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Abstract
Searching for interesting common subgraphs in graph data is a well-studied problem
in data mining. Subgraph mining techniques focus on the discovery of patterns in
graphs that exhibit a specific network structure that is deemed interesting within these
data sets. The definition of which subgraphs are interesting and which are not is highly
dependent on the application. These techniques have seen numerous applications
and are able to tackle a range of biological research questions, spanning from the
detection of common substructures in sets of biomolecular compounds, to the
discovery of network motifs in large-scale molecular interaction networks. Thus far,
information about the bioinformatics application of subgraph mining remains
scattered over heterogeneous literature. In this review, we provide an introduction to
subgraph mining for life scientists. We give an overview of various subgraph mining
algorithms from a bioinformatics perspective and present several of their potential
biomedical applications.
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Introduction
Graphs or networks are ubiquitous data types, pervasive in multiple domains, from social
sciences to medicine, biology and chemistry. One common problem in graph theory con-
sists of finding the underlying subgraph patterns in graphs, which are also referred to as
networkmotifs or graphlets. In this review, we present a survey of frequent subgraphmin-
ing applications that deal with biomolecular graphs, such as interaction networks, protein
graph structures and chemical structures.
By definition, a graph consists of nodes and edges. In the molecular biology context,

each node corresponds to a biomolecular entity and each edge denotes a certain asso-
ciation or interaction between such entities. For example, a protein structure can be
represented as a single graph, in which each node corresponds to an amino acid and
each peptide bond is represented as an edge. We can consider any chemical structure as
a graph, for example by representing each of its constituent atoms as a node and each
molecular bond as an edge. On a cellular scale, the interactions between all proteins can
be represented as a graph. In this case each protein is a node, and each physicochemical
interaction is represented by an edge.
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Frequent subgraph mining deals with identifying frequently occurring subgraphs in a
given graph dataset. A subgraph can be considered frequent if the number of its occur-
rences within the dataset exceeds a specified threshold s. However, how the occurrences
of a subgraph are counted depends on the graph setting. For example, subgraph counting
will be different for a single graph or for multiple graphs. As an illustration of counting
within a single graph, let us represent a protein built up out of n = 7 amino acids as a
single graph, in which each atom is a node and each covalent bond is an edge (Fig. 1a).
Figure 1a shows the protein structure at three levels of granularity: (i) as a chain of amino
acids; (ii) as a chain of amino acid residues; and (iii) at the atomic level. If we look for
subgraphs that appear in the atomic representation graph at least n times (so that s ≥ n),
some very common small two-node subgraphs will be found, such as C-C or C=O, and
the protein backbone, i.e. the chemical structure that all amino acids have in common: N-
C-C=O, which will occur exactly n times (Fig. 1b). Among the subgraphs that occur less
than n times (s < n), either individual amino acids will be found or common patterns that
occur across amino acids such as C-C-C-C-C (Fig. 1c). It should be noted that the non-
overlapping counting scheme was adopted when counting appearances of subgraphs in a
large graph, more on which can be found in “In a single graph” section.
Subgraph mining can be applied to various biological data sets and has a wealth of

applications, ranging from finding patterns (i.e. network motifs) that explain functional
wiring in protein–protein interaction networks to finding shared properties in molecular
compounds, relevant for example in the context of drug discovery [1–4]. However, despite
its ability to tackle different biological research questions, a straightforward introduction
into the bioinformatics applications and context of subgraph mining has thus far been
lacking.
With this paper, we aim to cover theoretical concepts and provide a summary of diverse

bioinformatics applications of subgraph mining. It must be noted that due to the myriad
use cases of subgraph mining this review will not be able to cover the field completely.
Instead we provide a general introduction into subgraph mining and its applications
without assuming a specific computational background.

Definitions
In this section, terms are defined that will be used throughout the paper. More detailed
definitions are given in Additional file 1. For a more exhaustive introduction into the field
of subgraph mining and its algorithms, we refer to [5–7].

Graphs and subgraphs

A graph G is defined as a pair G(V ,E) consisting of two sets, a set of nodes V and a set
of edges E ⊆ V × V . If the nodes and/or edges of a graph have labels, then such a graph
is considered a labeled graph. A graph is deemed directed if every edge in the graph rep-
resents an ordered pair of nodes. If there is no edge orientation in a graph, the graph is
deemed undirected. Undirected graphs are common for molecular structures as there is
typically no specified direction in the chemical bonds. A graph is deemed connected if
there is a path along the edges that links each pair of nodes; otherwise it is deemed uncon-
nected. While most complete chemical structures are connected graphs, many protein
interaction networks are for example unconnected. If there is a numeric value assigned
to each edge in the graph, then the graph is considered to be weighted and the assigned



Mrzic et al. BioDataMining  (2018) 11:20 Page 3 of 24

a

b c

Fig. 1 Graph representation of a protein. a Protein consisting of n = 7 amino acids represented as a single
graph, visualised at three levels of granularity (bottom: fine granularity, top: coarse granularity). Each node is
an atom and each edge is a covalent bond between two atoms. In the first and second representation from
the top, the amino acid side chains (R groups) have been replaced with a symbol unique to their content. In
the top representation the amino acid backbone has been simplified to a single chain connecting the side
groups. b Example frequent subgraphs if Support s ≥ n, along with the support of each represented
subgraph. c Example frequent subgraphs if Support s < n, along with the support of each represented
subgraph

value is called the weight. A graph whose edges have no weight is considered unweighted.
Weights can be used to denote the certainty of the edge, as estimated by experimen-
tal or computational determination. It can also imply the strength of the interaction (for
example affinity in interactions between biomolecules).
We say that graph Gs is a subgraph of graph G if the set of all nodes and the set of all

edges of graph Gs are subsets of the set of all nodes and the set of all edges of graph G,
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respectively. A subgraph Gs is an induced subgraph of a graph G if its set of nodes is a
subset of the set of nodes of graph G, Vs ⊆ V , and its set of edges, Es ⊆ E, consists of all
edges that connect nodes in Vs in G. In other words, all edges between the selected nodes
are preserved. If at least a single edge is different, yet all nodes can be uniquely mapped
from the subgraph Gs to the graph G, it is a non-induced subgraph.
If there exists a mapping between two graphs such that if two nodes are connected in

one graph by an edge, they will be connected in the other graph as well, then such graphs
are considered isomorphic. In other words, if two graphs are isomorphic, it means that
those graphs are considered to be equal. If there are two graphs of different sizes, it is
clear they cannot be graph isomorphic, i.e. they cannot be equal. However, if the smaller
graph is completely within the larger graph, then the graphs are subgraph isomorphic.

Frequent subgraphmining

In the most straightforward application of subgraph mining, the goal is to find those fre-
quent subgraphs that occur more often than a given threshold. We can distinguish the
case of multiple graphs and single graphs when defining how the occurrences of a sub-
graph are counted, which is sometimes referred to as the support of the subgraph. The
support will precisely be defined in “Interestingness measures” section. While other defi-
nitions of interesting subgraphs do exist, the concept of counting the number of subgraph
occurrences is often the first and indeed the most common step in almost all subgraph
mining procedures.

Subgraphmining algorithms
In this section, we will discuss the algorithmic aspect of subgraph mining. The general
procedure of finding subgraphs of interest is shown in Fig. 2.
Before mining for frequent subgraphs the input graph data needs to be properly

encoded. Graphs should be represented so that each subgraph has a unique encoding
for easier detection of isomorphisms. After the graph(s) have been encoded, the first
step towards finding the frequent subgraphs is to generate a set of candidate subgraphs.
These candidates are the collection of subgraphs that could be frequent in the graph and
need to be checked. After obtaining this set of candidate subgraphs, the next step is to
count the number of occurrences of these subgraphs in the graph dataset. Frequency

Fig. 2 Frequent subgraph mining. Before starting with the mining, input graph data needs to be properly
encoded. After that, the first step towards finding frequent subgraphs is generating a set of candidate
subgraphs. Then, the frequency of each subgraph in graph dataset will be checked. This is usually preceded
by the pruning of the search space and removal of the redundant candidates with the goal of reducing the
search space. It is typically an iterative process: larger candidate subgraphs are generated from smaller
frequent subgraphs. The counting step outputs the occurrence of the each subgraph that has been checked
and this information is used to calculate the subgraph’s interestingness
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counting is usually the most computationally intensive part of subgraph mining algo-
rithms. For this reason, it is essential to have as few candidate subgraphs as possible.
Therefore the counting is commonly preceded by search space pruning and removal of
redundant graphs in order to achieve a reduction in the number of candidates. The count-
ing procedure will output how many times each subgraph that has been checked occurs,
which can be used to calculate the interestingness of a given subgraph. This can be as
straightforward as checking against a fixed threshold. Alternatively, it can include more
advanced methods such as calculating statistical enrichment compared to a background
distribution.

Subgraph representation

Graphs and subgraphs can be represented in several ways. The two most commonly used
graph representations are the adjacency matrix and the adjacency list.

Adjacency matrix The graph is represented as an n × n binary matrix; n being the total
number of nodes in the graph. The position (i, j) in the matrix can have the value of 0 or
1 for an unweighted graph, depending on whether or not there is an edge between nodes
vi and vj, (vi, vj) ∈ E (Fig. 3a). For weighted graphs, instead of a binary matrix, entries in
the adjacency matrix will contain the weights assigned to the corresponding edges.

Adjacency list The adjacency list of a graph is an arrayA of length n, where n is the num-
ber of nodes in a graph. Each entryA[i] in the array is linked to a list of all nodes connected
to the node vi (Fig. 3b). For directed graphs, each edge (vi, vj) is stored exactly once, while
for undirected graphs, each edge (vi, vj) is stored twice; once in a list connected to the vi
node and once in the vj related list.

Canonical labeling Neither the adjacencymatrix nor the adjacency list take into account
graph isomorphism discovery, which means that it is possible for two graphs which are
isomorphic not to share the same adjacency matrix/adjacency list. Canonical labeling
ensures that if two graphs are isomorphic they share the same canonical representation.
There are several possible ways for canonical labeling. Here, we will present two of the
most common approaches.

a b c

Fig. 3 Graph representation. All graph representations refer to the same undirected graph (Graph G) in the
top left corner but are presented in three different formats. a Adjacency matrix of graph G. Each element of
the graph has a value of one is there exists an edge between the node listed in the beginning of the row and
the node listed at the top of the column. Note that this matrix is symmetrical as undirected graphs have no
directionality to their edges. b Adjacency list of graph G. Each entry in the list correspond to a unique node in
the graph. A link (represented here by arrows) is then provided to each node to has an edge with the
corresponding node. The list of interacting nodes is represented by empty squares pointing to the vertex id.
The end of the list of nodes is represented by a square with a cross. c Canonical code of graph G with
adjacency matrix A(G). This is a string concatenation of the upper triangle of the adjacency matrix
representation
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Canonical adjacency matrix (CAM) The CAM is a unique adjacency matrix [8, 9].
Given an undirected graph G of size n and its adjacency matrix A, the CAM code is
obtained by concatenating the entries of the upper triangular part of the adjacency matrix
A in a column-wise fashion. The canonical code of a graph G is obtained by compar-
ing all possible codes of the graph and choosing the one with the minimal (maximal)
lexicographic value (Fig. 3c).

Depth-first search (DFS) code The DFS procedure assigns a unique label to each node
while traversing the graph in a depth-first fashion (more about graph traversal strategies
in “Subgraph searching and matching” section) [10]. This type of search strategy, specif-
ically the way that subgraphs are extended, results in each subgraph having a unique
canonical label.

De novo subgraph candidate generation

There are several methods for generating subgraph candidates de novo, most of which
can be possible induced undirected unlabeled candidate generation and extend-based
candidate generation.

Join-based candidate generation With this method, a new subgraph candidate of size
(k+1) is created by joining two subgraphs of size k that were discovered to be frequent in
a previous iteration. Two subgraphs are joined if and only if they share the same (k − 1)–
size subgraph. Depending on the definition of the subgraph size, join-based candidate
generation can be either node-based (Fig. 4a) or edge-based (Fig. 4b). Thus k will either
be equal to the number of nodes, or the number of edges. The main issue with join-based
candidate generation is that multiple candidates can be generated in one join process and
equivalent candidates can be generated in a number of different ways, which can lead to
the occurrence of duplicate candidates.

Extend-based candidate generation A subgraph candidate of size (k + 1) is generated
by extending a frequent k-size subgraph with an additional node. The issue with this
approach is that there are multiple ways to add the node to a subgraph (it can be added to
multiple nodes) which leads to the generation of redundant candidates. One way to solve
this is to only add extensions that meet specific criteria. The most common approach in

a b c

Fig. 4 Subgraph candidate generation. a Node-based candidate generation, where the join operation will
result in a subgraph that is one node larger. b Edge-based candidate generation, where the join operation
will result in a subgraph that is one edge larger. c Right-most path extension, where only edges/nodes that
end up in the right-most branch can be added
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this manner is to use the right-most path extension, i.e. to add the extra node only to a
node in the right-most branch (Fig. 4c) [11, 12].

Subgraph searching andmatching

If the goal of subgraph mining is to find all subgraphs that occur more than a set number
of times, the subgraph candidates can be pruned based on the Apriori principle. This
states that the number of occurrences of a subgraph can never be higher than those of the
subgraphs that it contains. Therefore if a subgraph does not pass the frequency threshold,
any future candidate graph containing this subgraph need no longer be checked. Two
types of search strategies exist that are based on this principle: breadth-first search (BFS)
and depth-first search (DFS).

The breadth-first search (BFS) strategy The BFS strategy checks the support of all can-
didates of a certain size, before moving to the next level; i.e. first all possible candidate
subgraphs of size k will be generated and checked for support, subsequently the frequent
subgraphs will be retained and used to generate the candidate subgraphs of size (k + 1).
A BFS is necessary if the subgraph candidates are generated by the join-based generation
method. For example, to generate the (k + 1)-size subgraph candidates two k-size fre-
quent graphs are needed, which means that all frequent subgraphs of size k need to be
determined first (Fig. 5a). This approach accounts for effective candidate pruning, but at
the cost of a high memory usage.

The depth-first search (DFS) strategy The DFS strategy first checks the support of a
candidate subgraph of size k; if this subgraph is frequent it will be extended to size (k+1)
and checked for support again (Fig. 5b). The subgraph will continue to be extended until
it is no longer frequent. Compared to the BFS this approach requires less memory but at
the cost of less effective pruning.
There is another generation and search strategy that is common in bioinformatic

approaches, where all possible subgraphs are generated in advance and each is subse-
quently tested in turn. This is only feasible if the candidate space is fairly small so that
there are few possibilities, for example only unlabeled subgraphs of a fixed small size,
or if there is prior knowledge about what kind of subgraphs need to be tested, such

a b

Fig. 5 Search strategy. a Breadth-first search (BFS), which will exhaust all relevant candidate subgraphs of a
given size before proceeding to the next size. Candidate subgraphs of a larger size are then generated based
on joining two subgraphs of a smaller size. b Depth-first search (DFS), which will explore an entire branch of
the subgraph lattice before restarting at the top with a different branch. New candidate subgraphs are
extended following a fixed set of rules until it drops below the frequency threshold or has reached a
predefined maximum size
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as feed-forward loop structures. The most common of these deal with induced sub-
graphs called graphlets, which are very common for the analysis of interaction networks
[13–15]. Graphlets are all possible induced undirected unlabeled connected subgraphs
up to a given size, usually 5 nodes so that there are 30 unique graphlets (Fig. 6). In these
cases, all subgraphs that need to be checked can be predefined. Therefore, no pruning is
needed and the occurrence of every defined subgraph is counted.

Interestingness measures

After obtaining a set of candidate subgraphs, the frequency of these subgraphs needs to
be counted. In most cases, frequency counting is the most computationally intensive part
of the subgraph mining algorithms.

Frequent subgraph mining. Let D be a graph dataset (a graph database or a single
graph) and let σ be a user-defined minimal support threshold. Frequent subgraph mining
deals with finding all subgraphs GS in D such that:

support (GS,D) ≥ σ (1)

Inmultiple graphs

When searching across multiple graphs, the count of a subgraph is usually defined as the
number of graphs that contain it, independent of the number of times that the subgraph
actually occurs within each of these graphs (Fig. 7).

Support of a subgraph (in multiple graphs) Let D be a graph database. The support of
a subgraph GS is defined as the number of graphs in D that contain GS as a subgraph:

support (GS,D) = | {G | G ∈ D,GS ⊆ G} | (2)

Fig. 6 Graphlets. All 30 possible graphlets of node size 2–5. These are undirected subgraphs featuring every
valid combination of edges between a given number of nodes
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Fig. 7 Support count in multiple graphs. The candidate subgraph g occurs in all three of the graphs with the
graph database G and thus has a support of 3. Even though it occurs multiple times in graph G3, it is only
contained once for this graph

Frequency of a subgraph (in multiple graphs) Given a database of graphs D the fre-
quency of a subgraph GS is defined as the fraction of all graphs in D that contain
subgraph GS:

frequency(GS,D) = support(GS,D)

|D| (3)

Statistical significance The most frequent subgraphs are not necessarily the most
relevant for a given research problem. The statistical significance of a subgraph is usu-
ally determined by checking how often that subgraph appears in a background graph
database, for example one where the edges have been randomized within each graph.
Statistical significance can then be used as a post-processing step to filter out insignifi-
cant frequent subgraphs or to mine for subgraphs that are significantly associated with a
certain subset of the database (i.e. subgroup discovery) [16–18] (Fig. 9).

In a single graph

Support of a subgraph (in a single graph) Given a graphG the support of a subgraphGS
is defined as themeasure of occurrence of subgraphGS within graphG. For a single graph,
the support and frequency are the same. However, counting the support within a single
graph is not as straightforward as for multiple graphs [19, 20]. First of all, different occur-
rences of a subgraph can overlap and this can lead to several difficulties. When dealing
with overlapping subgraphs there are two approaches to count the occurrences of a sub-
graph within a single graph: the first approach takes into account only non-overlapping
subgraphs; the second approach allows an overlap between various subgraphs (Fig. 8a). In
the first approach, only those subgraphs which share no edges (or no nodes) are consid-
ered non-identical, while in the second approach two subgraphs are deemed non-identical
if they differ by at least one edge (or one node).
When considering how to deal with overlapping subgraphs within a single graph, one

must also take into account the Apriori property. This states that the count of the larger
set (graph) cannot be greater than the count of any of its subsets (subgraphs), and allows
pruning of a large portion of the search space. However, for overlapping subgraphs simply
counting the number of occurrences of a subgraph within a graphmight not adhere to this
property because parts of overlapping subgraphs are shared. This is shown in the example
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b

Fig. 8 Support count of candidate graph g in a single graph G. a Non-overlapping versus overlapping
graphs. For non-overlapping counts, only those instances of the subgraph are counted that are entirely
unique and thus don’t share any of its nodes or edges with another instance. Overlapping counts allow
subgraphs to share nodes and edges, as long as there is at least one node/edge difference with another
subgraph (to distinguish between identical instances). b Non-monotonic example. Subgraph g1 has a
support of 1, despite that the larger subgraph g2 that contains it has a support of 2. Subgraph g1 will only be
counted once in graph G as no other instances is available that uses a different set of nodes or edges. This
general procedure is equivalent for both multi- and single graph problems

in Fig. 8b. If g1 is a subgraph of g2, it should have an equal or higher count. However,
it is clear that g2 has a higher count. To this end, other overlap support measures have
been proposed, a prominent one being the size of the maximum independent set (MIS)
measure of graphs [21–23].

Statistical significance Sometimes the subgraphs of interest are not the ones that occur
most frequently, but the ones that are significantly enriched in certain nodes. The signif-
icance of a subgraph can be determined based on a statistical background distribution
(Fig. 9). Significant subgraphs can then be those that occur more frequently than expected
in a random graph [24].

Sampling Sometimes the graph is simply too large to be efficiently analyzed and thus
the use of sampling approaches is required. Graph sampling considers only a representa-
tive sample of the graph instead of the entire graph. This means that when searching for
frequent subgraphs, instead of enumerating the entire graph, only a representative sample
is taken into account. More on sampling in large graphs can be found in [25–27].

Biomedical subgraphmining
Subgraph mining methods have been applied to a wide variety of biomedical problems.
The reason for this is that many biological features and datasets can be represented as a
graph or a collection of graphs, which enables usage of these methods. Often this requires
conversion from the typical format into a graph representation, and in some cases this
incurs a loss of information. However, in these cases, the advantage of being able to use
subgraph mining approaches far outweighs any disadvantages. A broad distinction can
be made between the problems that deal with multiple graphs, and those that deal with
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Fig. 9 Overview of statistical significance testing for subgraphs. The significance of a list of frequent
subgraphs, e.g. G, found in the graph database D can be tested by comparing to a background database B.
This database is often established by randomly permuting either the labels or the edges of D to represent a
relevant background set. This permutation procedure is performed a large number of times (1000s) and thus
generates a large set of random graphs. The support of G is then enumerated within B, which establishes the
distribution of G at random, which can be presented with a density graph as seen here. The statistical
significance can then be reported with a P-value, which corresponds to the chance of seeing a support value
that is as high or higher than the observed support in D for the random graphs collected in B. If this P-value
falls beneath a predetermined significance cut-off (often 0.05 with a correction for multiple testing), the
subgraph is reported as significant

single graphs. The following is a non-exhaustive description of some of the most common
usages of subgraph mining in bioinformatics, together with frequent subgraph mining
algorithms and available implementations. A flowchart detailing the differences in various
subgraph mining implementations, as featured here, can be found in Fig. 10.

In multiple graphs

Application in bioinformatics

As introduced in “Interestingness measures” section, the goal of subgraph mining in
multiple graphs typically concerns finding those subgraphs that occur at least once in a
sufficiently large number of these graphs. As such, these applications focus on finding
common subgraph patterns that are ubiquitous in the graph collection, which may
indicate their biological relevance.

Molecular data One of the archetypical examples is subgraph mining of a database of
(bio-)molecules for common subgraph patterns. Indeed such datasets are often used as
benchmarks for the development of novel subgraph mining approaches [10, 28–31]. In
this instance, each graph in the collection represents a single molecule. The atoms of the
molecule are then represented as nodes, and the covalent bonds between the atoms as
edges. The edges here are therefore undirected, however they are sometimes labeled to
denote the type of bond, or weighted to denote the strength or length of the bond. The
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Fig. 10 Flowchart with the various subgraph mining tools available for different problems. When choosing
the right subgraph mining tool for a specific problem, certain considerations must be made. The biggest
distinction is if the dataset is or can be represented as a single graph or as multiple graphs. Further choices
can then be made specific for each of these settings. Several tools have the same use cases and will return
identical outcomes, so that the major distinction is on platform support, ease of use and speed/memory
requirements. *Note that gSpan can be made to work with directed graphs with minor modifications [5]

goal of the subgraph mining often involves the discovery of common molecular struc-
tures, such as benzene rings or disulfide bonds that can be related to a chemical, physical
or biological feature. This is for example useful for the discovery of new drug compounds.
By mining those molecules that are known to have a specific drug activity for common
patterns, one can identify potential new candidates by searching for unstudied molecules
that contain the identified subgraphs [32–34].

Protein structures The three-dimensional structure of a protein is often represented as
a graph for mining purposes. In these cases, this will usually not be at the level of individ-
ual atoms, as described for other biomolecules in the previous section, but at the level of
amino acid residues. The graph representation will then typically not concern itself with
the chemical bonds that exist to build up the protein structure, but will describe those
amino acids that are in close proximity, regardless of whether or not an actual bond exists
between them. The nodes of the graph thus represent the different amino acid residues of
the protein, and two nodes are connected with an edge if the residues are in close spatial
proximity in the three-dimensional protein structure. Common criteria that define close
proximity include a fixed maximum distance, often 7 or up to 11.5 angstrom, between the
α-carbon atom of the amino acids, i.e. the carbon atom that the residue chain is attached
to, or another fixed position in the amino acid structure [4, 35, 36]. These distances are
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defined such that it can be supposed that if two amino acids are sufficiently close they
likely interact or can influence each other in some manner. The nodes are then labeled
with the type of amino acid, e.g. alanine, leucine and so on. The edges are undirected and
usually left unweighted. The mined subgraphs therefore consist of patterns of amino acid
residues that occur with high frequency in the collection of proteins.While the goal of this
mining can be fairly diverse, it most commonly involves correlating the found subgraphs
with protein functions. Indeed, these patterns often represent evolutionary conserved
three-dimensional structures or domains, which may indicate that they have a biologi-
cal function in these proteins [35, 37], and can in turn be used as features for functional
prediction.

Phylogenetic trees The construction of phylogenetic trees that represent similarity
between sequences is a common staple in bioinformatics. As a tree is a specific type of
graph, many of the approaches detailed here can be readily applied to collections of trees
to find so-called subtrees. In this case, the nodes represent the different genes, proteins,
species or other biological entities of interest that were contained in the original dataset
for comparison, supplemented with the branch nodes signifying inferred ancestors. In the
case of a rooted tree, one branch node will be labeled as the root node. The edges denote
the relationship between the studied entities and their ancestors. These edges can be
weighted with the branch length, however these are often not used in the mining process.
The actual mining proceeds in a manner very similar to that of normal subgraph min-
ing as already outlined in this review. However, trees do have specific properties that can
be utilized to speed up the mining process. The mining of phylogenetic subtrees is most
relevant in the context of the discovery of robust phylogenetic relationships in a larger col-
lection of phylogenetic trees. For example, many methods used to study the evolutionary
relationship between sequences generate a large number of different trees, each repre-
senting a potential phylogenetic possibility. A common approach is therefore to search for
the consensus tree, i.e. the single tree that contains those phylogenetic relationships that
most of the generated trees agree on. By mining the different solutions, those frequent
subtrees can be found, and combined into the consensus solution [38–40].

Subgraphmining tools available for bioinformatics use

Here we present a short overview of the algorithms and available implementations to
mine subgraphs in multiple graph settings. Table 1 summarizes the information on the
algorithms and tools for multiple graphs. A more detailed overview of these frequent
subgraph mining algorithms and their implementations can be found in [41].

Table 1 Overview of subgraph mining algorithms and tools for the multiple graph setting

Algorithm Interface Programming language Website

AcGM [9] Command line - (Binary executable) [76]a

FSG [43, 44] Command line - (Binary executable) [77]

GASTON [30] GUI Java [78]a

gSpan [10] GUI Java [78]a

FFSM [29] GUI Java [78]a

MoFa/MOSS [34] GUI Java [79]
aThese tools are no longer supported by the authors, and we cannot guarantee the reliability of the supplied URLs; we supply
them for convenience
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AGM/AcGM The Apriori graph mining algorithm (AGM) [9] represents graphs by an
adjacency matrix and searches for frequent subgraphs in a BFS manner. Candidate sub-
graphs are created by join-based candidate generation, which in this case is node-based
(i.e. in each iteration one node is added to the subgraph). AcGM [42] is a version of AGM
that only looks for frequent connected subgraphs. The AcGM executable for Linux is
available.

FSG FSG [43, 44] represents graphs with adjacency lists and uses a BFS strategy to find
frequent subgraphs. As opposed to AGM (and AcGM), FSG generates candidate sub-
graphs by adding a new edge in each iteration, i.e. it uses edge-based candidate generation.
An FSG implementation can be found as a part of the PAFI software, which contains
executables for Linux (PAFI is written in ANSI C and C++).

GASTON The Graph/Sequence/Tree extraction (GASTON) [30] algorithm divides the
subgraph mining procedure into different subtasks by evaluating subgraphs from a lower
to a higher complexity. It starts by looking for paths first, continues with free trees and in
the final stage it looks for cyclic graphs. Here, a path is a sequence of nodes connected by
edges, which includes every node only once; a free tree is a connected graph which does
not contain any cycle; and a cyclic graph is a graph which contains at least one cycle. The
source code for the Gaston algoritm is available in C++ and Java (Parallel and Sequential
Mining Suite (ParSeMiS), ParMol package).

gSpan gSpan [10] is one of the most well known algorithms for frequent subgraph min-
ing. This algorithm traverses the search space in a DFSmanner and creates new subgraphs
using the right-most path extension with minimum DFS code. This way it combines the
creation of new subgraph candidates with subgraph isomorphism testing. The source
codes of gSpan is available in C++ (gBoost toolbox) and Java (Parallel and Sequential
Mining Suite (ParSeMiS), ParMol package).

FFSM The Fast Frequent SubgraphMining (FFSM) [29] algorithm uses a CAM represen-
tation of graphs and traverses the search space in a DFS manner. It stores an embedding
set for each discovered frequent subgraph and thus avoids subgraph isomorphism testing.
Both binaries and Java source code (part of ParMol package) for FFSM are available.

MoFa The Molecular Substructure Miner (MoSS)/Molecular Fragment Miner (MoFa)
[34] is an algorithm inspired by eclat [45], designed for finding frequent fragments (fre-
quent connected subgraphs) in molecular data. It uses adjacency matrices for graph
representation and traverses the search space in a DFS manner. It is implemented as part
of the ParMol package and in the Molecular Substructure Miner (MoSS). Although it was
initially designed for molecular data, MoSS can also work with other types of graphs. It
supports input for molecular files in the SMILES, SLN or SDfile formats.

Comparison of tools

To give an overview of the performance of the various subgraph mining algorithms
we evaluated each on a protein structure graph dataset derived from all RCSB PDB
non-redundant structures, similar to those described in “Application in bioinformatics”
section. The graph statistics are summarized in Table 2. We compared the performance
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Table 2 Characteristics of the dataset used to evaluate subgraph mining implementations for the
multiple graph setting

Number of graphs 12,073

Number of edge labels 1

Number of node labels 21

Average number of edges in a graph 453

Average number of nodes in a graph 197

Max number of edges in a graph 16,199

Max number of nodes in a graph 6642

for support thresholds of 50, 30, 20 and 10%. Tables 3 and 4 show CPU time in seconds
and memory consumption in MB, respectively. There is no information about memory
consumption for AcGM and FSG, since they are binary executables. These values are only
indicative as they result from a single run on a single computer.
The ParMol package contains implementations of four subgraph mining algorithms

and is convenient in case the user wants to test several algorithms on the same dataset.
However, MoFa/MoSS is more user-friendly than the ParMol package, and accepts a wide
variety of input formats. Testing our example graph database, AcGM had a running time
one order of magnitude slower than its competitors. FSG was the second slowest algo-
rithm with a running time one order of magnitude slower than GASTON, gSpan, FFSM
and MoFa/MoSS for a support threshold of 20% and lower. For a lower support thresh-
old (10%) GASTON and MoFa/MoSS had a two-fold faster running time than gSpan and
FFSM.

Interpretation of the results

The output of the tools for mining subgraphs in multiple graph settings is given in Section
10.2. All methods, except for FSG, find the same patterns for all support thresholds. FSG
returns a lower number of frequent subgraphs than the remaining algorithms because it
does not count one node subgraphs. As the input concerned a large number of protein
molecular structures encoded as graphs, the output graph patterns concern configura-
tions of amino acids that are common within the molecular structure. For example, one
of the three-node subgraphs that was found with high frequency (50.88%) was LEU-GLU-
ARG. The close proximity of glutamate and arginine in this subgraph are indicative of a
salt bridge, a common configuration in protein structures. Another example with high
frequency (40.23%) was THR-VAL-PHE, which may be indicative of a β-sheet as all three
amino acids are known to be preferred in the middle of β-sheets and thus would be in
close proximity.

Table 3 Time elapsed in seconds – tools for the multiple graph setting

Algorithm Support (%) 10 20 30 50

AcGM >7200 >7200 >7200 303.7

FSG >7200 2883.8 805.2 46.1

GASTON 685.1 176.8 79.5 21.8

gSpan 2226.7 402.1 152.3 59.3

lFFSM 1639.5 316.7 122.2 30.5

MoFa/MOSS 759.4 144.2 56.5 19.7
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Table 4Memory consumption in MB – tools for the multiple graph setting

Algorithm Support (%) 10 20 30 50

Gaston 1,147 743 679 624

gSpan 996 559 511 493

FFSM 1,513 1,059 895 678

MoFa/MOSS 1,700 1,200 980 549

In a single graph

Application in bioinformatics

Much of today’s biomedical relationship data is represented as a large single graph or
network representation. Mining these single graphs involves identifying those subgraphs,
substructures, or network motifs that are common, and specifically those that are more
common than a given background distribution would suggest.

Interaction and association networks The interactions and associations between the
different biomolecules in cells, such as genes, proteins, and metabolites, are most com-
monly conceptualized as a graph. The biomolecules are featured as the graph nodes. The
edges in these graphs can then represent direct interactions, such as protein–protein
complexes or kinase–target relationships, but also indirect interactions, such as between
genes coding for transcription factor proteins and the gene targets of these transcription
factors. For association graphs, the edges are biomolecules that are co-occurring, such as
in co-expression networks, or sharing similar functionality. Despite representing different
types of relationships, these graphs have very similar properties: they are often very large,
featuring several hubs of nodes with a very high degree, and are therefore often described
as hairballs, as can be seen in Fig. 11. Depending on the relationship type, the edges are
either directed for those with a strict regulator-target relationship, or undirected for asso-
ciations and complexes. Most of the studies in this field are done on graphs that have
unlabeled nodes and edges. The objective of subgraph mining interaction and association
networks often concerns the identification of those subgraphs, termed graphlets or net-
work motifs, that are present in a much higher (or lower) quantity than in a collection of
similarly-sized random networks that function as the background for the relevant statis-
tical test. Given the size of these networks, typically only induced unlabeled subgraphs
are examined. These are then generally described as the building blocks of the network
[46, 47], and have been related to specific biological functions [48]. The identified net-
work motifs can then be used in a number of different contexts, such as as a measure for

Fig. 11 Examples of interaction/association graphs. a Escherichia coli interaction network from the
bacteriome database [73]. b Escherichia coli transcriptional regulatory network from the RegulonDB database
[74]. c Escherichia coli co-expression network from the Colombos database [75]
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graph similarity [14], network alignment [49, 50], and network prediction [51]. Several
reviews are available that focus on the identification and usage of network motifs in these
types of graphs [52–55].

Other biomedical graphs A few other single graph problems are worth mentioning as
they demonstrate that subgraphmining in bioinformatics is not limited tomolecular data.
The first is the mining of brain connectivity maps or neuronal networks [56]. These are
graphs that represent the synaptic connections between different neurons. The neurons
are thus represented as unlabeled nodes, with directed edges as connections from one
neuron to the next. The second involves the mining of food webs that document the rela-
tionships between species in an ecosystem [47, 56, 57]. Each node represents a species and
directed edges denote predator-prey relationships. In both cases, the goal of the mining
is typically the identification of common subgraphs that may represent network building
blocks with a specific biological function.

Subgraphmining tools available for bioinformatics use

We present a short overview of the algorithms and tools available for mining subgraphs
in a single graph. Summarized information can be found in Table 5. It should be noted
that we only considered algorithms for which implementations were available. A more
detailed overview of the algorithms and tools for motif detection can be found in [58].

Mfinder Mfinder is a tool for network motif detection. It contains implementations of
algorithms for both exhaustive motif enumeration and motif sampling [46, 56]. Exhaus-
tive motif enumeration looks for all possible subgraphs of a certain size (expressed as a
number of edges) that appear more frequently than expected in a random network. Motif
sampling for subgraph counting estimates the frequency of subgraphs by sampling within
a subset of the whole graph. Random subgraphs are sampled by randomly choosing an
edge, and then extending that edge until a subgraph of the required size is obtained.
Both algorithms look for subgraphs in a DFS manner and generate candidate subgraphs
by adding a new edge in each iteration, i.e. they use edge-based candidate generation.
Mfinder is compatible with MDraw, a network visualization tool. Mfinder was the first
tool for motif detection and it works with both directed and undirected unlabeled graphs
and supports a motif size between 3 and 8. Unfortunately, currently it is no longer under
active development.

MAVisto MAVisto is a JavaWeb Start application that contains an implementation of the
frequent pattern finder (FPF) algorithm [59] for motif detection. This algorithm searches

Table 5 Overview of subgraph mining algorithms and tools for the single graph setting

Algorithm Interface Programming language Website

Mfinder [30] Command line C++ [80]

MAVisto [81] GUI Java [82]

FANMOD [83] GUI C++ [84]

Kavosh [61] Command line, Cytoscape plug-in C++ [85]

NetMODE [62] Command line C++ [86]

acc-Motif [63] Command line Java [87]

SSM [24] Command line Java [88]
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for all motifs of a certain size (which can be defined either as a number of nodes or a
number of edges) that appear more frequently than in an ensemble of random networks
by using one of three different concepts of motif frequency. These frequency concepts
differ in the way they allow overlapping matches. FPF builds a pattern tree with the simple
one-edge, two-node-graph at its root and expands this by iteratively adding a new edge. It
utilizes the downward closure property and spends time only on the promising branches.
The MAVisto tool works with both directed and undirected unlabeled graphs, but it is
currently no longer under active development.

FANMOD FANMOD is a tool that implements the RAND-ESU algorithm for enumer-
ating and sampling subgraphs [60] as well as the full enumeration algorithm. RAND-ESU
was designed to address the bias of the sampling method for subgraph counting imple-
mented inMfinder, as Mfinder’s sampling method is prone to sampling certain subgraphs
more often than others. RAND-ESU fixes this bias and is faster. It enumerates all sub-
graphs of a certain size, although during the execution it will ignore some of these
to achieve an unbiased sampling. FANMOD works with both directed and undirected,
labeled and unlabeled graphs and it can detect motifs of up to a size of 8 nodes
(min size: 3).

Kavosh The Kavosh algorithm [61] is designed with the goal of finding motifs with less
memory and CPU time. It enumerates all subgraphs of a certain size in the graph first by
finding all subgraphs that contain a certain node, then removing that node from the graph
and repeating the process. Kavosh works with both directed and undirected unlabeled
graphs and poses no restriction on the motif size (defined as the number of nodes) to be
searched.

NetMODE NetMODE [62] is a software package for motif detection designed specif-
ically as an improvement over Kavosh (upon which it was built) and FANMOD. As
opposed to FANMOD, which contains implementations of both sampling and full enu-
meration algorithms, NetMODE exclusively performs full enumeration. In contrast to
Kavosh it searches only for motifs of size 3–6 nodes. Initially much faster than both
Kavosh and FANMOD, NetMODE can also be run in parallel. It works with both directed
and undirected unlabeled graphs.

acc-Motif The accelerated motif (acc-motif ) program [63] implements a motif detection
algorithm that counts motifs of size k using the set of induced subgraphs of size k − 2.
Here, the size of the motif is equal to the number of nodes. This algorithm is efficient only
for smaller motifs (up to size 6). It allows multi-threaded execution and works with both
directed and undirected unlabeled graphs.

Significant Subgraph Miner Significant Subgraph Miner (SSM) [24] is an implemen-
tation of the algorithm for finding subgraphs associated with a certain set of nodes in a
single graph, as per subgroup discovery. The algorithm generates candidate significant
subgraphs in a DFS manner, starting with the node of interest as the root node. If sig-
nificantly more nodes of interest are root nodes for a subgraph compared to the other
nodes of the graph (which are not of interest), the subgraph will be deemed as significantly
enriched. SSM works with both directed and undirected, labeled and unlabeled graphs.
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Comparison of tools

To compare these tools we used the protein–protein interaction graph of Escherichia coli
as present in the Bacteriome database [64] with a confidence cut-off of 0.8. The graph was
left unlabeled as only SSM supports labels. The graph statistics are summarized in Table 6
and it is visualized in Fig. 11a. We compared the performance for motif sizes of 3, 4 and 5.
The number of randomized networks was 100 for motifs of size 3, 10 for 4-size motifs
and 5 for 5-size motifs. All tools were compared in full enumeration mode and a single
thread. Table 7 shows CPU time in seconds, while Table 8 shows memory consumption
in MB. These are only indicative values as the measurements were made only once on a
single computer.
Mfinder and MAVisto exhibited the longest running times, as was shown in [61]. FAN-

MOD is two orders of magnitude faster than Mfinder and is overall the best tool in terms
of user-friendliness. FANMOD supports both a full enumeration and a sampling mode,
and works with labeled data as well. As expected Kavosh is slightly faster than FANMOD
and consumes less memory. Kavosh also has one big advantage — it does not pose a
restriction on the motif size. NetMODE and acc-Motif have similar performances when
it comes to speed, they are both one order of magnitude faster than Kavosh with acc-
Motif being slightly faster. They both have multi-threading capability. This allows them
to be run on graphs that can be too large for FANMOD to handle. However, as opposed
to Kavosh they are restricted to motifs of size up to 6 nodes and do not work with labeled
graphs. In terms of memory consumption, acc-Motif requires morememory. SSM is quite
unique since it does not look for motifs of a specific size (it only has a restriction for
maximum edges allowed), but for all subgraphs which are associated with certain nodes.
However, it can also enumerate all subgraphs within a graph. In terms of running time,
it has roughly a running time of the same order of magnitude as Kavosh. Its memory
consumption is one order of magnitude larger than acc-Motif ’s.

Interpretation of the results

The output of the tools for mining subgraphs in single graph is given in Additional file 2.
As the starting graph was a protein-protein interaction network, all methods returned
subgraphs that represent configurations of proteins that are frequent or significantly
enriched compared to a randomized graph of the same size. Two configurations are
common throughout all of the results, independent of the subgraph size that was being
investigated. The first are densely connected subgraphs where all nodes have edges that
connect to (almost) all other nodes. These are indicative of protein complexes, where
many proteins interact with each other. These will co-elute in pull-down experiments and
create dense clusters within the graph. For example, MFINDER subgraph 238, featured in
the supplementary materials, is a fully connected graph between three nodes. This three-
node graph occurred 4683 times in the protein-protein interaction network, but only on

Table 6 Characteristics of the dataset used to evaluate subgraph mining implementations for the
single graph setting

Number of edge labels 1

Number of node labels 1

Number of edges in a graph 2919

Number of nodes in a graph 821
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Table 7 Time elapsed in seconds – tools for the single graph setting

Algorithm Motif size (# random networks) 3 (100) 4 (10) 5 (5)

Mfinder 447 1000 >7200

MAVisto 723 1922 >7200

FANMOD 6 30.6 706.9

Kavosh 4.4 24.1 563.6

NetMODE 0.9 1.6 34.9

acc-Motif 0.3 0.8 20.9

SSM 1.1 5.1 972.2

average 3429 times in random graphs of a similar size. This graph was therefore enriched
with a P-value less than 1×10−32 in the protein-protein interaction network. The second
type of common enriched configuration is where a single protein interacts with all other
proteins, but they (hardly) interact with each other. These subgraphs are indicative of
hub proteins, a well known feature of protein-protein interaction networks where a single
protein has a large number of interactions. An example is the FANMOD subgraph 4382,
which contains a single node that is connected to three other nodes with no other shared
edges. However, this subgraph was found to occur less than expected when compared to
a random graph, indicating that while hub proteins are present in the graph, they are rel-
atively rare. The differences between the output of the various methods are due to their
different search parameters. Mfinder finds fewer motifs than the remaining tools because
it calculates motif sizes based on their number of edges instead of their number of nodes.
SSM finds more subgraphs because it filters the subgraphs based on a subgroup discovery
criterion and to directly compare it to the other approaches the entire graph was added
as a single subgroup. The remaining methods found the same number of motifs.

Conclusions
We have given an overview of the basic principles of subgraph mining and how it can
be used for biomedical applications. We made a distinction based on those methods and
problems that feature finding frequent subgraphs across multiple graphs and those that
find them within a single graph. These approaches are very similar algorithmically. The
basic steps thus remain: first graph encoding, then candidate generation, and finally sub-
graph counting. However they use different criteria to define which graphs are actually
interesting.
Despite its broad applicability there are still some enduring issues that prevent sub-

graph mining in a biomedical setting from reaching its full potential. First, labeled single
graph solutions are very rare, yet very relevant for biomedical research [65–69]. The

Table 8Memory consumption in MB – tools for the single graph setting

Algorithm Motif size (# random networks) 3 (100) 4 (10) 5 (5)

Mfinder 2.7 3.3 -

MAVisto 298 713 -

FANMOD 9.5 9.6 9.9

Kavosh 0.3 0.3 0.3

NetMODE 0.8 0.8 1.8

acc-Motif 26 26 53

SSM <445 445 520
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introduction of labels into existing solutions is however non-trivial as it cause a massive
explosion of the number of subgraphs that need to be evaluated. In addition, many bio-
logical graphs allow multiple labels per node. Another issue when it comes to subgraph
mining approaches for single graphs is that many of them struggle with large graphs, espe-
cially those with many hubs, i.e. highly connected nodes. As the input graph gets larger,
so does the number of potential subgraphs of interests and for a lower frequency thresh-
old, the number of patterns potentially explodes. Recently, there have been solutions that
mine for frequent subgraphs in large graphs at low frequency thresholds [70]. There is also
a question of the right interestingness measure, i.e. how to define an interesting subgraph
from a bioinformatics point of view. The most frequent subgraphs are not necessarily the
ones of interest and different alternative measures have been devised from a theoretical
computer science perspective [71, 72]. Unfortunately, many of these interestingness mea-
sures are not as relevant for biomedical applications. There is thus still a need for novel
algorithms which can find biologically relevant subgraphs in a flexible manner.

Additional files

Additional file 1: More detailed definitions of graphs and subgraphs. (PDF 385 kb)

Additional file 2: Output of tools for both single and multiple graph settings. (PDF 286 kb)
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