outcomes (e.g.,126–128). Important 

considerations include whether to take a hypothesis-driven vs. a data-driven approach, what 

factors to adjust for, and whether to perform traditional or machine-learning approaches.

Researchers should also consider whether they wish to develop a “stand-alone” biomarker or 

a biomarker that is applied in combination with clinical or other factors. Three examples of 

“stand-alone biomarkers are the FDA-approved RNA expression based tool, PAM50, that 

assesses risk of breast cancer recurrence129, the microRNA expression based tool, Osteomir, 

that determines risk for a first fracture in female patients of postmenopausal 

osteoporosis130–132, and the recent FDA-approved biomarker, Banyan-Brain Trauma 

Indicator (BTI), which assesses serum levels of two proteins GFAP and UCH-L1, to identify 

acute intracranial injury133. Perhaps the most well-know combined clinical and blood-based 

biomarker risk tools are heart disease vulnerability assessments, (e.g.,134, 135) which 

incorporate epidemiological factors (e.g., age, smoking status) and circulating blood-based 

biomarkers (e.g., HDL cholesterol, high sensitivity c-reactive protein136). Another approach 

is to use blood-based biomarkers in a tiered fashion, in which more expensive blood-based 

biomarkers are only used for individuals in whom epidemiologic and clinical factors alone 

do not achieve effective discrimination. An example of such a tiered use of biomarkers is 

current emergency department practice for the evaluation of pulmonary embolism among 

patients felt to be at low pre-test probability. Among such individuals, a tool using clinical/

epidemiologic factors (The PERC rule137, 138) is first applied, and blood testing is only used 

among individuals in whom pulmonary embolism cannot be reasonably excluded using the 

PERC rule alone.

Translation to the clinic

Once a promising circulating risk biomarker or multi-biomarker signature is identified, it is 

critical that further development and testing be performed in ways that allow potential 

translation to clinical practice (see Box 1 and Figure 2 for considerations on early-stage 

discovery). The Critical Path Initiative is an FDA-led national strategy that aims to improve 

the way products are developed, tested, and manufactured139. This initative includes the 

Biomarker Qualification Program (BQP), a part of the FDA’s Center for Drug Evaluation 

and Research that creates a pathway for translating biomarkers to clinical use by working 

with researchers or requestors to guide biomarker development. The goal of the BQP is to 

ensure that the biomarker is: a) suited to a well-defined COU, b) measured reliably and 

feasibly, and c) adequately performing to support the COU.
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One of the first examples of a blood-based risk biomarker that has been accepted into the 

BQP are pancreatic islet cell autoantibodies as susceptibility/risk biomarkers of future 

development of Type 1 Diabetes.140 While not all biomarkers need to be qualified, it is 

highly recommended that researchers performing studies that seek to develop risk 

biomarkers of APNS become familiar with this program. This is because qualifying a 

biomarker for a specific context of use (COU) improves the value of that biomarker by 

providing FDA documentation and guidance for use, enables the biomarker to be used in 

drug development programs specific to the COU, and provides evidence to support its use in 

clinical trials that identify new therapeutics. Further information can be found at: Biomarker 

Qualification Program.

Challenges to the discovery of circulating risk biomarkers of APNS

Research efforts that aim to identify susceptibility/risk biomarkers for APNS face several 

challenges and limitations. First, APNS are vastly heterogeneous diagnostic entities; for 

example, the categorical diagnosis of PTSD based on DSM-5 has been calculated to 

comprise 636,120 possible symptom combinations, each meeting diagnostic criteria for the 

disorder.141 These different symptom profiles may also have differences in their potential 

etiologies and biomarker profiles, thus examining PTSD and other APNS as single 

diagnostic categories may severely limit our ability to discover reliable biomarkers. 

However, as the field moves towards a more succinct definition of APNS outcomes that 

better characterize the full symptom profiles of trauma survivors (versus traditional 

syndromic classifications studied in isolation)4, we will increase our ability to identify 

accurate target groups to which blood-based risk biomarkers can more specifically identify 

vulnerable individuals.

Second, few large-scale longitudinal studies have been performed that track APNS in 

samples large enough to permit powerful and replicable findings. The importance of large 

sample sizes when examining neuropsychiatric endpoints is highlighted, for example, by 

genome-wide association studies, wherein the number of identified hits steadily increases 

with sample size.142–144 However, small high-quality longitudinal cohort studies also have 

utility to biomarker researchers, as these cohorts can be used to identify risk biomarkers with 

large predicted effect sizes or to replicate findings from larger cohorts. In the event that a 

researcher does not have a sample size sufficient for omics based analyses, in silico 
modeling approaches (e.g.145, 146) can also help identify promising candidate biomarkers 

and thus reduce the number of hypotheses being tested in any single study.

Third, with the exception of studies listed in Table 1, most studies to date are cross-sectional 

in nature. Cross-sectional studies have limited ability to distinguish between risk/predictive 

vs. diagnostic biomarkers, to identify temporal changes in blood-based biomarkers after 

trauma, or to identify outcome trajectories in which risk biomarkers could accurately 

identify the long-term course of APNS symptoms following trauma exposure.

Fourth, previous studies have largely focused on single biological measures that are known 

to be influenced by a great many factors in addition to stress exposure. An example is 

cortisol, a commonly used marker that can be greatly influenced by factors such circadian 
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and ultradian rhythmicity, age, and sex.147, 148 One area of current research is evaluating 

whether increased accuracy can be achieved by combining cortisol or other specific 

biological measures with additional biological factors or with sociodemographic factors 

(e.g.,149).

Finally, as described above, methodological/technical hurdles are present at each step of 

biomarker assessment, which threaten identification and/or replication. These myriad 

hurdles underscore the need for both technical and biological validation of findings.

The promise of the AURORA study to identify circulating risk biomarkers of 

APNS

The AURORA (Advancing Understanding of RecOvery afteR traumA) study is a publicly 

funded large-scale (n = 5,000 target cohort) Emergency Department-based prospective study 

of APNS development following trauma exposure. Study participants are enrolled in the 

early aftermath of trauma exposure and undergo multi-layered, cross-disciplinary 

assessments over the course of one year. These assessments include neurocognitive, self-

report, physiological, digital phenotype, psychophysiological, neuroimaging, and genomic 

assessments. Using this data, AURORA investigators and other individuals in the research 

community can improve outcome phenotypes, develop prediction tools, and improve 

understanding of molecular mechanisms driving APNS. For a more detailed description of 

the full study, please refer to the AURORA methods paper4.

Towards the goal of identifying circulating risk biomarkers, biological specimens (RNA 

PAXgene, and EDTA-plasma) are collected in the Emergency Department from all 

AURORA participants and at two weeks and six months from a subset of study participants 

that also complete neuroimaging and psychophysical assessments (target n=800 participants 

at each timepoint) (Figure 3). Blood specimens are also collected at the six month timepoint 

from a further subset of study participants (target n=2,200 individuals). Other biological 

specimens including DNA PAXgene tubes (for genotyping and methylation analyses) are 

also collected throughout the study.

All specimens are processed immediately after collection and stored at −80°C until batch 

shipment to the National Institute of Mental Health Repository and Genomics Resources 

(NIMH RGR) for long-term storage. Assessments of specimen quality occurs continuously 

throughout the study to ensure standardization (e.g., plasma processing procedures, timing 

of blood draw and freezing, adequate blood volume). Importantly, these samples (n=88,000 

total tubes including each 250μl plasma aliquot) and all AURORA data will be available to 

the broader scientific community after Fall 2022.

Biological specimens for the AURORA study are collected in the very early aftermath of 

trauma exposure (usually within 24 hours), and APNS outcome measures are assessed over 

the course of a year. Therefore, circulating biomarker levels can be incorporated into 

traditional statistical models and contemporary machine learning algorithms that assess the 

predictive accuracy of biological molecules, ratios or signatures in isolation or 

concomitantly with additional AURORA study data from other research domains in 
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identifying risk of APNS trajectories and multidimensional outcomes. Because biological 

specimens are also collected in many participants at multiple timepoints, how circulating 

biomarkers change over APNS developmental or recovery trajectories can also be assessed.

Conclusions

In this literature review, we identified twenty-three studies that assessed circulating risk 

biomarkers of APNS. Eighty three percent of the identified studies were published in the 

past ten years. This recent increase in attention to the identification of APNS risk 

biomarkers, along with multiple recent efforts aimed at increased biomarker discovery (e.g. 

the FDA BQP, PTSD Biomarker Database, and AURORA Study), marks an exciting time for 

research in this field. This increased trajectory, together with continued methodologic 

advances, provide hope that the next decade will see substantial advances towards the goal 

of objectively identifying at-risk individuals and gaining insight into pathophysiologic 

mechanisms. However, these years will not be without immense challenges, especially those 

challenges related to methodological complexities of biomarker collection, processing, and 

analysis, integration of diverse efforts across laboratories and studies, replication across 

cohorts, and translation of our discoveries from the bench to bedside. While these research 

efforts are challenging, with a collaborative and thoughtful research process the future for 

circulating risk biomarker discovery for APNS is bright.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Ten characteristics of an ideal circulating blood-based susceptibility/risk biomarker of 

APNS, adapted from the FDA Biomarker Qualification Program and previously 

published literature, as indicated.

Biofluid collection is feasible.

Collection of biofluids should be feasible in care settings where individuals report 

following trauma (e.g. the emergency department), should be quick to collect, and 

collection should be minimally invasive. Whole blood, serum, and plasma are examples 

of such biofluids.

Biomarker measurement is feasible.

There should be one or more publicly accessible assays for measuring the biomarker, 

with potential for translation to clinically used, FDA approved assays/platforms, e.g. 

ELISA for protein quantification or Nanostring nCounter1 for RNA expression 

measurements.

Biomarker measurement is reliable.

Test-retest reliability and reproducibility should meet assay analytical performance 

requirements acceptable to the FDA.

Context of use (COU) is clearly defined.

The context of use is a concise description of the biomarker’s specified use. For example, 

a susceptibility/risk biomarker for APNS development would need to be indexed to a 

specific population (e.g. age of individuals, sex, ethnicity), a specific outcome (e.g. does 

the biomarker assess risk for PTS, depression, and CMP, just one of those outcomes, etc), 

and a specific timeframe of effectiveness (e.g. is it only useful if measured within the first 

24 hours of trauma exposure, or can it be measured outside of that timeframe). A more 

thorough guideline for defining COU can be found here: FDA COU

Biomarker assesses risk of APNS development both sensitively and specifically.

These performance measures, along with positive predictive values and negative 

predictive values should be carefully measured and considered in the context of clinical 

utility15, 16. For example, for APNS risk assessment it might be more acceptable to have 

a biomarker with more false positives than false negatives if the treatment regimen is low 

risk (e.g. cognitive behavioral therapy for PTS), whereas it might be more acceptable to 

have a biomarker with increased false negatives if the treatment regimen is high risk (e.g. 

long-term opioid therapy for CMP) or is expensive.

Biomarker consistently identifies at-risk individuals across ethnicities and sexes.

Recent evidence indicates that longstanding risk tools such as those predicting 

cardiovascular disease are limited in their ability to assess risk across varied ethnicities21. 

Therefore, biomarker discovery should be performed independent of these factors or 

should specifically stratify on these factors and clarify this limitation in the COU.
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Analytical performance adequately supports COU.

Measurement of a biomarker’s technical performance and clinical utility should support 

the defined COU.

Biomarker test results can be generated rapidly.

Rapid assays facilitate the ability to risk stratify early after trauma exposure such that 

interventions can be administered when potentially most efficacious6, 13, 14, 22–27. Rapid 

test results also improve patient satisfaction.

Measurement of the biomarker is inexpensive.

Concerted efforts should be made to prioritize low-cost biomarkers over high-cost 

biomarkers in order to improve access to care for all individuals.

Biomarker discovery studies should translate between human and animal.

Parallel evidence in humans and in appropriate models of APNS is important in order to 

further elucidate details about the biomarker that might not be feasible in human studies. 

For example, animal studies might enable granular resolution of the timing of increased/

decreased levels of the biomarker, extrapolation of results to gain insights into 

neurobiology of nervous system tissue, and in assessing the utility of the biomarker in 

other settings such as in drug discovery efforts to identify novel therapeutics that prevent 

APNS.
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Figure 1. 
Circulating blood-based risk biomarkers that have been assessed in previous studies for their 

ability to predict the development of adverse posttraumatic neuropsychiatric sequelae 

(APNS). General categories for these risk biomarkers include hormones, proteins, immune 

mediators, nucleic acids, and neuropeptides and neurotransmitters. Note that not all 

circulating risk biomarkers that have been examined to date showed a statistically 

significantly relationship with APNS. See Table 1 for more details. Validation of the 

significantly associated risk biomarkers and identification of novel circulating risk 

biomarkers within the described categories or outside of these categories (e.g. metabolites, 

microvesicles, immune cells) will be a high priority for APNS-focused researchers in the 

coming years.
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Figure 2. 
Key steps (top) and methodological considerations (bottom) in the discovery of circulating 

blood-based risk biomarkers of adverse posttraumatic neuropsychiatric sequelae (APNS). 

While the steps and considerations included in this figure are not exhaustive, it represents a 

subset of the myriad factors that can influence blood based biomarker discovery and 

translation. For instance, the epidemiological design of the cohort from which samples are 

drawn, and characteristics/factors of participants can determine whether there is sufficient 

statistical power to detect a risk biomarker, whether adjustors should be included in 

statistical models and whether the findings are generalizable to additional populations. SES 

= socioeconomic status, FDA = U.S. Food and Drug Administration. Adapted from a variety 

of sources including:99, 119, 150
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Figure 3. 
The AURORA study is an on-going longitudinal cohort study assessing APNS development 

following trauma exposure. Individuals are enrolled in the Emergency Department and 

followed over the course of a year. Consistent with the theme of this review article, one main 

goal of the AURORA study is to discover circulating risk biomarkers that identify 

vulnerable individuals in the early aftermath of trauma exposure. Therefore, blood samples 

are collected from all individuals immediately following enrollment (n=5,000; left). 

Additional blood samples are collected from a subset of participants two weeks (n=800; 

middle) and six months (n=3,000; right) following trauma exposure. These longitudinal 

samples are collected at either Deep Phenotyping sessions when additional multilayered data 

are collected (e.g. functional and structural MRI, pain physiology, startle response) or via 

Mobile phlebotomy/participant return to the Emergency Department. Longitudinal blood 

samples can be used to assess trajectories of risk biomarkers and/or to identify diagnostic 

biomarkers using nested case-control samples. D = DNA PAXgene tube, R = RNA PAXgene 

tube, P = EDTA tube for plasma, ED = Emergency Department. All sample sizes represent 

planned cohort sizes based on enrollment rates and funding as of the date of publication of 

this review. All samples and processed data derived from the AURORA cohort will be 

available to the full research community in Fall 2022.
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Table 1.

Summary of results from previous longitudinal studies examining circulating blood-based susceptibility/risk 

biomarkers of adverse posttraumatic neuropsychiatric sequelae (APNS)

Reference Type of 
APNS

Sample Size/
Description Clinical measures Biological markers Main Finding

Vaiva et al. 
200481 PTSD

108 motor vehicle 
collision survivors 
presenting to ED

DSM IV criteria for 
PTSD given 6 

weeks after trauma

GABA levels in 
plasma γ

Lower plasma GABA levels 
are associated with higher risk 

for PTSD development.

Segman et al. 
200567 PTSD

33 male and female 
trauma survivors 

presenting to the ED

DSM IV PTSD 
criteria given 1 and 

4 months after 
trauma

Genome-wide 
mRNA expression in 

PBMC

Peripheral gene expression 
signatures following trauma 
identify evolving PTSD and 

are informative of its key 
clinical features and outcome.

Pervanidou et 
al. 200789 PTSD

56 children and 
adolescents enrolled 

following motor vehicle 
collision; matched to 40 

controls

PTSD part of the K-
SADS-PL given 1 
and 6 months after 

trauma

serum and salivary 
cortisol, serum IL-6 

and plasma 
catecholamines

Increased peritraumatic 
circulating morning IL-6 

levels and increased evening 
salivary cortisol levels 

predicted PTSD 6 months later

Cohen et al. 
201178 PTSD

48 patients hospitalized 
after orthopedic injuries 
and 13 gender-matched 

healthy volunteers

PDSS given 1 
month after trauma 

exposure

Serum levels of 
multiple cytokines, 

including IL-6, IL-8, 
TGF-β, IL-4, and 

IL-10

Higher levels of IL-8 and 
lower levels of TGF-β were 
associated with subsequent 
higher PTSD symptoms.

Inslicht et al 
201179 PTSD

296 police officers 
enrolled during academy 

training

DSM IV criteria for 
PTSD given 12, 24, 

36 months after 
training

Cortisol awakening 
resonse (change in 
cortisol from first 
awakening to 30 

minutes later)

Pre-trauma cortisol awakening 
responses did not predict 

PTSD symptoms.

Van Zuiden et 
al. 201168 PTSD

68 male Dutch military 
personnel deployed to 

Afghanistan

SRIP given 6 
months after 
deployment

GR Number and 
mRNA expression of 
GR targets in PBMC

Predeployment higher GR 
number, but not mRNA 

expression of GR targets, 
predicts risk for the 

development of PTSD 
symptoms after military 

deployment.

Van Zuiden et 
al. 201269 PTSD

448 male Dutch military 
personnel deployed to 

combat

SRIP given 6 
months after 
deployment

GR Number and 
mRNA expression of 
GR targets in PBMC

Predeployment higher GR 
number, lower FKBP5 mRNA, 

and higher GILZ, but not 
SGK1 mRNA or cortisol 
levels, predict PTSD after 

military deployment.

Glatt et al. 
201370 PTSD

48 male US marines 
deployed to Iraq or 

Afghanistan
PCL score

Genome-wide 
mRNA expression in 

leukocytes

Dysregulated gene expression 
profiles enriched for 

immunity-related genes 
precede the development of 

PTSD.

Eraly et al. 
201480 PTSD

2208 male infantry 
battalions imminently 

deploying to a war zone

CAPS given 3 and 6 
months after 
deployment

Plasma CRP levels
Plasma CRP was prospectively 

associated with PTSD 
symptoms.

Van Zuiden et 
al. 201571 PTSD

721 male and female 
Dutch soldiers deployed 

to Afghanistan

SRIP and SCL-90 
given 1 and 6 
months after 
deployment

Glucocorticoid 
sensitivity in whole 

blood

Pre-deployment glucocorticoid 
sensitivity predicts PTSD and 

depression symptoms 6 
months after deployment.

Breen et al. 
201588 PTSD

94 male U.S. marines 
(dataset I) and 48 male 

U.S. marines (dataset II) 
deployed for combat in 

Iraq or Afghanistan;

CAPS given 1 
month pre and 3 

months post 
deployment

Leukocyte mRNA 
expression using co-

regulated gene 
networks

Over-expression of genes 
enriched for functions of 

innate-immune response and 
interferon signalling (Type-I 

and Type-II) as resiliency 
signatures.

Gandubert et al. 
201690 PTSD 123 male and female 

individuals enrolled in 
French version of 

the Watson’s PTSD 
cortisol, 

norepinephrine, 
higher levels of 12 h-overnight 

urinary norepinephrine 
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Reference Type of 
APNS

Sample Size/
Description Clinical measures Biological markers Main Finding

the ED 2–7 days 
following criterion A1 or 

A2 trauma exposure

Interview given 1, 
4, and 12 months 

post-trauma

epinephrine, CRP, 
total and HDL 

cholesterol, 
glycosylated 
haemoglobin

predicted PTSD at 4 months 
following trauma exposure

Reijnen et al. 
201772 PTSD

907 male Dutch military 
personnel deployed to 

Afghanistan

SRIP given 1 and 6 
months and 1, 2, 
and 5 years after 

deployment

Plasma oxytocin and 
vasopressin levels

Pre-deployment oxytocin and 
vasopressin levels did not 
significantly predict PTSD 

symptoms up to 5 years after 
deployment.

Reijnen et al. 
201877 PTSD

3319 Dutch male 
military personnel 
deployed to Iraq or 

Afghanistan

SRIP and CAPS up 
to 6 months after 

deployment

Plasma neuropeptide 
Y

Predeployment plasma NPY 
was not associated with PTSD 

symptoms over time.

Michopoulos et 
al. 201944 PTSD

274 participants 
presenting to the ED 
after trauma exposure

PSS delivered 1, 3, 
6, and 12 months 

after trauma

Plasma levels of 
twenty-seven 

cytokines, 
chemokines, and 
growth factors

Lower TNFα and IFNγ levels 
at the time of ER presentation 
were associated with chronic 

PTSD. None of the other 
measured markers were 
associated with PTSD 

outcomes.

Vaiva et al. 
200676

PTSD 
Depression

78 motor vehicle 
collision survivors 
presenting to ED

DSM IV criteria for 
PTSD and major 

depression 6 weeks 
and 1 year after 

trauma

GABA levels in 
plasma

A plasma GABA level below 
0.20 mmol/ml is associated 

with chronic PTSD and 
depression.

Van Zuiden et 
al. 201274

PTSD, 
Depression

526 male Dutch military 
personnel deployed to 

Afghanistan

SRIP and SCL-90 
given 6 months 

after deployment

Glucocorticoid 
sensitivity in whole 
blood; GR number 

and mRNA 
expression of gene 
targets in PBMC

Lower glucocorticoid 
sensitivity predicts lower 

PTSD and higher depression 
symptoms 6 months after 
military deployment. GR 

pathway components predict 
6-month PTSD symptoms 

only.

Walsh et al. 
201373

PTSD, 
Depression

235 female sexual 
assault survivors 

presenting to the ED

PSS-SR and BDI 
given 6, 12, and 24 
weeks after trauma

Serum cortisol

Higher ER cortisol levels 
predict higher PTSD and 

depression symptoms 6 weeks 
after trauma but lower 
symptoms over time.

Yu et al. 201875 PTSD, Pain
65 African American 
female motor vehicle 

collision survivors

Impact of Event 
Scale and modified 
regional pain scale 

given 6 months 
after trauma

mRNA expression of 
X chromosome gene 
transcripts in whole 

blood

Genes known to escape X 
chromosome inactivation 
predict co-morbid chronic 
musculoskeletal pain and 

posttraumatic stress symptom 
development in women 

following trauma exposure.

Linnstaedt et al. 
201984 PTSD, Pain

179 African Americal 
male and female motor 

vehicle collision 
survivors presenting to 
the ED and 74 female 

sexual assault surviviors 
presenting to SANE 

sites

Impact of Event 
Scale and modified 
regional pain scale 

given 6 months 
after trauma

MicroRNA-19b 
expression in whole 

blood

microRNA-19b predicts risk 
for PTSD and chronic pain in 

a sex-dependent manner 
following trauma. Relationship 
between microRNA-19b and 

PTSD in women was 
replicated across two 
independent cohorts.

Linnstaedt et al. 
201582 Pain

53 African American 
male and female motor 

vehicle collision 
survivors presenting to 

the ED

Numeric rating (0 
−10) pain scale 

given 6 weeks after 
trauma

MicroRNA 
expression in whole 

blood

MicroRNAs circulating in the 
early aftermath of motor 
vehicle collision predict 

persistent pain development in 
sex-specific and suggest a role 

for microRNA in pain 
differences.

Mauck et al. 
201985 Pain

133 African American 
male and female motor 

vehicle collision 

Numeric rating (0 
−10) pain scale 

given 6 weeks, 6 

Plasma Vitamin D 
levels

Low Vitamin D levels in the 
peritraumatic period predict 
higher pain levels over the 
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Reference Type of 
APNS

Sample Size/
Description Clinical measures Biological markers Main Finding

survivors presenting to 
the ED

months, and 1 year 
after trauma

course of a year following 
motor vehicle collision trauma

Rushton et al. 
201883

Pain, 
Disability

500 male and female 
patients with acute 

musculoskeletal trauma

Chronic Pain Grade 
Scale given 6 

months after trauma

CRP and cfDNA in 
plasma

Protocol for developing a 
screening tool to predict 

chronic pain and disability 
after musculoskeletal trauma.

Abbreviations: BDI, Beck Depression Inventory; cfDNA, cell-free DNA; CRP, C-reactive protein; DSM, diagnostic and statistical manual for 
mental disorders; ED, emergency department; SANE, sexual assault nurse examiner; GR, glucocorticoid receptor; PBMC, peripheral blood 
mononuclear cells; PCL, PTSD Checklist based on the Clinician-Administered PTSD Scale (CAPS); PDSS, Posttraumatic Disorder Symptom 
Scale (PDSS); K-SADS-PL, Kiddie Schedule for Affective Disorders and Schizophrenia – Present and Lifetime version; PSS-SR, PTSD Symptom 
Scale—Self-Report; PTSD, posttraumatic stress disorder; SCL-90, 16-item Symptom Checklist–90 depression subscale; SRIP, Self-rating 
inventory for PTSD; VAS, 10cm visual analogue scale (0–10) for assessing pain.
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