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Group A Streptococcus (GAS; Streptococcus pyogenes) is a nearly ubiquitous human
pathogen responsible for a significant global disease burden. No vaccine exists, so
antibiotics are essential for effective treatment. Despite a lower incidence of antimicrobial
resistance than many pathogens, GAS is still a top 10 cause of death due to infections
worldwide. The morbidity and mortality are primarily a consequence of the immune
sequelae and invasive infections that are difficult to treat with antibiotics. GAS has
remained susceptible to penicillin and other β-lactams, despite their widespread use
for 80 years. However, the failure of treatment for invasive infections with penicillin
has been consistently reported since the introduction of antibiotics, and strains with
reduced susceptibility to β-lactams have emerged. Furthermore, isolates responsible for
outbreaks of severe infections are increasingly resistant to other antibiotics of choice,
such as clindamycin and macrolides. This review focuses on the challenges in the
treatment of GAS infection, the mechanisms that contribute to antibiotic failure, and
adjunctive therapeutics. Further understanding of these processes will be necessary for
improving the treatment of high-risk GAS infections and surveillance for non-susceptible
or resistant isolates. These insights will also help guide treatments against other leading
pathogens for which conventional antibiotic strategies are increasingly failing.

Keywords: group A Streptococcus, Streptococcus pyogenes, antibiotic resistance, treatment failure,
experimental therapeutics

INTRODUCTION

Streptococcus pyogenes (group A Streptococcus, GAS) is a ubiquitous human pathogen responsible
for over half a million deaths per year worldwide (Carapetis et al., 2005). No vaccine exists,
and current treatment depends on conventional antibiotics and symptom management. While
the β-lactam penicillin remains the antibiotic of choice for mild to moderate infections,
severe or prolonged infections require additional measures for effective clearance. The standard
recommendation is to utilize the lincosamide clindamycin in combination with penicillin

Frontiers in Microbiology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 760255

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.760255
http://creativecommons.org/licenses/by/4.0/
mailto:clarock@emory.edu
https://doi.org/10.3389/fmicb.2021.760255
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.760255&domain=pdf&date_stamp=2021-11-04
https://www.frontiersin.org/articles/10.3389/fmicb.2021.760255/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-760255 October 30, 2021 Time: 15:48 # 2

Johnson and LaRock Group A Streptococcus Therapeutic Failure

(Stevens et al., 2014). Any resistance is a serious issue because
of the reliance on these antibiotics, so surveillance is important.
GAS has no resistance to penicillin, but treatment failure remains
a major concern. Clindamycin has been very effective, but
the global rates of resistance continue to rise and make the
implementation of universal guidelines a challenge. Emergent
challenges and opportunities for the treatment of GAS are the
focus of this review.

GROUP A STREPTOCOCCUS
INFECTIONS

GAS colonizes the nasopharynx, where it can cause disease,
disseminate to other sites in the body, and transmit to other
humans. GAS is isolated from this site in 12–24% of healthy
children and in 37% of those with a sore throat (Shaikh et al.,
2010). Pharyngitis, or strep throat, is the most common disease
caused by GAS and is estimated to occur more than 600
million times per year (Carapetis et al., 2005). The common
symptoms of pharyngitis are a sore throat, fever, enlarged tonsils,
and coughing with throat pain, induced by pro-inflammatory
exotoxins secreted by GAS (Dan et al., 2019; LaRock et al.,
2020). Some individuals are susceptible to recurring pharyngitis
(Dan et al., 2019), which may be prevented with tonsillectomy,
although 33% of children lacking tonsils are still colonized
by GAS (Roberts et al., 2012). GAS exotoxins also promote
colonization of the skin and more serious invasive infections and
are major drivers of pathogenesis (Wilde et al., 2021a).

Antibiotics remain necessary since fatal complications may
occur from untreated infection. Famously, untreated pharyngitis
can lead to scarlet fever, an inflammatory disease with resurging
outbreaks (Davies et al., 2015; Park et al., 2017; Lynskey et al.,
2019), and fatality rates up to 30% (Quinn, 1989). Scarlet fever is
mediated by the streptococcal pyrogenic exotoxin superantigens,
which induce an inflammatory cytokine storm (Shannon et al.,
2019). In the bloodstream, superantigens are responsible for
streptococcal toxic shock syndrome (STSS), a multi-organ disease
with a fatality rate up to 44% (Lamagni et al., 2008; Wilkins et al.,
2017). STSS often co-occurs with necrotizing fasciitis, an invasive
infection of the skin (Low, 2013) where surgery within 24 h is
often necessary for survival due to tissue damage and bacteremia
(Olsen and Musser, 2010). Untreated GAS infections further have
the risk of immune sequelae such as rheumatic fever, where
the immune system mistakenly recognizes host tissue as foreign
antigens (Cunningham, 2000; Hurst et al., 2018). When targeted
toward the heart, this results in rheumatic heart disease, a chronic
condition that is a major cause of GAS morbidity and mortality
(Walker et al., 2014). The risk of any of these complications is
thus limited when GAS infections are rapidly treated.

The β-lactam penicillin remains the gold standard of antibiotic
treatment for many GAS infections (Stevens et al., 2014).
β-lactams target penicillin-binding proteins (PBPs) to block
peptidoglycan cross-linking in metabolically active bacteria,
leading to bacterial death (Figure 1; Wilke et al., 2005).
Despite extensive use for decades, there has been minimal
change in the susceptibility of GAS to penicillin (Macris et al.,

FIGURE 1 | Summary of the treatment methods discussed in this review.
Bactericidal β-lactams such as penicillin target the peptidoglycan of the cell
wall, leading to cell lysis. This can lead to an efflux of virulence factors and
other cellular proteins, resulting in inflammation. Macrolides and lincosamides
are bacteriostatic, blocking protein synthesis by targeting the bacterial
ribosome. Preventing toxin synthesis works to reduce inflammation.
Intravenous immunoglobulin (IVIG) is an infusion of pooled antibodies from
human donors, which works to induce opsonization and neutralize toxins,
reducing inflammation. Figure made in biorender.

1998). Discovered in 1928 by Alexander Fleming, penicillin
was brought to clinical trials in 1941. It did not take long for
resistance to be observed. Penicillinase-producing Escherichia
coli were observed in 1940, and strains of penicillin-resistant
Staphylococcus aureus were clinically found in 1942, with 80%
resistant by the end of the 1960s. Semi-synthetic versions of
penicillin such as methicillin were in response; however, it would
only take 20 years for methicillin resistance to become endemic
(Lobanovska and Pilla, 2017).

NON-ANTIMICROBIAL ANTIBIOTIC
EFFECTS

In animal models and human infection, clindamycin is also
effective against severe GAS infection (Coyle, 2003; Carapetis
et al., 2014). Clindamycin is a semi-synthetic lincosamide
antibiotic that targets the 50S subunit of the ribosome (Spízek
and Rezanka, 2004). Inhibition occurs through blocking of
the peptidyl transferase reaction, preventing protein synthesis
in susceptible pathogens, commonly Gram-positive cocci of
Streptococcus, Staphylococcus, and Clostridium species (Stevens
et al., 1987). Clindamycin is bacteriostatic and can limit the
production of toxic proteins and virulence factors independent of
its effects on growth (Figure 1; Schlievert and Kelly, 1984). This
is also true for GAS (Mascini et al., 2001), where clindamycin
inhibition of M protein synthesis promotes phagocytic killing
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(Gemmell et al., 1981) and inhibition of superantigens and other
toxins (Sriskandan et al., 1997; Mascini et al., 2001) can mitigate
septic shock (Schlievert and Kelly, 1984). Similar anti-toxin
effects have been described for Clostridium perfringens (Stevens
et al., 1995) and Clostridioides difficile (Zarandi et al., 2017).

Because of their efficacy, both penicillin and clindamycin
are recommended as of 2014 by the Infectious Diseases Society
of America guidelines for necrotizing GAS infections (Stevens
et al., 2014). They should be used in combination with surgical
interventions. Due to a mortality rate of 30% or higher from
severe symptoms, treatment should be rapid to minimize risk
of death (Stevens et al., 1989). While penicillin and clindamycin
are not antagonistic when prescribed together, there is no
inherent bactericidal benefit to using both (Stevens et al., 1998).
However, the added benefits of clindamycin may come from
ribosome inhibition reducing the development of toxin-mediated
symptoms like STSS (Sartelli et al., 2018). Since penicillin
treatment can lead to lysis and toxin release (Coyle, 2003), protein
synthesis inhibitors like clindamycin (Kishi et al., 1999) that
decrease toxin production can help mitigate excessive immune
stimulation (Coyle, 2003). It remains to be determined whether
adjunctive use of additional antibiotics improves treatment
(Sunderkötter et al., 2019). For clindamycin-resistant GAS,
early experimental work suggests linezolid (Oppegaard and
Rath, 2020) as a suitable alternative, while gentamicin is also
suggested as a potential candidate, albeit with potential toxicity
(Andreoni et al., 2017).

ANTIBIOTIC RESISTANCE

GAS develops resistance to clindamycin by two primary
mechanisms: target site modification or efflux pumps.
Methylation of clindamycin target sites on the 23S RNA by
ErmA, ErmC, or enzymes are most common (Seppälä et al.,
1998). Isolates with this mechanism can either have constitutive
or inducible resistance to clindamycin (Lewis and Jorgensen,
2005). Inducible resistance can result in treatment failure,
as inducible clindamycin resistance is undetectable unless
macrolides are also present (Lewis et al., 2014). Efflux pumps
are a common resistance mechanism, such as msrA and mefA
involved in macrolide resistance (Clancy et al., 1996). Despite
the structural similarity of clindamycin and macrolides, these
pumps have shown greater efficacy against macrolides (Sutcliffe
et al., 1996). Staphylococcus species may also enzymatically
inactivate clindamycin through LinA (Matsuoka, 2000). Due
to the frequency of antibiotic resistance genes being plasmid
mediated, there is concern of horizontal gene transfer generating
new resistant strains (Ben Zakour et al., 2015).

Clindamycin resistance in the United States is on the rise,
from an estimated 0.5% in 2003 (Richter et al., 2005) to currently
as high as 15% in pediatric populations (DeMuri et al., 2017).
Isolates from invasive infections are more commonly resistant,
increasing from 2% to over 23% in this time (Fay et al.,
2021). The resistance rates are geographically variable; in China,
resistance may approach 95.5% (Stevens and Bryant, 2017),
where over a similar period, northern Europe rates approximated

1% (Bruun et al., 2021). Despite the rapid change in resistance
trends and the emergence of potentially hypervirulent, resistant
strains, the recommendation remains: continue the use of protein
synthesis inhibitors such as clindamycin when necessary, but to
be mindful and vigilant for resistant isolates (Stevens et al., 2014).

β-Lactams and macrolides are the drugs of choice for GAS
and therefore have the highest concern for the development
of resistance. Along with rapid increases in erythromycin and
clindamycin resistance, tetracycline resistance is widespread and
levofloxacin resistance is observed (Fay et al., 2021). However,
the challenges with GAS treatment are still typically antibiotic
failure, not intrinsic drug resistance. No resistance to vancomycin
or β-lactams has been observed.

β-LACTAM RESISTANCE CONCERNS

The answer to why GAS has not developed resistance to β-lactams
despite extensive use and widespread resistance in related species
has remained elusive. A study in 1998 found no significant
change in the minimum inhibitory concentration (MIC) over
time (Macris et al., 1998), and this trend has continued (Fay
et al., 2021). While there have been clinical isolates with elevated
penicillin MIC values reported in India, Japan, and Mexico
(Amábile-Cuevas et al., 2001; Capoor et al., 2006; Ogawa et al.,
2011; Berwal et al., 2019), no mechanism has been provided.
In other streptococci, resistance is primarily found in PBP
mutations. One proposal is that PBPs with low affinity for
β-lactams are poorly tolerated by GAS (Horn et al., 1998).
Consistent with this, GAS engineered to express low-affinity
PBPs had growth defects, poor growth rates, and morphological
abnormalities (Gutmann et al., 1981; Gutmann and Tomasz,
1982). Additional work showed that decreases in the M protein
production could lead to resistance, at the cost of being avirulent
(Rosendal, 1958). Taken together, this suggests that PBPs are
essential to GAS biology, and changes that would support
resistance are either fatal or so detrimental that survival in a
clinical setting is quite difficult. This has been partially backed up
by recent work showing that three or fewer amino acid changes to
PBP have occurred in 99% or more of the clinically relevant GAS
strains (Hayes et al., 2020).

A community outbreak of GAS in Seattle recently led to
the identification of two isolates with reduced susceptibility to
β-lactams (Vannice et al., 2020). These isolates had a T553K
substitution within pbp2x and a S79F substitution within parC
of topoisomerase. The MIC values for ampicillin, amoxicillin,
and cefotaxime were higher than those of isogenic isolates, while
the MIC for penicillin was unchanged. The two isolates have
no confirmed direct link despite their genomes being nearly
identical (Vannice et al., 2020). In the wake of these findings, there
were concerns that these mutations were already worldwide.
Subsequent studies have identified additional natural mutations
in pbp2x responsible for the reduced susceptibility (Musser et al.,
2020). Isogenic isolates with pbp2x mutations show no change
in virulence in a mouse model; however, they have a potential
for increased fitness (Olsen et al., 2020). These mutations
are concerning because of the similarities with Streptococcus
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pneumoniae, another pathogen responsible for childhood disease
(Weiser et al., 2018). Penicillin had been the antibiotic of choice
for treatment, but resistance became widespread in the 1980s
mutations in pbp2x and pbp2b (Grebe and Hakenbeck, 1996).
One possible source of resistance was horizontal gene transfer
into S. pneumoniae from other native oral streptococcal species
such as Streptococcus mitis (Dowson et al., 1989). T550 in
S. pneumoniae corresponds to T553 in GAS, suggesting that
future resistance could similarly arise (Vannice et al., 2020).

ADDITIONAL CONSIDERATIONS WITH
ANTIBIOTIC TREATMENT

A penicillin allergy is one of the few reasons to consider another
drug for most GAS infections. This allergy is estimated in 8%
of patients, but an IgE-mediated allergic response will only
be visible in 1 in 20 people (Macy and Ngor, 2013; Macy,
2014). Allergy is often over-reported or self-diagnosed, leading
to other antibiotics being prescribed unnecessarily (Sousa-Pinto
et al., 2017). Vancomycin or linezolid are common alternatives
for those with severe penicillin allergies (Stevens et al., 2014).
Allergic reactions to clindamycin are rare; it has therefore become
common as an alternative choice in instances of allergic reactions
to other antibiotics (Lammintausta et al., 2002). Since infection is
recurrent for many people, repeated use of penicillin may drive
allergy, select for resistance in other species of microbes present,
and give rise to a series of opportunistic infections by pathogens
such as C. difficile (Johnson et al., 1999; Brindle et al., 2017).

MECHANISMS FOR TREATMENT
FAILURE

Thus, despite in vitro sensitivity to many antibiotics, including
universal sensitivity to penicillin, GAS remains a major public
health burden. Treatment failure was first reported not long after
the introduction of penicillin (Eagle, 1952) and has remained
a problem ever since in both common pharyngitis and more
severe invasive infections (Markowitz et al., 1993; Gillespie, 1998;
Orrling et al., 2001). Death due to treatment failure is not due
exclusively to lack of access to antibiotics or medical treatment
because, even in resource-rich countries, invasive infections can
have a high failure rate during treatment (Orrling et al., 1994).
Since death is not always from overwhelming bacteremia, but
rather pathological inflammation as sepsis, a bolus of antibiotic
leading to massive bacterial lysis may transiently exacerbate the
disease or even lead to death (Wolf et al., 2017). Individuals
treated with only penicillin have also shown greater risk of
recurrent tonsillitis, suggesting an inability to clear the infection
fully (Brook and Hirokawa, 1985).

Bacteria can survive at antibiotic concentrations beyond a
minimal bactericidal concentration (MBC) by a process known
as the Eagle effect (Prasetyoputri et al., 2019). First observed in
1948 (Eagle and Musselman, 1948), it is speculated to be related to
penicillin having greater efficacy on bacteria in log phase growth,
as they are actively rebuilding their peptidoglycan (Eagle, 1952).

FIGURE 2 | Model of mechanisms contributing to antibiotic failure during
Group A Streptococcus (GAS) infections. Community-mediated resistance
mediated by protection by endogenous microbiota is likely most prevalent
during pharyngitis and not invasive infections, where GAS most often exists as
a monoculture. Persisters, resistant through altered growth rates or other
epigenetic states, can contribute to treatment failure of any infection. The
formation of biofilms, invasion of epithelial cells, and survival within
phagocytes can similarly occur during any infection and serve to shield single
bacterium from antibiotic action. During invasive infections in particular,
inflammation- and toxin-mediated necrosis of tissue and thrombosis of dermal
vasculature can limit antibiotic perfusion, necessitating surgical removal of the
infected tissue.

During infection, resource limitation and antimicrobial immune
responses slowing bacterial growth may lead to decreased
antibiotic efficacy (Figure 2). This has manifested in treatment
failure using the mouse model of GAS infection, where delaying
penicillin treatment led to a significant reduction in survival
(Stevens et al., 1988).

Community-mediated resistance (Figure 2) is another
mechanism that may contribute to failure, where β-lactamases
secreted by the resident microbiota in the polymicrobial
environment protect sensitive pathogens, including GAS (Sorg
et al., 2016; Gjonbalaj et al., 2020). One study showed that
β-lactamase producers were found in 40% of pediatric patients
with orofacial or respiratory tract infections (Brook, 1984), with
another suggesting rates as high as 74% in the tonsils (Brook,
2009). One potential impact of clindamycin is therefore killing
β-lactam-resistant species that provided protection to GAS,
allowing for later reinfection (Brook and Hirokawa, 1985). The
deep tissue is commonly sterile, so community resistance is
more likely to play a role during pharyngitis, where there is an
abundant polymicrobial community present.

Biofilms are an aggregate of bacteria encased in an
extracellular matrix and contribute to the ability of many
bacterial species to resist immune effectors and antibiotics.
Aggregates of GAS consistent with biofilm formation have been
observed in nasopharyngitis (Roberts et al., 2012) and the skin
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(Akiyama et al., 2003; Siemens et al., 2016). The GAS biofilm
requires cell surface-anchored proteins such as pili and the
serotype-specific M protein to contribute to a hydrophobic cell
surface and the aggregation of GAS chains on biotic and abiotic
surfaces (Frick et al., 2000; Manetti et al., 2007; Courtney et al.,
2009; Matysik et al., 2020). Host proteins recruited by cell surface-
anchored virulence factors further contribute to aggregation and
shield GAS from antimicrobials (LaRock et al., 2015; Döhrmann
et al., 2017; Alamiri et al., 2020). This protection is also extended
toward antibiotics (Figure 2), with biofilm formation associated
with the reduced efficacy of antibiotics in vitro and in vivo
(Baldassarri et al., 2006; Marks et al., 2014; Matysik et al., 2020),
including a 2,500-fold increase in penicillin tolerance in one study
(Vyas et al., 2020).

While the dual role of biofilms in pathogenesis and antibiotic
failure is well recognized, and a target for future therapeutics, this
connection is less explored with other virulence factors. GAS can
invade macrophages (Hertzén et al., 2012; Wilde et al., 2021b),
epithelial (Kaplan et al., 2006), and other host cells and resist
autophagy and other mechanisms to promote their intracellular
growth (Barnett et al., 2013). Intracellular GAS are shielded
from penicillin (Figure 2), which cannot cross the cell envelope,
and the ability to invade cells is correlated with eradication
failure during the treatment of pharyngitis (Sela et al., 2000).
Thus, virulence factors required for cell invasion may promote
penicillin failure, but not failure of cell-penetrating antibiotics
such as clindamycin or erythromycin, which are more effective
against intracellular GAS (Kaplan et al., 2006). The penetration
of antibiotic into tissue is also a hurdle that is worsened during
severe infections (Eagle, 1952; Kiang et al., 2014; Stevens and
Bryant, 2017; Thabit et al., 2019). Edema, thrombosis, and tissue
necrosis are pervasive during necrotizing fasciitis and other
invasive GAS infections and drastically limit antibiotic perfusion
(Figure 2); for this reason, surgical removal of the infected
tissue is often required, even for highly antibiotic-sensitive GAS
(Stevens et al., 2014). This pathology is caused directly by
streptolysin O and other GAS toxins (Bryant et al., 2005).

Together, these observations suggest that the virulence factors
GAS uses to escape the immune system are tied to its ability
to escape antibiotics. Neutralizing antibodies and small drug
inhibitors of GAS virulence factors thus have the potential
to not only reduce pathogenesis and restore the effectiveness
of the immune response but also to work synergistically
with conventional antibiotics to break the resistance/tolerance
mechanisms of GAS.

ANTI-VIRULENCE TREATMENT

Since inhibiting toxin production has therapeutic benefits,
neutralizing their activity may also be therapeutically useful.
Intravenous immunoglobulin (IVIG) is an experimental
adjunctive treatment for severe GAS infections that targets
toxicity and promotes effective immune responses (Linnér
et al., 2014). IVIG is generated from the pooled serum of
healthy human donors and thus contains a panel of antibodies
against diverse, but undefined, bacterial targets (Schwab

and Nimmerjahn, 2013). These likely include major toxins
and surface-anchored virulence factors (Wilde et al., 2021a).
Through their neutralization (Parks et al., 2018) and increased
opsonization of the bacterium, IVIG antibodies can decrease the
bacterial burden and limit pro-inflammatory cytokine storms
(Figure 1; Kaul et al., 1999). The repertoire of virulence factors
produced by GAS is variable, as is the repertoire of specific
antibodies between donors used for IVIG (Dhainaut et al.,
2013), so the ability to neutralize toxins will vary between
treatments and requires optimization (Norrby-Teglund et al.,
1998; Schrage et al., 2006). Typical side effects include headaches
or nausea (Katz et al., 2007), but there are risks of rare but severe
complications (Pierce and Jain, 2003). Additional technical
restrictions on using IVIG are the high cost of generation,
storage requirements, and the risk of bloodborne pathogens
found in any human blood.

In mice, IVIG has clear efficacy in models of STSS (Sriskandan
et al., 2006) and necrotizing fasciitis (Tarnutzer et al., 2019).
Because cases of severe GAS infections are rare, the opportunity
to perform proper control trials is limited, and many findings
may be underpowered. In some hospitals, IVIG is routinely
used in tandem with clindamycin, although in one study this
did not provide statistically significant improvement compared
to clindamycin alone (Carapetis et al., 2014; de Prost et al.,
2015). One trial was canceled due to limited enrollment, but the
IVIG group had significant improvement compared to placebo
(Darenberg et al., 2003), while another trial of 100 patients found
no benefit over antibiotics alone (Madsen et al., 2017).

CLOSING COMMENTS

Until a vaccine is developed for GAS, antibiotics will remain
essential for treating infection. The gold standard, penicillin, has
been effective at treating GAS for over 80 years with no resistance,
but low, consistent, rates of failure. Since other bacteria eventually
gain resistance to the antibiotics commonly used for their
treatment, it can be expected that GAS may eventually become
resistant, which will lead to massive increases in morbidity and
mortality. If the mutations in pbpx2 of GAS continue to follow
the same progression as that in S. pneumoniae, this may not be
in the distant future (Grebe and Hakenbeck, 1996; Vannice et al.,
2020). However, all mutations identified thus far are insufficient
for non-susceptibility and carry a fitness cost, both of which will
require additional compensatory mutations for GAS to overcome
(Hanage and Shelburne, 2020). Therefore, dedicated surveillance
is essential as the emergence of penicillin resistance by GAS
would constitute a public health crisis.

Other methods of treatment beyond β-lactams are essential
for handling severe GAS infections. While resistance is on the
rise globally, clindamycin is one of the most effective treatments
available alongside β-lactams to manage necrotizing fasciitis or
STSS. With rapidly rising resistance, we lose this tool and will
require new therapeutic strategies. As with penicillin, surveillance
is crucial to determine current resistance trends. The properties
that would be desired in these drugs, to complement the
shortcomings of penicillin, include the targeting of vegetative
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bacteria in biofilms and intracellular bacteria. IVIG is a promising
method to improve survival during severe infections, but it
may not be a replacement for clindamycin or another effective
antibiotic. Understanding how resistance develops and the global
profile of resistance will ensure that new drugs can be developed
and deployed in the proper locations.
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