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Abstract: Most picornaviruses of the family Picornaviridae are relatively well known, but there are
certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus
A1, KM589358) with very limited background information. In this study, three novel picornaviruses
provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples
of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-
terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES,
NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study
viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and
phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while
the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species
“Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of
livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that
bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable
in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple
lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of
ovine–caprine interspecies transmission of certain bopiviruses.

Keywords: picornavirus; IRES; bopivirus; livestock; epidemiology; ovine; caprine; bovine;
RT-PCR; phylogenetics

1. Introduction

Picornaviruses (PVs) of the family Picornaviridae are a diverse group of small, non-
enveloped viruses with a positive-sense single-stranded RNA genome. The ca. 6.7–10.1 kilo-
base (kb) long, modularly organised PV genome predominantly contains a single viral
polyprotein-encoding open reading frame (ORF) flanked by 5′ and 3′ untranslated regions
(UTRs) and a 3′ terminal poly(A)-tail [1,2]. Just prior to the start codon, the 5′UTRs of PVs
contain one of at least five types of highly structured internal ribosomal entry sites (IRES),
which is responsible for the cap-independent translation initiation of the viral polyprotein [1,3].
The cis-acting replication elements (cre) are generally built up from a single stem-loop which
includes the conserved AAAC motif, and its location in the genome could be conserved
among the members of the same genus [4,5]. The ORF is usually organised in a general
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layout of (L)-P1:VP0 (or VP4-VP2)-VP3-VP1-P2:2A-2B-2C-P3:3A-3B-3C-3D (L = Leader pro-
tein), although slight differences like the presence of intergenic IRES between P1 and P2 or
region-duplications are also described [1,2,6].

From the capsid peptides presented in the P1 genomic region, the VP1 is known to
be the most immunodominant peptide predominantly responsible for the sero/genotype
of the virus and also frequently used for the in-silico genotype-determination of picor-
naviruses, e.g., entero-, sapelo-, cardio- or erbo-viruses [7–10]. The 3′ UTR is ranged
between 25 and 825 nucleotides (nt) without the poly(A)-tail and could contain conserved,
highly structured motifs like s2m, “barbell-like” structures, or sequence repeats like the
“q-motif” [11–13].

According to the current Virus Taxonomy, the picornaviruses are classified into 147
species which belong to 63 genera [14]. All of the currently identified PVs are known
to infect only vertebrate species where the infection-related disease spectrum could be
ranged between asymptomatic to severe symptoms, including hepatitis (e.g., human
hepatitis A, duck hepatitis A virus), encephalitis (e.g., EV-71, avian encephalomyelitis) or
respiratory syndrome (e.g., human rhinovirus, bovine rhinitis A virus) [2,12,15]. Although,
the in vitro cultivation of certain “classical” animal picornaviruses, like entero-, aphtho-
or sapeloviruses are mostly possible in different, widely used cell lines (like MDBK or
PK-15), even so, a number of recently identified PVs have failed to be cultured in vitro so
far [16–18].

While the majority of the PVs were identified from mammal hosts, including domestic
animals, like bovine (Bos taurus) or swine (Sus scrofa) (i.e., there are known bovine and swine
PVs from a total of sixteen genera), only a limited number of PVs have been described from
ovine (Ovis aries) and caprine (Capra aegagrus hircus) of similar economic importance [19].
Besides certain highly pathogenic PVs with wide host species spectra like foot-and-mouth
disease virus (FMDV, Aphthovirus), or encephalomyocarditis virus (EMCV, Cardiovirus),
only a few additional caprine (EV-F1, EV-G20) and ovine enteroviruses (EV-E1, G5, G7) of
genus Enterovirus, a caprine (caprine kobuvirus 1) and ovine kobuvirus (ovine kobuvirus 1)
of genus Kobuvirus, as well as an ovine hunnivirus (Hunnivirus) and an ovine boosepivirus
(Boosepivirus), were discovered so far [20–26].

To date, only a single, currently uncharacterised (i.e., no related studies are available)
genomic sequence of bovine picornavirus 1/bopivirus A1 strain TCH6 (KM589358) of
genus Bopivirus identified from bovine in 2013 is available in the GenBank database without
any supporting information. In this study, three novel PVs provisionally called ovipi-,
gopi- and bopi-virus/Hun were identified from faecal samples of asymptomatic cloven-
hoofed domestic livestock (ovine, caprine and bovine, respectively), which are most likely
belonging to various genotypes of the existing species of Bopivirus A and a novel proposed
species of “Bopivirus B” (introduced in this study) of genus Bopivirus. The presumably
complete genomes of all three viruses were determined, characterised and an RT-PCR-
based epidemiological investigation, as well as VP1 capsid sequence-based genotype-
determination of bopiviruses, were also conducted using enteric samples of various species
of domestic livestock (ovine, caprine, bovine, swine and rabbit).

2. Materials and Methods
2.1. Background Information of Samples, Animals and Farms

In this study, a total of 269 faecal samples were used, collected from mostly asymp-
tomatic (only N = 11 caprine and N = 6 bovine were diarrheic) cloven-hoofed animals of
Ovis aries (domestic ovine, N = 47), Capra aegagrus hircus (domestic caprine, N = 62), Bos
taurus (domestic bovine, N = 96) and Sus scrofa domestica (domestic swine, N = 43), along
with N = 21 samples of Oryctolagus cuniculus domesticus (domestic rabbit) between 2008
and 2020 (Table 1, Supplementary Table S1). A total of 17 distinct farms (N = 3 ovine, N = 4
caprine, N = 6 bovine, N = 3 swine and a single rabbit farm) were included in this study
(Figure 1, Supplementary Table S1).
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Table 1. Origin and features of sampled animals (hosts) as well as statistic data of bopivirus prevalence (in bold). Positive
faecal sample refers to bopivirus screening RT-PCR positivity. (I), (II), (III): age groups. mo: month.

Host
Species Farm Location Farm ID Collection

Date
No. of Positive Faecal Samples/Total by

Age Groups

No. of
Positive Faecal
Samples/Total
(%) by Farms

(I) <2 mo (II) 2–12 mo (III) >12 mo

Ovine Hajdúszoboszló HBSZ 05/03/2020 4/8 3/5 0/6 7/19 (36.8%)
Tárnok TB 02/04/2010 10/16 0 0 10/16 (62.5%)

Békéscsaba ANI 06/09/2009 0 0 0/12 0/12
Σ = 14/21 (66.7%) 3/5 (60.0%) 0/18 17/47 (36.2%)

Caprine Aranyosgadány AGK 23/04/2020 0 6/8 2/8 8/16 (50.0%)
Győrszentiván KT 11/05/2020 0/9 5/10 0/10 5/29 (17.2%)

Nagyhegy NH 11/05/2020 0 0 2/5 2/5 (40.0%)
Rudabánya K 25/06/2008 0 1/12 0 1/12 (8.3%)

Σ = 0/9 12/30 (40.0%) 4/23 (17.4%) 16/62 (25.8%)

Bovine Hajdúböszörmény HB 05/03/2020 1/6 0/13 1/2 2/21 (9.5%)
Nyíregyháza NyH 06/03/2020 0/7 0 0/4 0/11

Derecske DR 05/03/2020 0 0/4 0/11 0/15
Tiszavasvári TiV 05/03/2020 0/6 0/9 0/1 0/16

Bonyhád BH 04/11/2019 0/14 0/2 0 0/16
Tevel TV 04/11/2019 0/13 2/3 0 2/17 (11.8%)

Σ = 1/46 (2.2%) 2/31 (6.5%) 1/18 (5.6%) 4/96 (4.2%)

Swine Egyházasfalu EF 17/08/2016 0 0/10 0 0/10
Orosháza OR 15/09/2016 0/9 0 0 0/9
Szigetvár SzV 18/10/2018 0/24 0 0 0/24

Σ = 0/33 0/10 0 0/43

Rabbit Somogysárd SS 03/11/2010 0/13 0/4 0/4 0/21
Σ = 0/13 0/4 0/4 0/21
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Figure 1. Localisations with farm IDs (in square brackets) and numbers of collected faecal samples (n = 269) of different
Hungarian animal farms used for investigation of bopiviruses. Empty markers: caprine farms, black markers: bovine farms,
grey markers: ovine farms, red marker: rabbit farm, blue markers: swine farms.
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The majority of the investigated farms were “large-scale industrial livestock farms”,
in which ≈100 to >1000 animals were housed together, except caprine farms of Nagy-
hegy (≈10 animals), Aranyosgadány (≈50 animals) and a bovine farm of Nyíregyháza
(≈20 animals). All of the ovine and caprine (except for Győrszentiván) farms, as well as a
single bovine farm (Derecske), were extensive-management-type farms where animals of
different ages were released freely during the daytime and were housed together indoors
at night. In contrast, the other N = 5 bovine, all swine, all rabbit and a caprine farm of
Győrszentiván were intensive-management-type farms, where animals were restricted
to a closed indoor farm area at all times. In the investigated intensive-management-type
bovine farms, the <2-month-old calves were mostly held individually in separated areas.
Faecal specimens were taken from the flooring underneath the animals into sterile test
tubes, transported in chilled containers and kept at −20 ◦C prior to processing. For prelim-
inary epidemiological investigations, the available sampled animals were retrospectively
classified into three arbitrary age groups (group I: <2 months old, group II: 2–12 months
old, group III: >12 months old) (Table 1, Supplementary Table S1).

2.2. RT-PCR-Based Screening and Genome Acquisition Reactions

Total RNA was extracted from 150 µL of faecal sample diluted to ~40 v/v% with sterile
0.1 M phosphate-buffered saline (PBS) or 150 µL of cell-culture supernatant using TRI
Reagent (MRC, Cincinnati, OH, USA) according to the manufacturer’s instructions. For
complete genome determination, the RT-PCR technique was used, along with two types
of 5′/3′ RACE (rapid amplification of cDNA ends) methods, terminal deoxynucleotidyl
transferase (TdT) enzyme-based (Roche Diagnostics, Mannheim, Germany) [27], and
adapter ligation methods using a T4 RNA ligase-based system [28]. The applied 5′ RACE
protocols included the use of various reverse transcriptases (M-MLV-RT, Promega, USA;
Maxima H-minus RT, Thermo-Fisher, Waltham, MA, USA) and the synthesis of either poly
cytosine, guanine or adenine tracks with the use of TdT. Generic oligonucleotide primers
used for the initial primer-walking-type genome acquisition of ovipivirus were designed
based on the nucleotide (nt) alignments of bopivirus A1 (KM589358) and the most closely
related sequences of erboviruses (genus Erbovirus). Further primers used for the genome
acquisition of gopivirus and bopivirus/Hun were designed based on the nt alignment of
bopivirus A1 (KM589358) and ovipivirus (data not shown). For the 3DRdRp-based screening
and VP1 capsid-based typing RT-PCR reactions of bopiviruses, multiple sets of generic
primer pairs were designed and used (Supplementary Table S2).

The conditions and reagents used in the genome acquisition and screening/typing
RT-PCR reactions were the same as described previously, with minor modifications [21].
Briefly, in the RT reactions, 1 µL of total RNA was applied in a final volume of 25 µL, and
the total volume of the RT product was used in the PCR reaction in a final volume of 50 µL.
The PCR thermal programs contained a total of 39 cycles. Details about the oligonucleotide
primers used in the screening and typing RT-PCR reactions can be found in Supplementary
Table S2. The generated PCR products were sequenced directly in both directions using
a BigDye Terminator v1.1 Cycle Sequencing Kit (Thermo Fisher) on an ABI 3500 Genetic
Analyzer (Applied Biosystems, Hitachi, Tokyo, Japan).

2.3. In Silico Sequence and Phylogenetic Analyses

Newly acquired sequences were searched against the GenBank database using the
similarity search tools of BLASTn/x [29,30]. Multiple sequence alignments used for primer
design, phylogenetic analyses and sequence comparisons were produced on the online
platform of Multiple Sequence Comparison by Log-Expectation [31]. GeneDoc software
ver. 2.7 was used for sequence assembly, as well as pairwise nucleotide (nt) and amino
acid (aa) identity calculations. Pairwise differences (p-distances) of aligned bopiviruses
VP1 nt sequences were calculated using the MEGA-X software ver. 10.2.1 and a frequency
distribution histogram was created using Microsoft Excel [32,33]. Nt and derived aa
sequence-based phylogenetic trees were constructed either by the use of IQ-TREE web-
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server (3CD tree) or the MEGA-X software ver. 10.2.1 (all of the other trees), with maximum
likelihood method and various models specified in the legends of relevant figures [34]. Pos-
sible proteolytic cleavage sites of the study viruses were predicted based on the individual
aa alignments with Equine rhinitis B viruses [35]. The potential secondary RNA structures
of the 5′ UTRs and cre of the study viruses were created using the Mfold software [36].
For the visual representation of predicted RNA folding models, VARNA and CorelDraw
Graphics Suite v. 12. software was used [37]. SimPlot software ver. 3.5.1 was applied for
distance plot calculations using the Hamming model with a window size of 200 nt and a
step size of 20 nt [38].

The complete genomic sequences of ovipivirus strain ovine/TB14/2010-HUN, gopivirus
strain goat/AGK14/2020-HUN and bopivirus/Hun strain bovine/TV-9682/2019-HUN,
the N = 27 partial 3DRdRp and N = 16 partial VP1 sequences are all available in the GenBank
database under the accession numbers MW298057–MW298059, MW298060–MW298086
and MW298087–MW298102, respectively.

2.4. Cell Culture and Virus Inoculation

Mardin-Darby bovine kidney (Bos taurus, MDBK), bovine lung (IPB3), Opossum
kidney (Didelphis virginiana, OK) and swine kidney (Sus scrofa, PK-15) cell lines, as well
as primary calf lung and testis cells, were cultured at 37 ◦C in a 5% CO2 humidified
atmosphere in two different media. The MDBK, IPB3 and PK-15 cells were grown in
Dulbecco’s Modified Eagle Medium:Nutrient Mixture F-12 (DMEM-F12, Gibco/Thermo
Fisher, Waltham, MA, USA) supplemented with 10% foetal calf serum (FCS) and 10 mg/L
gentamycin antibiotic solution (Sigma-Aldrich, St. Louis, MI, USA), while the other cells
were incubated in Eagle’s Minimum Essential Medium (EMEM) supplemented with 2 mM
of L-glutamine (Sigma-Aldrich, St. Louis, MI, USA) and 10% FCS. Faecal suspensions (≈40
v/v% in 0.1M PBS) used for inoculations were first centrifuged (10,000× rpm, 10 min) then
the supernatants were passed through 0.45 µm sterile membrane syringe filters (Millipore,
Bedford, MA, USA). The presence of bopivirus RNA in the filtrates was verified using
bopivirus screening RT-PCR reactions. The filtered undiluted and the serial 10-fold diluted
samples up to 10−3 dilutions were then inoculated on 80–90% confluent cells grown in
either sterile 25 cm2 cell culture flasks or in 24-well plates. 500 µL of the prepared inoculums
were incubated with each of the selected cell lines for 60 min at 37 ◦C, followed by addition
of fresh medium. After 4 days of incubation, the cell cultures were assessed for cytopathic
effects (CPE). Following repeated freeze-thawing and centrifugation (1000× g for 10 min),
the culture supernatants were transferred to fresh cell cultures (passages). Up to six
passages with similar steps were applied. After every passage, cells and supernatants were
collected and archived at −80 ◦C for further analyses. Viral growth (presence of bopivirus
RNA in the culture supernatants after the first passage) was monitored using screening
RT-PCR reactions.

3. Results
3.1. Genome Characterisation of Ovine Picornavirus (Ovipivirus)

The initial aim of the study was to detect the recently described Boosepivirus C (or related)
picornaviruses [26], in enteric samples of various livestock in Hungary by RT-PCR using
the in-house designed generic OvEncePV-Screen-R/F primer pair (Supplementary Table S2).
However, instead of Boosepivirus C, serendipitously, an 873 nt-long non-boosepivirus sequence
was identified from an ovine faecal sample (sample ID: TB14), which showed 50% nt and
43% aa identity to the capsid region of bovine picornavirus 1/bopivirus A1 (KM589358) of
genus Bopivirus as the closest match identified by BLASTn/x searches. From this sequence,
the complete 7385 nt-long RNA genome (excluding the polyA-tail) of strain ovine/TB14/2010-
HUN (MW298057) was determined using primer-walking techniques and 3′/5′ RACE PCR
methods and provisionally named ovipivirus (ovine picornavirus, analogue to the naming of
bopivirus = bovine picornavirus) (Figure 2a).
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(a), gopivirus (b) and bopivirus/Hun (c) (bottom side of the panels) and their closest relatives (top side). The gene boxes
corresponding to the P1 viral capsid proteins and P2 non-structural proteins are highlighted with different shades of grey.
The nucleotide (upper numbers) and amino acid (lower numbers in brackets) lengths of the corresponding genomic regions
of the study viruses are shown in each gene box. The positions and sequences of conserved amino acid motifs of 2C Helicase,
3C Protease and 3DRdRp (RNA-dependent RNA polymerase) are shown under each map of the study viruses. Conserved
and variable amino acids are represented by uppercase and lowercase letters, respectively. The pairwise amino acid identity
values (%) of each genomic region are found between the genome maps. cre: cis-acting replication element.

The 5′ UTR is 690 nt-long, 440 nt longer than bopivirus A1 (KM589358) and shows only
low (53%) pairwise sequence identity. Based on the results of secondary RNA structure
modelling and analyses, the predicted IRES of the ovipivirus most likely belongs to type-II,
similar as found in the related EMCV of genus Cardiovirus (Figure 3a). Besides the high
structural resemblance between the core domains (domains H–L) of ovine/TB14/2010-
HUN and EMCV IRESs, conserved sequence motifs (e.g., GNRA, RAAA) and transcription
factor binding sites (e.g., eIGF4G, PTB) were also identifiable (Figure 3a) [39–41]. There is
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a c.a. 211 nt-long stretch with multiple presumed stem-loops (data not shown) between
the poly(Y)-rich (Y = C or U bases) region of the IRES core domains and the presumed
start codon of ovine/TB14/2010-HUN (Figure 3a). Moreover, although no conventional
start codon is observable (only alternative start codons, e.g., C492UG are found) in this 210
nt-long stretch, it could be in silico translated into a 69 aa-long single protein with unknown
function and with no significant sequence relationship identifiable by BLASTp searches.
Furthermore, the length between the first domain (H) of the IRES and the 5′ terminal end
is just 57 nt, therefore there is a possibility that the 5′ end is incomplete, although using
different 5′ RACE approaches (i.e., heat-resistant reverse transcriptases, poly-(A), -(C) and
-(G) tailing by TdT, adapter ligation), no additional sequences could be determined in any
of the study sequences, including ovipivirus. The presumed cre with a single-stem-loop
and a conserved AAAC-motif in the loop was observable at the 2C genome region between
nt position 4314 and 4346 (Figure 2a, Supplementary Figure S1).
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The start codon of the main ORF located in an optimal Kozak context (uuCACaA691UGG,
start codon is underlined, conserved nts are capitalised). This 6618 nt-long ORF presumably
encodes a 2205 aa-long single polyprotein which shows 57% nt and 58% aa sequence
identity to the CDS of bopivirus A1 (KM589358), which is the closest match identifiable
with BLAST searches. Since the single available sequence of bopivirus A1 is still vastly
uncharacterised, for genome comparisons, the second most closely related sequence (based
on BLAST analyses), equine rhinitis A virus 1 (ERAV-1, NC_039209), was used, which was
previously analysed in detail [35]. The distribution of predicted cleavage sites suggests
that the ovine/TB14/2010-HUN has a typical 4-3-4 genome organisation pattern where
no N-terminal Leader peptide could be observed (Figure 2a). The aa sequence identities
range between 13% (2B) and 50% (2A) of the study strain and ERAV-1 (Figure 2a). Based
on the presence of conserved aa motifs, the N-terminal end of VP4 could be myristoylated
and the single, short (15 aa-long) 2A peptide contains the “ribosome skipping” site of
DxExNPG↓P (x = variable aa, conserved aa are capitalised), and therefore belong to the
aphthovirus-like 2A-type [42,43]. The presumed functionally active sites of 2CHel, 3CPro
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and 3DRdRp are also present [44–46] (Figure 2a). The 3′ UTR of ovine/TB14/2010-HUN
is 77 nt-long and contains no detectable sequence repeats or conserved motifs and shows
only 48% nt identity to the 87 nt-long 3′UTR of bopivirus A1 (KM589358) (data not shown).
Phylogenetically, the ovipivirus was clustered together with bopivirus A1 in the 3CD and
P1 phylogenetic trees, and most likely belongs to the same genus, Bopivirus (Figure 4).
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Based on the distance plot analysis between the ovipivirus and bopivirus A1 sequences,
the most diverse (VP1, 2B and 3A) and most conserved (2CHel and 3DRdRp) genome parts
could be identified (Figure 5). Using these results, the generic HBG-3D-Screen-R/HBG-3D-
Screen-F bopivirus screening primers were designed to the most conserved part of 3DRdR

of ovipi- and bopi-viruses (Supplementary Table S2).
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3.2. Genome Characterisation of Caprine Picornavirus (Gopivirus)

The complete genome of a novel ovipi/bopivirus-related picornavirus—provisionally
called gopivirus (goat picornavirus)—was determined from a generic bopivirus screening RT-
PCR-positive caprine faecal sample (sample ID: AGK-14) using the same approaches (primer-
walking techniques and 5′/3′ RACE PCR method) as used for the genome determination
of ovipivirus. The genome of gopivirus strain goat/AGK14/2020-HUN (MW298058) was
7426 nt, excluding the poly(A)-tail (Figure 2b). The 740 nt-long 5′ UTR of gopivirus contains a
50 nt-long extension in the 5′ end which was not detectable in the 5′ terminal end of ovipivirus.
The 5′ UTR sequences of gopi- and ovipiviruses show relatively high (96%) pairwise nt
sequence identity without the 5′ extension. The gopivirus has type II-like IRES and the same
210 nt-long start codon-less (only alternative start codons, e.g., C542UG are found) extension
between the poly(Y)-rich region and the presumed start codon of the main ORF, as found in
the ovipivirus (data not shown). The presumed cre was also observable at the 2C genome
region, similar as found in the ovipivirus (Figure 2b, Supplementary Figure S1). The start
codon of the main ORF is located in an optimal Kozak context (uCCACaA741UGG, start
codon is underlined, conserved nts are capitalised). The 6609 nt-long main ORF presumably
encodes a 2202 aa-long single polyprotein, which shows 92% nt and 96% aa sequence identity
to the CDS of ovipivirus (Figure 2b). The aa sequence identities range between 83% (VP1)
and 100% (3B) of the gopivirus and ovipivirus (Figure 2b). The predicted cleavage sites, the
genome organisation layout (4-3-4), the conserved aa motifs and the aphthovirus-like 2A
type are generally the same as found in the genome of ovipivirus (Figure 2b). The 3′ UTR of
goat/AGK14/2020-HUN is only 77 nt-long and contains no detectable sequence repeats or
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conserved motifs and shows 98% nt identity to the 3′ UTR of ovipivirus (data not shown).
Phylogenetically, the gopivirus was clustered together with the ovipivirus, and formed a
distinct lineage related to bopivirus A1 in the 3CD and P1 phylogenetic trees (Figure 4) and
most likely belongs to the genus Bopivirus.

3.3. Genome Characterisation of Bovine Picornavirus (Bopivirus/Hun)

An additional complete genome of an ovipi-/bopivirus-related picornavirus, provi-
sionally called bopivirus/Hun (bovine picornavirus/Hungary) was determined from a
generic bopivirus screening RT-PCR-positive bovine faecal sample (sample ID: TV-9682).
The possible full-length sequence of bopivirus/Hun strain bovine/TV-9682/2019-HUN
(MW298059) shows overall 82% nt (93% aa) identity to bopivirus A1 (KM589358) of genus
Bopivirus, which is the closest match identified by BLAST searches, and only 57% nt (58%
aa) identity to the ovipivirus in this study. The complete genome of bopivirus/Hun was
7571 nt, excluding the poly(A)-tail, and predicted to contain a single ORF (Figure 2c). The
803 nt-long 5′UTR is 555/103 nt longer than bopivirus A1 (KM589358)/ovipivirus and show
only 64% and 52% pairwise sequence identities. Based on the results of secondary structure
predictions and the observable structural similarities as well as the presence of conserved
sequence motifs (e.g., GNRA, RAAA) and transcription factor binding sites (e.g., eIGF4G,
PTB), the bopivirus/Hun has a similar type II-like IRES as the ovipi- and gopi-viruses
(Figure 3b). The stretch between the poly(Y)-rich region and the start codon was shorter
(only 162 nt) compared to ovipi/gopiviruses and contains multiple stop codons in all three
reading frames (data not shown). The presumed cre could also be present at the 2C genome
region, similar as found in the ovipi- and gopi-virus (Figure 2c, Supplementary Figure S1).
The start codon of the ORF is located in an optimal Kozak context (uuCACaA804UGG, start
codon is underlined, conserved nts are capitalised). The 6681 nt-long ORF presumably
encodes a 2226 aa-long viral polyprotein which shows 83%/57% nt and 93%/58% aa se-
quence identity to the CDS of bopivirus A1 (KM589358) and ovipivirus. The pairwise aa
sequence identities of corresponding genomic regions of the bopivirus/Hun and ovipivirus
ranged between 38% (2B) and 80% (2A) (Figure 2c). The bopivirus/Hun shows similar
genome architecture (4-3-4), similar NPGP-containing “ribosome-skipping” type 2A and
similar conserved functional sites as found in the ovipi- and gopi-viruses (Figure 2c). The
3′ UTR of bopivirus/Hun is 87 nt-long and contains no detectable sequence repeats or
conserved motifs and shows only 36% nt identity to the 3′UTR of ovipi- and gopi-viruses
but 97% nt identity to the 3′ UTR of bopivirus A1 (data not shown). Phylogenetically, the
bopivirus/Hun is closely related to bopivirus A1, and located on the same lineage as ovipi-
and gopi-virus in the 3CD and P1 phylogenetic trees (Figure 4), and therefore, most likely
belongs to the genus Bopivirus.

3.4. Epidemiological Investigation of Different Bopiviruses in Hungarian Animal Farms

In order to investigate the prevalence of different bopiviruses among livestock originated
from geographically distant locations in Hungary, a total of N = 47 ovine, N = 62 caprine,
N = 96 bovine, N = 43 swine and N = 21 rabbit faecal samples (Figure 1, Table 1, Supplementary
Table S1) were screened by RT-PCR using HBG-3D-Screen-R/HBG-3D-Screen-F primer pairs
(Supplementary Table S2). The overall RT-PCR positivity by host species was 36.2%, 25.8%
and 4.2% in the analysed ovine, caprine and bovine populations. None of the analysed swine
and rabbit faecal samples were found to be RT-PCR-positive (Table 1, Supplementary Table
S1).

Among the investigated farms, the RT-PCR positivity was up to 62.5% (10/16 positive,
Tárnok) in ovine farms, 50.0% (8/16 positive, Aranyosgadány) in caprine farms and 11.8%
(2/17 positive, Tevel) in bovine farms (Table 1, Figure 1). Positive animal farms are found in
different regions of Hungary (Figure 1, Table 1, Supplementary Table S1). From the total of
N = 13 different animal farms examined, bopivirus was detectable in N = 8 geographically
distant sites (Table 1, Figure 1).
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From the total of N = 269 analysed samples, only N = 17 (11 caprine and 6 bovine)
were collected from symptomatic (gastroenteritic, GE) animals, and only two of these
samples were positive for bopivirus by RT-PCR screening (Supplementary Table S1). Other
co-infecting pathogens which could cause GE were not investigated. Based on the results
of pairwise sequence comparisons and phylogenetic analysis of the 587 nt-long partial
3DRdRp sequences determined by Sanger-sequencing from the screening RT-PCR reactions,
two main bopivirus groups could be distinguished (Figure 6). Sequences of the first group
from ovine and caprine hosts share 95.4–100% nt identities, while sequences from the
second group (bovine) show 91.7–99.7% pairwise identity values (data not shown). The
nt sequence identities are considerably lower between the two groups: sequences from
ovine and bovine share only 69–70% nt identities, while sequences of caprine and bovine
also show low values (69.3–70.4%) (data not shown). The two bopivirus sequence groups
(ovine/caprine and bovine sequences) are also clearly separated in the 3DRdRp phylogenetic
tree and form two distinct, monophyletic lineages (Figure 6).
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The sequences from ovine and caprine share similarly high identities and are located
on the same mixed ovine/caprine lineage, and therefore could not be distinguished from
each other (Figure 6). The 3DRdRp sequences from the first group/lineage (ovine and
caprine) show the highest sequence identities (95.9–100%) and cluster together with the
corresponding genome parts of ovipi- and gopi-viruses, while sequences from bovine
are most closely related (91.7–99.7%) to the bopivirus/Hun and bopivirus A1 (Figure 6).
Sequences from the same farm are usually clustered together, although there are farms
like Nagyhegy (caprine) and Hajdúszoboszló (ovine) where multiple, phylogenetically
distant variants are detectable (Figure 1, Figure 6). While, bopiviruses were found to be
the most prevalent among the <2-month-old ovine (group I, 66.7%) followed by the 2–12-
month-old group (II, 60%), and no RT-PCR positivity was found in adult (>12-month-old)
animals (group III). Until then, these viruses were not or just rarely present among young
(<2-month-old) caprine (0%) and bovine (2.2%), and most frequently detectable among
older, group II (40%, 6.5%) and group III (17.4%, 5.6%) animals examined (Table 1).

3.5. VP1-Capsid-Based Analyses of Different Bopiviruses

In order to investigate the more detailed genetic/genotypic variance of the different
bopivirus field strains, based on the results of distance plot (Figure 5), the most diverse
(VP1-capsid encoding) genome region was chosen for target of RT-PCR-based acquisition
reactions and further in silico analyses.

From the total of N = 37 bopivirus screening RT-PCR-positive faecal samples col-
lected from 8 different farms, only N = 16 VP1 sequences from seven farms could be
determined (excluding the strains with determined complete genomes) using multiple
oligonucleotide primer sets (Supplementary Tables S1 and S2, Figure 7a). The acquired
813–931 nt-long VP1 sequences show 41.8–100% nt and 34–99% aa pairwise sequence
identities to each other. VP1 sequences from the same host show 77.7–100% (ovine-origin),
77.1–99% (caprine-origin) and 87.6–93.5% (bovine-origin) pairwise nt identities (data not
shown). The phylogenetic analysis of the determined VP1 sequences show the separation
of the mixed ovine-/caprine-origin and bovine-origin bopiviruses into two distinct mono-
phyletic lineages (lineages 1 and 2) (Figure 7a). Furthermore, there is a clear separation
of further clusters within the lineages. The two clusters in lineage 1 could represent two
different genotypes (“B1” and “B2”), and both contain mixed ovine and caprine bopivirus
strains, while in lineage 2, the closely related Hungarian bopiviruses of bovine could
also belong to a different genotype (“A2”) which is clearly separated from the reference
sequence of Bopivirus genotype A1 (Figure 7a). Three separate regions could be identified
in the frequency distribution histogram of pairwise distance (p-distance) scores among
bopivirus VP1 sequences, which could correspond to the scores of intragenotypic (less
than 0.16, mean 0.08), intergenotypic (between 0.20 and 0.28, mean 0.24) and possible
interspecies (between 0.43 and 0.49, mean 0.46) variations (Figure 7b). The closely related
VP1 sequences from animals of the same host/farm generally clustered together, except for
sequences from Hajdúszoboszló (HBSZ) where multiple diverse lineages/genotypes could
be observed (Figure 7a). The ovine/HBSZ-GII-4/2020-Hun, ovine/HBSZ-GII-1/2020-
Hun and ovine/HBSZ-GIII-3/2020-Hun strains from Hajdúszoboszló are located among
caprine-origin gopivirus sequences and show much higher sequence identity (91%) to
gopivirus than to ovipivirus (77%), while the ovine/HBSZ-GII-5/2020-Hun strain from the
same farm shows much closer phylogenetic (Figure 7a) and sequence relationship (92% nt
identity) to ovine ovipiviruses than caprine gopiviruses (78 % nt identity). Furthermore,
the goat/NH4/2020-Hun strain from farm Nagyhegy is separated from the other caprine-
origin sequences from Aranyosgadány and Győrszentiván but clustered together with
ovine bopiviruses (Figure 7a).
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3.6. Results of Virus Cultivation

In addition to the faecal samples of ovipivirus strain ovine/TB14/2010-HUN (TB14),
gopivirus strain goat/AGK14/2020-HUN (AGK14) and bopivirus/Hun strain bovine/TV-
9682/2019-HUN (TV-9682), two additional bopivirus screening RT-PCR-positive faecal
samples of ovine (HBSZ-GII-5) and bovine (TV-9686) were randomly selected for cultivation
attempts using six different swine (PK-15), opossum (OK) and bovine (MDBK, IPB3,
primary testis and lung) cell lines. Visible cytopathic effect (CPE) was observed only in
the bovine MDBK cells inoculated with bovine faecal samples of TV-9686 and TV-9682
after the first passage (data not shown). None of the other cell cultures showed any
signs of CPE even after up to six subsequent passages. The bopivirus screening RT-PCR
reactions showed no visible products in the expected size in any of the culture supernatants,
including the ones with visible CPE.

4. Discussion

In this study, three novel picornaviruses, ovipivirus, gopivirus and bopivirus/Hun
from faecal samples of cloven-hoofed domestic livestock (ovine, caprine and bovine) in
Hungary were identified and genetically characterised using RT-PCR and dye-terminator
sequencing methods. These three monophyletic viruses share the same type II-like IRES,
aphthovirus-like ‘ribosomal skipping’-type 2A, similar genome layout (4-3-4) and cre-
localisations. Furthermore, these viruses show the closest sequence and phylogenetic
relationship to a currently uncharacterised reference sequence of bopivirus A1 (KM589358)
of genus Bopivirus. Based on the overall high sequence identities (93% aa) and close
phylogenetic relationship with bopivirus A1 in the complete P1 and 3CD phylogenetic
trees, the bovine bopivirus/Hun strain bovine/TV-9682/2019-HUN most likely belongs to
the Bopivirus A species, but based on the calculated p-distance value of VP1 capsid (0.27,
which is between the intergenotypic p-distance range of 0.20–0.28) and the position in
VP1 phylogenetic tree, it could be a distinct genotype (“bopivirus A2”). Although the
ovipivirus strain ovine/TB14/2010-HUN is phylogenetically distinct from the bopivirus
A1 and bopivirus/Hun in the P1, 3CD and VP1 trees, the level of aa sequence divergence
between bopivirus/Hun and ovipivirus in the P1 (45%), 2C (36%) and 3CD (33%) ge-
nomic regions do not meet the classification criteria of being the founding member of
a novel genus but suggest that ovipivirus could belong to a novel species (“Bopivirus
B”) within the genus Bopivirus [14]. This classification was also supported by the calcu-
lated p-distance value between the VP1 of ovipivirus and bopivirus/Hun (0.47), which
is in the range of calculated interspecies p-distance values (0.43–0.49). Interestingly, the
gopivirus strain goat/AGK14/2020-HUN identified from a caprine shows significant
sequence identity (overall 96% aa identity) and close phylogenetic relationship in the
P1 and 3CD phylogenetic trees to the ovipivirus of ovine. Therefore, gopivirus strain
goat/AGK14/2020-HUN could belong to the same species “Bopivirus B”, although based
on the relatively low sequence identity (83%) in the VP1 capsid region, and the p-distance
values of VP1 (0.22 which is between the intergenotypic p-distance range of 0.20–0.28), it
could belong to a second genotype “bopivirus B2”. Some other examples are known of the
close phylogenetic/sequence relationship observed between PVs of different cloven-hoofed
animals, e.g., closely related viruses of species Enterovirus F and G of genus Enterovirus, as
well as Aichivirus B of genus Kobuvirus, are also identified from bovine, ovine and caprine
hosts [20,25,47].

In contrast to the majority of the genera (12 of the 15) of supergroup I, bopiviruses have
no identifiable N-terminal Leader protein at the 5′ end of the CDS. Besides bopiviruses,
only the members of genus Ailurivirus and Cosavirus are lacking the Leader protein and
have 4-3-4 genome layout [2,14] (Figure 4). Interestingly, while the conserved poly(Y)-rich
region adjacent to the core domains of type-II IRES is usually located only c.a. 9–17 nt
upstream of the start codon [48], in the case of the ovipi- and gopi-virus, there is a c.a. 211
nt-long stretch between the poly(Y)-rich region and the presumed start codon of the viral
polyprotein (Figure 3a). This stretch could be in silico translated (only alternative start
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codons are present) into a protein sequence with unknown function, and no significant
sequence hit by BLAST searches. This region could be the remnant of the once active Leader
encoding genome region of bopiviruses with increased mutation rate, which is supported
by the presence of multiple stop codons and low sequence identity (30%) between the
stretch of bopivirus/Hun and bopivirus A1 compared to the adjacent sequences of IRES
core (80% nt identity). On the other hand, the presence of multiple predicted stem-loops in
the 5′UTR stretches could indicate the similar structural role of this region as the domain A–
G in type-II IRESs [48]. Furthermore, a similarly long (≈250 nt) nucleotide stretch between
the poly(Y)-rich region and presumed start codon was also found in the Leader-containing
avian siciniviruses with type-II IRES [49]. Experiments on cultured viruses should be
conducted to address these hypotheses. Unfortunately, any attempts, including the use of
multiple (up to six) passages for the cultivation of the study bopiviruses in six different
bovine, opossum and swine cells were all unsuccessful. It is currently not known whether
the inoculated bopiviruses were unable to grow in the selected cell lines, or the samples
did not contain replication-competent viruses.

The preliminary epidemiological investigation of different bopiviruses on a relatively
low number of available faecal samples (N = 269) was based on the use of an “in-house
designed” generic bopivirus screening primer pair (HBG-3D-Screen-R/F) in RT-PCR re-
actions and dye-terminator sequencing. The screening primers, which are targeting the
most conserved genome region (3DRdRp) of different bopiviruses identified by distance
plot analyses (Figure 5), were designed for the specific amplification of all of the currently
known bopiviruses. The results of phylogenetic and sequence comparisons of partial
3DRdRp sequences determined by screening RT-PCR reactions show a close relationship
of the sequences of ovine/caprine (group 1) with the study ovipi- and gopi-virus as well
as the sequences of bovine (group 2) with bopivirus/Hun and bopivirus A1 (Figure 6).
Therefore, the identified ovine/caprine sequences of group 1 most likely belong to the
candidate species “Bopivirus B”, while the group 2 sequences of bovine are part of the
species Bopivirus A. The discrimination of caprine-origin and ovine-origin bopiviruses is
not possible based solely on the analyses of partial 3DRdRp sequences of screening RT-PCR
reactions. No other viral sequence unrelated to bopiviruses was identified, suggesting the
high specificity of the primers to bopiviruses which therefore could be used in diagnostic
RT-PCR reactions as well as—by sequencing its products—the discrimination of Bopivirus
A and “Bopivirus B” viruses.

The presence of bopiviruses was predominantly investigated among asymptomatic
animals, only a low number of samples (N = 17) from symptomatic (i.e., gastroenteritic)
livestock were available, and only two of them were bopivirus RT-PCR-positive; therefore,
due to the low number of samples from diseased animals, any role of bopivirus infection
in the development of enteric (or any other) symptoms or extraintestinal infections are
not investigated, and thus cannot be ruled out. There are other PVs like sapeloviruses or
polioviruses which are capable of causing mostly asymptomatic infections, but in certain
cases, it could cause diseases with sometimes serious (e.g., CNS involvements) manifested
symptoms [50,51]. Bopiviruses could not be detected in the investigated rabbit (N = 21)
and swine (N = 43) enteric samples using generic bopivirus screening RT-PCR reactions,
which could indicate the absence of genetically related virus(es) detectable by the screening
primers in the analysed samples.

Although, there was a discrepancy in the prevalence of bopiviruses among age groups
of different hosts, which could come from the uneven and in some cases a low number
of sampled animals of different ages (i.e., ovine GII and caprine GI groups, Table 1), but
based on these preliminary epidemiological results, bopivirus infection is likely to be more
frequent among young, <12-month-old animals (age groups I, II) than in adults (group III,
Table 1), similar as found in other picornaviruses as well [52–54]. Interestingly, despite
the higher number of available samples of bovine (N = 96) compared to ovine (N = 47)
and caprine (N = 62), the prevalence of bopiviruses among investigated bovine are still
much lower (4.2%) than the prevalence data identified in ovine (36.2%) and caprine (25.8%).
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This could be due to the different housing conditions of <2-month-old calves, which were
mostly held in individually separated areas in the investigated intensive-management
farms compared to ovine and caprine which were held in herds together with older animals.
In this case, viruses of older animals could serve as initial sources of bopivirus infection of
calves. The presence of different bopiviruses in geographically distant animal farms, both
in recently collected (in 2019 and 2020) and archived (in 2008 and 2009) samples, suggest
the endemic presence and continuous, long-standing circulation of these viruses in the
investigated domestic animal populations in Hungary.

Besides the use of different sets of universal primers targeting various parts of the
P1 and P2 genome regions (Supplementary Table S1) in multiple RT-PCR reactions, VP1
sequences could only be determined from less than half (N = 16/37) of the bopivirus
3DRdRp RT-PCR-positive faecal samples, which could indicate a high viral RNA sequence
divergence of field strains of bopiviruses. This could be supported by the results of
sequence comparisons (Figure 2) and the distance plot (Figure 5), where VP1 was found to
be one of the most diverse regions of bopiviruses. Among the majority of PVs including,
e.g., entero-, sapelo-, cardio- or the bopi-virus sister-clade of erboviruses, the VP1 capsid
is the most diverse, and also the immunodominant viral peptide, which is responsible
for the serotyping/genotyping of the viruses [8–10]. The phylogenetic analysis and the
histogram of p-distances of determined bopivirus VP1 sequences supports the separation
of ovine/caprine-origin and bovine-origin bopiviruses into two different species (Bopivirus
A and “Bopivirus B”) as well as supports the classification of closely related lineages into
different genotypes of bopivirus A1/”A2” and “bopivirus B1/B2”, and also indicates
the endemic circulation of one or few, mainly farm-specific bopivirus geno/subtype(s)
(Figure 7a,b). However, the calculated p-distance score ranges of intra-, inter-genotypic
and interspecies variations should be re-evaluated when further bopivirus VP1 sequences
will be available. Interestingly, while there are separate, caprine-origin gopivirus and
ovine-origin ovipivirus lineages identifiable in the VP1 tree, there are a few ovine strains
which are clearly located in the gopivirus lineage, belonging to the same genotype and
also showing high sequence identity (91% nt) to gopivirus (Figure 7a), suggesting the
possibility of ovine–caprine interspecies transmission of certain “Bopivirus B” strains,
similar as suspected among certain ovine and caprine enteroviruses of species Enterovirus
G [25].

Based on our results, the “neglected” (i.e., related publication not available since
2018) genus Bopivirus is most likely a species-rich group among picornaviruses which have
high genotypic diversity, widespread geographical distribution (present in diverse regions
of Hungary and the USA as well), wide host species spectra and currently unknown
pathogenic potential. More detailed analyses including follow-up studies with extra-
intestinal samples as well as large-scale epidemiological investigations of livestock are
necessary to explore the true prevalence, pathogenesis, host spectra and genomic diversity
of these novel picornaviruses.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999
-4915/13/1/66/s1, Figure S1: The predicted secondary RNA structure of presumed cis-acting
replication elements, Table S1: Detailed background information of individual samples used for the
epidemiological investigations of bopiviruses, Table S2: List of oligonucleotide primers used for
screening and typing reactions of this study.
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