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The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM

versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6

(TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of

different diseases such as cardiovascular and lung disease, autoimmune diseases, and

several different cancers. These interactions form stable scaffolds which can act as

“landing strips” for inflammatory cells as they invade tissue from the circulation. The

increase in versican is often coincident with the invasion of leukocytes early in the

inflammatory process. Versican interacts with inflammatory cells either indirectly via

hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1

(PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and

non-immune cells. These interactions activate signaling pathways that promote the

synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB.

Versican also influences inflammation by interacting with a variety of growth factors

and cytokines involved in regulating inflammation thereby influencing their bioavailability

and bioactivity. Versican is produced by multiple cell types involved in the inflammatory

process. Conditional total knockout of versican in a mouse model of lung inflammation

demonstrated significant reduction in leukocyte invasion into the lung and reduced

inflammatory cytokine expression. While versican produced by stromal cells tends to be

pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and

immunosuppressive microenvironments. Inflammation in the tumor microenvironment

often contains elevated levels of versican. Perturbing the accumulation of versican in

tumors can inhibit inflammation and tumor progression in some cancers. Thus versican,

as a component of the ECM impacts immunity and inflammation through regulating

immune cell trafficking and activation. Versican is emerging as a potential target in the

control of inflammation in a number of different diseases.
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INTRODUCTION

Inflammation occurs during tissue infection or injury and
involves the migration of leukocytes out of the blood vessels
and into damaged areas of tissue (1, 2). Inflammation is driven
by receptors on the surface of immune and non-immune cells
(pattern recognition receptors, PRR) (1). PRRs recognize three
classes of molecular patterns resulting from either pathogens
generated by infectious agents such as virus and bacteria
(pathogen-associated molecular patterns or PAMPs), molecules
released from damaged tissues (damage-associated molecular
patterns or DAMPs), or frommolecular patterns on “self ” tissues,
often upregulated during malignancy (self-associated molecular
patterns, SAMPs) (3). Activation of these receptors initiates
an inflammatory response involving inflammatory cytokine
production and recruitment of leukocytes. While inflammation
is important in repairing tissue after insult, it often results in an
exacerbation of tissue injury and promotion of disease.

Recent studies have indicated an important role for the
ECM in the inflammatory response (4–10). Leukocytes cross the
endothelial barrier and interact with the ECM which influences
their adhesion, retention, migration, and activation. Leukocyte
trafficking and localization are critical to events associated with
the immune response. Specific components of the ECM can act
as DAMPs or matrikines (11) promoting inflammatory cytokine
synthesis and release by immune and non-immune cells (4, 12,
13). Proteoglycans, as components of the ECM, play a key part in
providing intrinsic signals needed to coordinate critical events in
the inflammatory cascade (4–6, 10, 14–23).

We have been interested in versican, which is a chondroitin
sulfate proteoglycan (CSPG) and a member of the hyalectin
family of ECM components (24), as one of the principal drivers
of immunity and inflammation in a variety of different diseases,
such as cardiovascular and lung disease, autoimmune diseases,
and several different cancers. Interestingly, like many other ECM
components, versican has “two faces”—functioning both in a
pro- and an anti-inflammatory manner. The goal of this review
will be to highlight the involvement of versican as a component
in inflammation, discuss its role in recruiting and activating
leukocytes, and provide examples and possible mechanisms by
which this “versatile” ECM molecule can exhibit both pro- and
anti-inflammatory properties.

VERSICAN

The expression and accumulation of versican, a large ECM
proteoglycan, increases dramatically during inflammation in
most diseases [reviewed in (4–6, 10, 23, 25, 26)]. Versican,
named for its versatility in being a highly interactive molecule
(27), is encoded from a single gene locus on chromosome
5q14.3 in humans (28) and its full-length isoform shares 76%
nucleotide and 62% amino acid sequence identity betweenmouse
and human.

There are at least five different isoforms of versican, V0,
V1, V2, V3, V4, due to the alternative splicing of the major
exons that code for the attachment regions for the chondroitin
sulfate (CS) glycosaminoglycans (GAG) in the core protein

(27, 29–33). Four of these isoforms contain CS GAGs that are
attached by covalent linkage to the core protein, while one of
the isoforms, V3, contains no GAGs due to the splicing together
of the N- and C- terminal regions. V0, V1, V2, and V3 differ
in the size of the core proteins and the size and number of
the GAG chains. Additional variation within these isoforms
has also been observed with an alternatively spliced C-terminus
“Vint tail” (33).

The calculated molecular masses from cDNA sequencing
studies for human versican core proteins are 370 kDa for V0,
262 kDa for V1, and 72 kDa for V3. These theoretical values
are significantly lower than deduced from SDS PAGE gels where
V0 migrates at around 550 kDa, and V1 around 500 kDa after
chondroitin ABC lyase digestion (34). These differences are
due to the high content of O- and N-linked oligosaccharides
associated with the versican core protein (34–36). Interestingly,
the different isoforms exhibit functional differences regarding
their impact on cell phenotype, such as the ability of V1 to
promote proliferation and inhibit apoptosis, while V2 exhibits
antiproliferative activity (37, 38). In contrast, V3 regulates ECM
assembly and inhibits cell proliferation and migration (39–45).
A new V5 isoform has been recently described and shown to
be expressed by injured rat neurons (46). While the biological
importance of the “Vint tail” has yet to be elucidated, it likely
provides fine tuning of interactions with the G3 region of the
molecule. Thus, the different molecular domains of versican
make the biology of this molecule quite complex given that
both the alternative splicing of the mRNA as well as the
controlled degradation of the intact versican molecule generate
many different molecular forms which themselves can have
their own effects on key events associated with immunity and
inflammation. Much work remains to be done to sort out these
complex interactions and their effects on the biology of this
highly interactive molecule.

There is variation in the number, size, and composition of
the CS chains attached to the different isoforms of versican. For
example, consensus sequence for the number of CS attachment
sites on the core protein of human versican reveals 17–23 sites
for V0, 12–15 for V1, 5–8 for V2, and 0 for V3 (36, 47). Growth
factors that increase during inflammation such as platelet-derived
growth factor (PDGF) and transforming growth factor-beta
(TGFβ) increase CS chains length and alter CS composition,
impacting the ability of versican to interact with other molecules
(35, 48–50). The CS isolated from versican interacts with
inflammatory cytokines and impacts cytokine activity (51) [also
see reviews (52, 53)]. Interestingly, the machinery and signaling
pathways that control the composition and elongation of the
CS chain differ from those controlling the transcription of
versican core protein synthesis (48). For example, we found
that stimulation of versican core protein synthesis by PDGF
in non-human primate arterial smooth muscle cells encoded
both the PKC and ERK pathways, whereas the elongation of
the CS chains attached to the versican core protein was PKC
dependent, but ERK independent. Since GAG chain length is a
critical factor in determining the interactive nature of versican
as well as other proteoglycans (54), targeting the pathways that
regulate GAG chain elongation (55) may be a useful therapeutic
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FIGURE 1 | Versican increases in the extracellular matrix (ECM) as part of the early inflammatory response. Immune cells invade the tissue from the blood stream and

interact with specific ECM components including versican, versican fragments such as versikine (generated by versicanases), and other ECM components that

associate with versican. This interaction may involve receptors on the immune cells such as CD44, P-selectin glycoprotein 1 (PSGL-1), receptor for

hyaluronan-mediated motility (RHAMM), and toll-like receptors (TLRs). This interaction impacts several aspects of immune cell activation as part of the immune and

inflammatory response.

approach to alter the immune and inflammatory properties of
this ECM component.

Versican is synthesized by many different types of cells,
including epithelial, endothelial, and stromal cells as well
as leukocytes. This synthesis is regulated by a host of
proinflammatory cytokines and growth factors [reviewed in
(26, 56)]. Versican expression is regulated through two
signaling pathways. Rhamani et al. first described the role
of the canonical Wnt/β-catenin/T-cell factor (TCF) pathway
in regulating versican expression in airway smooth muscle
cells (57–59). Using polyinosinic-polycytidylic acid (poly I:C)
and lipopolysaccharide (LPS) to activate TLR3 and TLR4,
respectively, we showed that the signaling cascade that includes
TLR3 or TLR4, the TLR adaptor molecule, Trif, type I interferons
(IFNs), and the type I IFN receptor (IFNAR1), increases versican
expression by mouse macrophages, which implicates versican
as an IFN-stimulated gene (60). Versican synthesis is also
controlled by several different miRNAs which are modulated
during inflammation (61–63).

The degradation of versican is affected by several different
families of proteases that increase during inflammation. Such
proteases include matrix metalloproteinases (MMPs), i.e., MMP-
1,−2,−3,−7, and−9 (64–66), serine protease plasmin (67), and
at least five ADAMTS (a disintegrin and metalloproteinase
with thrombospondin motifs) MMPs, specifically ADAMTS-
1,−4,−5,−9, and−20 [see reviews (12, 13, 68–70)]. Cleavage
of versican by ADAMTS-1,−4,−5, and−9 leads to production
of an amino-terminal fragment, termed versikine, that can be
detected using an antibody recognizing the neoepitope sequence

DPEAAE (DPE) (12, 71, 72). Fragments such as versikine can
act as DAMPs, interacting with immune and non-immune cells
stimulating pro- and anti-inflammatory cytokine release and a
modified immune response in both human and murine models
(13, 73–75). Thus, many mechanisms are in place to regulate the
expression and degradation of versican during the inflammatory
process which ultimately influence key cellular events including
cell adhesion, proliferation, migration, and ECM remodeling.

VERSICAN: A COMPONENT OF THE
INFLAMMATORY RESPONSE

Versican is essential during development (76, 77) and it is now
becoming apparent that it is an important component of the
tissue inflammation caused by infection and tissue injury (10).
Versican accumulates as part of the early inflammatory response
in a number of human diseases often associated with the invasion
of leukocytes including those in the vascular system (10, 40, 78–
84), lung (5, 6, 60, 77, 85–89), brain and spinal cord (53, 90–92),
intestine (93–96), heart (97), liver (63), skin (98, 99), eye (100,
101), pancreatic islets (102), and many different forms of cancer
[reviewed in (103–105)]. The accumulation of versican in these
tissues is usually associated with other ECM components that
bind versican, such as hyaluronan (106, 107), link protein, TSG-
6, IαI, and CD44 (95, 96, 108–111) (Figure 1). Complexes form
as a result of this interaction which shape the microenvironment
which impacts immunity and inflammation (95, 96, 109–113).
Versican is usually found co-localized with hyaluronan, however,
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inflammatory situations exist where each can be found separately
(114, 115). Like versican, hyaluronan is also well-known for
having both pro- and anti-inflammatory properties [reviewed in
(95, 96, 111, 113, 116, 117)]. It remains to be determined whether
the respective pro- or anti-inflammatory activities of versican and
hyaluronan are interdependent. Usually, when interventions are
used to reduce either versican or hyaluronan in cells and tissues,
both components are similarly affected, adding to the challenge
of determining the independent contributions of each molecule
in the inflammatory process.

Versican interacts with receptors, such as CD44, PSGL-1,
TLR2 (118), found on the surface of immune cells, and P-
or L-selectins (20, 51, 52, 119–123). This interaction initiates
a signaling cascade that influences the phenotypes of immune
and inflammatory cells. For the TLRs, versican, like hyaluronan,
does not possess the biochemical homology common to ligands
for TLR2 and TLR4, such as LPS, so the precise interaction of
versican with the TLRs is a bit unclear. No doubt interaction with
the TLRs for versican, and maybe hyaluronan as well, involves a
complex with molecules that have an affinity for the TLRs (113).
In addition, it is interesting to compare the consequences of
postulated versican–TLR interactions to other proteoglycans that
have peptide motifs that bind TLRs, such as biglycan (18, 124).
Whereas biglycan impacts inflammation by activating TLR4 and
inflammasomes through activation of Trif-dependent signaling
pathways (4, 6, 14, 19, 125), versican appears to mediate TLR2
interaction and activate MyD88-dependent signaling (118, 119).
The functional significance of these two separate pathways in
governing the inflammatory response is not clear. It will be
important to determine if versican has unique immunogenic
properties when compared to other ECMmolecules.

The negatively charged CS chains in large part control the
ability of versican to interact with a multitude of other molecules
including chemokines, growth factors and proteases (51, 52,
122, 126–128) impacting their bioavailability and bioactivity
(129–131). A number of studies demonstrate that CS chains
can also promote the release of proinflammatory cytokines
frommacrophages and splenocytes, regulate MHCII intracellular
trafficking, antigen presentation and T-cell activation [reviewed
in (53)].

While a majority of studies show versican as having
proinflammatory properties (see below), some studies have
indicated that versican can operate in an immunosuppressive
manner under certain conditions. For example, Xu et al. (132)
found that treatment of mice exposed to LPS with siRNA to
versican V1 resulted in increases in TNFα, NFκB, and TLR2
which were accompanied by increases in leukocytes in the lung.
Interestingly, we found that LPS stimulated the expression of
versican by macrophages in a type I IFN-dependent manner
and that deletion of versican from macrophages promoted
increased leukocyte invasion in mice exposed to poly I:C (60, 87).
These studies are important since they suggest that macrophage-
derived versicanmay possess immunosuppressive characteristics.
Additionally, Coulson-Thomas and colleagues showed that the
surface of human umbilical cord mesenchymal stem cells
contains a glycocalyx enriched in hyaluronan, versican, TSG-6,
and IαI, protecting the stem cells from immunodestruction (133)

and affecting T-cell and macrophage phenotype. Interestingly,
in tumors, human cancer stem cells synthesize and secrete
prominent pericellular coat matrices enriched in hyaluronan and
versican (134). Such a “cell coat” may account, in part, for the
resistance to chemotherapy that these cells exhibit, as well as
protection from immune surveillance as has been described for
hyaluronan (135, 136) (see below).

VERSICAN: INTERPLAY WITH
LEUKOCYTES

Leucocytes interact with the ECM as they invade tissue as part
of the inflammatory response (5, 7–9, 17, 21) (see Figure 1). To
explore this interaction, Carol de la Motte’s laboratory at the
Cleveland Clinic pioneered the use of co-cultures of leukocytes
with stromal cells to explore the mechanisms and consequences
responsible for the interaction of leukocytes with the ECM. Using
agonists that promote ER stress, these models demonstrated
that stromal cells produce an ECM organized into cable like
structures that bound leukocytes [see reviews (96, 116, 137)].
These cable-like structures contain hyaluronan, versican, TSG-6,
and IαI that bind different subsets of leukocytes (93, 94, 112, 114–
116, 137–147). Such structures have not only been found in
vitro, but also in diseased tissues, such as in atherosclerosis
(10, 84), inflammatory bowel disease (IBD) (94), and in brain
and spinal cord injury (53, 91). Further studies are needed
to determine the contribution of each of the components in
the complex on leukocyte phenotype. For example, we found
that blocking versican accumulation in the ECM generated by
cultured human lung fibroblasts using a neutralizing antibody
significantly reduced monocyte adhesion in vitro (115). In
addition, we showed that manipulating the expression of
versican by overexpressing the V3 isoform in experimentally-
induced atherosclerotic lesions in rabbits significantly reduced
macrophage infiltration, inhibiting the development of lipid-
filled atherosclerotic lesions (84). Furthermore, our in vitro
studies using rat arterial smooth muscle cells demonstrated that
the V3 expression effect is anti-inflammatory and decreased the
expression of the CS-containing versican isoforms, V0 and V1,
and the formation of elastic fibers which are a poor substrate for
macrophages (42, 43). Such results further support a critical role
for versican in myeloid cell accumulation in atherosclerosis and
perhaps in other diseases as well (39).

Lymphoid cells also interact with the ECM. An effective
immune response requires that T cells are able to adhere to
and migrate through the ECM (7, 145). For example, activated
human CD4+ T cells bind to the ECM generated by human
synoviocytes and human lung fibroblasts treated with poly I:C,
but not to the ECM generated by the stromal cells in the absence
of poly I:C treatment (145). This binding blocked the ability of
T cells to spread and migrate and was reversed by pretreatment
of the ECM with chondroitin ABC lyase. Additionally, versican
blocked hyaluronan binding to T cells and inhibited IL-10
synthesis reducing the immunosuppressive capacity of these
cells (145). Versican also inhibited human T-cell invasion of
collagen gels consistent with influencing T-cell migration and
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immunosuppression. These activities, of course, could be critical
to influencing the ability of T cells to invade and destroy tumor
cells (see below). In addition, versican was identified as one
of the most upregulated genes in lymphocytes isolated from
patients with Sezary syndrome which is a leukemic variant of
cutaneous T cell lymphoma. In this setting, versican promoted
the invasive and homing capacity of the lymphocytes from
these patients (148). Interestingly, the cleavage of versican by
ADAMTS enzymes is critical for T-cell trafficking in mouse
models of influenza virus infection (149).

Whether versican is intact or degraded may affect its
impact on disease cell phenotype. For example, we showed
that the G1 fragment of versican promoted extensive ECM
cable formation that interconnected adjacent cells and inhibited
proliferation, while the intact form had no activity (150). Using
the CRISPR/Cas9 system, Hideto Watanabe’s group recently
developed mice that synthesized versican lacking the ADAMTS
versicanase cleavage site (99). They found that accumulation of
intact versican in these mice facilitated TGFβ activity coupled
to fibroblast proliferation and myofibroblast differentiation and
accelerated wound healing. Interestingly, wounds from the
versican cleavage-resistant mice contained elevated levels of M1
macrophages and T cells, suggesting in this context that intact
versican enhances inflammatory cell infiltration. These studies
highlight the importance of ECM molecules such as versican in
regulating the ability of both myeloid cells and T cells to invade
tissue which is critical to the immune destruction of tumors in
many forms of cancer (see below).

VERSICAN: EXPRESSION BY MYELOID
CELLS AND THE IMPACT ON
INFLAMMATION

Versican is also expressed by myeloid cells and upregulated as
part of the inflammatory response (see Figure 1). For example,
versican expression is elevated by myeloid cells in autoimmunity
(127, 151, 152), coronary stenosis (153), myocardial infarction
(154), and in response to proinflammatory stimulants such
as hypoxia (155, 156) and LPS (60, 87, 157). Versican is
differentially expressed in M1 macrophages, as opposed to
M2 macrophages, as they differentiate from monocytes (87,
156, 158). On the other hand, a recent study shows that
versican enhances mesothelioma growth by promoting M2
polarization and inhibiting phagocytosis (159). More work is
needed to sort out whether specific isoforms of versican play a
role in determining and/or regulating macrophage phenotype.
In patients with systemic sclerosis, CD14-positive monocytes
(127) show elevated expression of versican that is accompanied
by elevated expression of CCL2 [also known as Monocyte
Chemoattractant Protein 1 (MCP-1)]. Interestingly, versican
protects CCL2 from degradation which in turn promotes
monocyte migration (127). Earlier studies showed that in a
model of neuronal inflammation hyperalgesia, CCL2 binds to
versican and impacts inflammation (160). A similar relationship
has been seen among versican, macrophages, and CCL2 and the
promotion of inflammation in mouse models of cancer (161,

162) (see below). Versican also interacts with CCL5 which is
important in recruiting CD8T cells in the inflammatory response
(51). Versican has also been identified as a gene common
for classical monocytes (CD14++ CD16−) and classical CD11c
dendritic cells (163).

LPS and poly I:C, two TLR agonists, stimulate versican
expression in both murine bone marrow-derived macrophages
and alveolar macrophages in vitro (87) and in murine alveolar
macrophages as well as in stromal cells in vivo (60, 88). To
determine the role of versican derived from macrophages in the
innate immune response in vivo, we developed two models of
conditional versican deficiency by floxing exon 4 of the versican
gene. LysM/Vcan−/− mice have constitutive myeloid cell-specific
versican deficiency (60), and R26Rert2Cre+/Vcan−/− mice, when
treated with tamoxifen, are globally deficient in versican (88).
In vitro studies with macrophages from LysM/Vcan−/− mice
indicate that versican is important for production of type
I IFNs and IL-10 by macrophages in response to poly I:C.
This is supported by in vivo studies with LysM/Vcan−/−

mice which indicate that myeloid-derived versican restrains
recruitment of inflammatory cells into lungs and promotes
production of the key anti-inflammatory cytokines, IFN-β and
IL-10, in the pulmonary response to poly I:C. In contrast,
in vivo studies with R26Rert2Cre+/Vcan−/− mice suggest that
stromal-derived versican promotes pulmonary inflammatory
cell recruitment in response to poly I:C. When considered in
tandem, these results identify versican derived frommacrophages
as an immunomodulatory molecule with anti-inflammatory
properties whereas versican derived from stromal cells has
proinflammatory properties. Some of the factors that determine
the pro- or anti-inflammatory properties of versican include
cellular source, surface receptors, signaling pathways affected,
nature of the binding partners that associate with versican
and/or whether versican is intact or degraded. It should also be
noted that reducing versican by genetic manipulation or other
means frequently reduces the accumulation of hyaluronan (88)
raising some question as to whether the opposing inflammatory
properties of versican may be governed by hyaluronan?

VERSICAN AND INFLAMMATION IN
CANCER: PRO- AND/OR
ANTI-INFLAMMATORY?

Versican is a central player in cancer development in that it
impacts tumor-promoting inflammation, immune surveillance
evasion, and immunomodulation (164). Versican expression
increases as part of the inflammatory response in a number
of cancers [reviewed in (22, 103, 105, 165)]. In both breast
cancer and Lewis lung carcinoma, the presence of versican
produced by the tumor cells leads to an accumulation and
activation of tumor-associated macrophages (TAMs) via TLR2
and its co-receptors TLR6 and CD14 (118, 119, 159, 165–167).
Tumor cell-derived versican in turn promotes accumulation
and secretion of proinflammatory TNFα and IL-6. In addition,
we found significantly elevated expression and accumulation of
versican in leiomyosarcoma (LMS), a metastatic uterine cancer,
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when compared to the more benign leiomyomas and control
healthy tissue (103, 168). Importantly, cultured human LMS
cells synthesized large quantities of versican, forming extensive
pericellular coats around the tumor cells. Blocking versican
synthesis with siRNA to versican reduced the thickness of the cell
coats and inhibited their proliferation and migration in vitro and
tumor formation in vivo (103, 168).

Stromal cells are a major source of versican as well. In breast
and ovarian cancer, TGFβ is overexpressed and contributes to
strong stromal versican upregulation (169, 170). Cervical and
endometrial cancers are characterized by increases in versican
originating from both tumor and stromal cells (171, 172).
On the other hand, lack of versican expression in a mouse
fibrosarcoma model resulted in a decrease in the number and
density of cancer-associated fibroblasts (CAFs) in stroma (173).
Such changes led to larger tumors and poorer prognosis in
pancreatic cancer (174). In Lewis lung carcinoma, stromal cell-
derived versican and its fragment, versikine are associated with
increased angiogenesis as part of the inflammatory response
contributing to this tumor (175). Accumulation of versican in
tumors is positively correlated with the number of microvessels
within tumor stroma (176, 177). We found, for example, that
human stromal stem cells that produce elevated levels of versican
formed an extensive vascular network enriched in hyaluronan
and versican when cultured with vascular endothelial cells (178).
Furthermore, when patches containing these proangiogenic cells
were transplanted onto athymic rat hearts they developed 50-
fold more vessels than patches containing stromal cells with low
versican expression (178). In other studies, we demonstrated that
versican was actively processed in the early stages of VEGF-
induced pathological angiogenesis generating extensive DPEAAE
(versikine) fragments that associated with the endothelial cells
(179). These results suggest that versican, in some form, may be
critical for the early stages of angiogenesis as part of the events
associated with inflammation.

Myeloid cells are also a major source of versican in tumor
inflammation. Versican from myeloid cells promotes tumor
metastasis in breast cancer (180). Versican expressed by CD11b+
Ly6Chigh myeloid cells promotes lung metastasis in a TGFβ-
dependent manner in mouse models (181). Intriguingly, versican
expression is upregulated by macrophages when co-cultured
with carcinoma cells (161, 162), suggesting that the source of
versican includes both myeloid cells associated with cancer cells
(182, 183). These studies raise the possibility of “crosstalk” among
different cell types within the tumor thatmay influence the nature
of versican accumulation and bioactivity which would provide
key links to the inflammation associated with cancer initiation,
promotion, and metastatic progression (see Figure 1).

Infiltrating myeloid cells secrete versican which can also
exhibit immunosuppressive activities in some cancers (74,
75, 103, 118, 184, 185). For example, ADAMTS-generated
versikine regulates mouse BATF3-dendritic cell (BATF3-DC)
differentiation (74). BATF3-DCs control CD8+ abundance in the
tumor microenvironment (186). These observations support a
role for versican as being tolerogenic. In addition, a recent study
(187) using bone marrow biopsies from 35 myeloma patients
revealed a significant correlation of versikine accumulation

with infiltration of CD8+ T cells supporting a model in
which macrophages and regulatory DCs secrete tolerogenic
versican which is subsequently degraded, generating versikine
and further altering the immunosuppressive nature of the tumor
microenvironment. Thus, taken together, these studies establish
that both intact versican and a proteolytic degradation product
of versican have immunomodulatory properties and suggest that
the anti-tumor properties of versikine might antagonize the pro-
tumor properties of intact versican (13, 23, 73, 75, 188). The
juxtaposition of these findings indicates that the consequences of
ECM-derived–DAMP interactions with PRRs can have sharply
differing outcomes depending on the contextual specifics of
versican structure.

The tumor stromal ECM microenvironment is characteristic
of a wound that does not heal (189, 190) and is functionally
analogous to an immune privileged site in normal tissue such
as in the eye [reviewed in (191)]. Versican and hyaluronan
are enriched in immune privileged sites. The expression and
accumulation of versican in the microenvironment of some
tumors is associated with reduced numbers of CD8-positive T
cells indicating that versican may interfere with T-cell invasion
as part of an immunosuppressive activity (192). In addition,
versican may be a player in regulating the expression of
PD-L1 as part of the autoimmune checkpoint involved in
tumor escape from the T-cell immune response. Hartley and
colleagues showed that versican produced by mouse tumor cells
stimulated monocytes to produce TNFα in a TLR2-dependent
manner which in turn upregulated the expression of PD-L1
by mouse monocyte/macrophages (193). The involvement of
versican in regulating PD-L1 expression in T cells awaits further
investigation. However, such results overall suggest that versican
may be part of the exclusionary zone in the microenvironment
impacting and preventing T cells access to the tumor (191, 194–
196). Such an involvement should be considered as a potential
target in immunotherapy treatment of cancer. For example,
versican accumulation in the stroma could interfere with T cell-
mediated tumor destruction by displacing the T cells from the
appropriate tumor target (191).

While the CS containing isoforms of versican appear to
be pro-inflammatory, V3 which contains no CS chains when
overexpressed in arterial smooth muscle cells inhibits the
expression of pro inflammatory cytokines such as CXCL1,
CCL20, and CCL2 resulting in blockade of epidermal growth
factor receptor and NFκB signaling activity (42, 43). V3
expression also reduced the rate of tumor growth of melanoma
by inhibiting tumor cell proliferation as well as increasing the
rate of apoptosis. Such experiments highlight a potential role for
V3 in counteracting the inflammatory response associated with
cancer (197–199).

CONCLUSIONS

Studies indicating a causal role of versican regulating events
that drive immunity and inflammation are increasing. There
is no doubt that versican, either intact or degraded, as an
ECM participant, has a role, but whether it acts alone or
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in combination with other components during inflammatory
events is still not fully understood. Published studies indicate
that versican has both pro- and anti-inflammatory activities
depending upon the context in which versican is presented to
cells. Versican’s role in inflammation also depends on temporal
and spatial considerations and it may play different roles
whether it is involved early or late in disease and whether
it is intact or degraded. Furthermore, versican’s versatility in
binding to multiple receptors and other components involved
in the inflammatory response identifies it as a “keystone
molecule” regulating inflammation. Developing targeted reagents
and therapeutic strategies to interfere with versican accumulation
should further identify key mechanisms regulating versican’s
biological activity. Versican is increasingly being seen as a
potential therapeutic target in multiple diseases.

Thus, future directions will be to take advantage of the
mouse models we have developed in which versican has been
deleted conditionally in the whole animal or specifically in
myeloid cells and determine the impact of selectively removing
versican in mouse models of cardiovascular and lung disease,
autoimmune diseases such as type 1 diabetes and multiple
sclerosis, and in some cancers, particularly breast cancer. Such
studies have not been possible in the past due to the unavailability
of the versican KO mouse. We are interested in focusing on
the impact of the different versican variants, such as V3 to
better define their role in inflammation and immunity since
our preliminary data indicates that V3 acts differently than
V0 or V1 in influencing events that drive the immune and
inflammatory response. Our cell biology studies will focus on

how versican influences immune cells and the immune response
focusing on its role in antigen presentation, immune synapse
formation, and immune activation important, for example, in
the destruction of tumors. Indeed versican, as part of the ECM,
is “versatile” and a “keystone” molecule in the regulation of
immunity and inflammation.
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