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Temozolomide, an alkylating agent, initially used in the treatment of gliomas was expanded 
to include pituitary tumors in 2006. After 12 years of use, temozolomide has shown a 
notable advancement in pituitary tumor treatment with a remarkable improvement rate 
in the 5-year overall survival and 5-year progression-free survival in both aggressive 
pituitary adenomas and pituitary carcinomas. In this paper, we review the mechanism 
of action of temozolomide as alkylating agent, its interaction with deoxyribonucleic acid 
repair systems, therapeutic effects in pituitary tumors, unresolved issues, and future 
directions relating to new possibilities of targeted therapy.

Keywords: alkylating agents, chemotherapy, DNA repair, neoplasms, neuroendocrine tumors, O(6)-Methylguanine-
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iNTRODUCTiON

Since its development, temozolomide (TMZ), a monofunctional alkylating agent, has shown 
remarkable efficacy in the treatment of a variety of solid tumors and it has become an essen-
tial component of adjuvant therapy for the most frequent adult brain tumor type, glioblastoma 
multiforme (GBM) (1, 2). Its unique chemical structure and pharmacokinetic properties confer 
distinctive advantages over other alkylating agents. In 2006, TMZ began to be used for the treat-
ment of aggressive pituitary adenomas and pituitary carcinomas (3–5). In this paper, we review 
the mechanism of action of TMZ, the deoxyribonucleic acid (DNA) repair systems triggered after  
its administration, the current understanding of TMZ activity, and the unresolved issues of its 
clinical use in pituitary tumors.

ALKYLATiNG AGeNTS

During World War I, alkylating agents were used as chemical weapons. Sulfur mustard, commonly 
known as mustard gas, when released into the air was a threat to skin and mucous membranes. Its 
vesicant effect caused large blisters on exposed skin, eye irritation, upper and lower airway inflam-
matory reactions, bone marrow aplasia, and pancytopenia (6). Even the slightly less toxic nitrogen 
mustards also exhibited cytotoxic effects causing bone marrow suppression after exposure and 
subsequent absorption into the body. In the 1940s, given their ability to produce significant tumor 
regression, alkylating agents became the earliest types of drugs used to treat cancer. The first clinical 
use as a chemotherapeutic agent was performed in 1942 but it was not reported for several years (7).
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Alkylating agents are ubiquitous, highly reactive compounds 
that transfer alkyl radicals into a broad range of biologically active 
nucleophilic molecules (8). They are electrophilic compounds 
(behave as electron acceptors) that react with nucleophilic moie-
ties (behave as electron donors) of DNA or proteins. This results in 
the covalent transfer of an alkyl group (from the alkylating agent) 
to the DNA or the protein (9). The alkyl substituents are acyclic, 
saturated, hydrocarbon chains that have lost one hydrogen. The 
main cellular target of alkylation is DNA, and cytotoxicity is 
due to the alkylation of its bases which impairs its function as 
a template during replication and transcription (9). Alkylating 
agents are a diverse group of chemical substances. Due to their 
unique properties, they can be genotoxic, but may be used in the 
treatment of tumors as well (8).

Alkylating agents can be mono- or bifunctional. Mono func-
tional agents have a single reactive group that interacts with a 
single center in DNA, whereas bifunctional agents have two 
groups which can react with two different sites in DNA (10, 11). 
Consequently, one monofunctional alkylating molecule produces 
a covalent adduct on one base only but with bifunctional alky-
lating agents, alkylation can occur on two bases within the same 
DNA strand (intrastrand crosslinking), or from opposite strands 
(interstrand crosslinking) (10, 12, 13).

Virtually all heteroatoms (non-carbon or hydrogen atoms) in 
DNA can be alkylated and, depending on the nucleophile and the 
alkylating agent, there are different sites of alkylation in double-
stranded DNA (9, 12, 14–16). Base alkylation occurs mainly 
on position N7 and O6 in guanine (N7-MeG and O6-MeG),  
N1 and N3 in adenine (N1-MeA and N3-MeA), and N3 in 
cytosine (N3-MeC) (9) (Figure  1A). Additional alkylation 
sites do arise but are less frequent. Every site of alkylation has 
different consequences in chemical stability, mutagenesis, 
and cytotoxicity (8, 9). DNA adducts O6-MeG, N1 in guanine 
(N1-MeG), N7-MeG and O4 in thymine (O4-MeT) are both 
stable and mutagenic, whereas alkylation on other sites (i.e., at 
certain endocyclic nitrogen) yield chemically unstable adducts, 
making the purine/pyrimidine base-rings in the DNA susceptible 
to hydrolytic attack and base-ring opening (9, 15) (Figure 1B). 
Because alkylating agents produce more than one type of adduct, 
the exact consequence of base alkylation on the function of the 
cell is difficult to evaluate (9, 15). From the various types of DNA 
adducts produced, O6-MeG, which is the least frequent (5–10%), 
is the most cytotoxic lesion (17, 18).

Alkylating agents were the first chemotherapeutic anti-cancer 
agents developed and are the largest group of drugs among 
cytotoxic chemotherapeutics (10). They consist of three differ-
ent groups: classical, non-classical, and alkylating-like agents. 
Many alkylating agents are categorized as “classical” alkylating 
agents. They include true alkyl groups. Alkylating-like agents are 
platinum-based analogs and do not have an alkyl group. They can 
also interfere with DNA repair and can permanently damage it; 
hence, they are referred to as “alkylating-like.” The third group is 
known as “non-classical.” To date, there is no consensus on which 
agents belong to this category. Most classical alkylating agents 
and alkylating-like agents cause cytotoxicity by inducing DNA 
crosslinking while non-classical alkylating agents such as dac-
arbazine, procarbazine, and TMZ, induce O6-MeG, N7-MeG, 

N3-MeA, without triggering DNA crosslinking because they are 
monofunctional (10).

TeMOZOLOMiDe

Temozolomide is a monofunctional alkylating agent belonging 
to the triazene group of non-classical alkylating agents, char-
acterized by the presence of three adjacent nitrogen atoms (20) 
(Figure 2). It is related to a series of imidazotetrazines developed 
by Stevens and his associates in Birmingham, United Kingdom 
(21). Temozolomide is a lipophilic, low molecular weight (194 Da) 
prodrug with no pharmacological activity until it is hydrolyzed. 
It is orally administered, stable at acidic stomach pH levels, and 
reactive at pH levels above 7.0 (22). Its activation starts with 
the hydrolytic cleavage of the tetrazinone ring (Figure 2, green 
circle). The effect of water at the C4 position of TMZ opens the 
ring (Figure 2, orange arrow), releases carbon dioxide, and pro-
duces 5-(3-monomethyl-1-triazeno) imidazole-4-carboxamide 
(MTIC) which is an unstable and short-lived active compound. 
It undergoes further cleavage, to generate 5-aminoimidazole-
4-carboxamide (AIC), and the highly reactive methyl diazonium 
methylating species (2, 23) (Figure  2). This cation methylates 
DNA producing the adducts N7-MeG (60–80%), N3-MeA 
(10–20%), and O6-MeG (5–10%). During the next cycle of DNA 
replication, the sequence of mismatch repair events results in cell 
cycle arrest which leads to cell death, as will be discussed below. 
Temozolomide activity increases as its accumulation in tumors 
rises. It has been shown that brain tumors have a more alkaline 
pH than healthy tissues, which may favor the activation of TMZ 
(19, 24). Hence, the pH levels in the microenvironment may be 
an essential factor modulating its cytotoxic effects and resistance.

DNA DAMAGe AND RePAiR 
MeCHANiSMS OF ALKYLATiNG AGeNTS

Deoxyribonucleic acid can be damaged by external agents or 
by unwanted products arising from the cell chemistry (14, 15, 
25–29). Internal chemical events that threaten DNA stability are 
depurination, deamination, reactive oxygen species (ROS), and 
non-enzymatic methylation. In addition, DNA replication has 
a spontaneous and inevitable error rate that may persist despite 
proofreading/DNA editing mechanisms (30). External agents 
that likely cause DNA damage are ionizing and ultraviolet radia-
tion, environmental chemicals, and chemotherapeutic agents 
such as TMZ.

During DNA replication, various types of damage can cause 
the replication fork to stall. These events may be potentially 
lethal to the cell, but complex and specialized multi-protein 
mechanisms continuously monitor the DNA to detect and repair 
any damage. If the cell is not able to restore DNA integrity, it may 
sustain cytotoxic or mutagenic perturbations. Cytotoxicity usually 
arises when progression through the cell cycle is delayed at repair 
checkpoints; if the damage inflicted to the genome overwhelms 
the repair capacity of the cell, apoptosis is triggered. By contrast, 
mutagenesis can occur if the cell sustains minor damages in the 
DNA yet it survives, and after cell division, these unrepaired 
damages may cause mispairing of bases that result in base-pair 
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FiGURe 1 | (A) Sites of alkylation on the various bases in the DNA. Temozolomide produces alkylation on position N7 and O6 in guanine and N3 in adenine (blue 
arrows). Other alkylating agents act on different sites of alkylation (small gray arrows). (B) Chemical stability, mutagenesis, cytotoxicity, and repair mechanisms  
in different sites of alkylation. Based on Ref. (8, 9, 16, 19). Abbreviations: BER, base excision repair; DR, direct repair; MMR, mismatch repair; NER, nucleotide 
excision repair; DNA, deoxyribonucleic acid.

3

Syro et al. TMZ and Pituitary Tumors

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 318

substitution which become a consolidated mutational change 
only after successive DNA replication cycles (8).

There are several mechanisms to correct or prevent alkylation- 
induced DNA damage. One of them occurs during DNA repli-
cation, and relies on the catalytic feature of the DNA polymerases 
delta and epsilon (Pol δ, Pol ε), which have a 3′ → 5′ exonuclease 
activity (known as proofreading) (30, 31). When DNA has an 
alkylated base, a mispairing is generated; subsequently, dur-
ing DNA synthesis the incorrect base pair is recognized, the 

direction of DNA polymerase is reversed by one base pair, the 
mismatched base is excised, and the correct one is inserted. 
Then, DNA replication can continue forward. Proofreading is 
only one of several systems to prevent mutations or to repair 
damaged DNA (15, 25–28, 32, 33).

Direct repair (DR) of DNA can be achieved by removing 
only the abnormal alkyl group, without removing the base 
or nucleotide. This typically occurs in the G1 phase of the cell 
cycle. The cell uses this mechanism in the repair of O6-MeG by 
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FiGURe 2 | Schematic of mode of action of temozolomide (TMZ). The 
activation of TMZ in physiologic pH levels within the blood stream into  
its reactive state that is responsible for methylating DNA. Based on  
Ref. (8, 19, 23). Abbreviations: MTIC, 5-(3-monomethyl-1-triazeno)  
imidazole-4-carboxamide; AIC, 5-aminoimidazole-4-carboxamide;  
MGMT, O6-methylguanine-DNA methyltransferase.
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Another group of mechanisms involves excision repair, where 
a single base, nucleotide, or a segment of the damaged DNA 
strand is excised, and the gap is filled by a combination of DNA 
polymerase and ligase. Three well-known excision repair systems 
used to detect and correct cellular DNA damage include: base 
excision repair (BER), nucleotide excision repair (NER), and 
mismatch repair (MMR).

Base excision repair includes DNA glycosylases recognition 
of small distortions in DNA caused by damage to a single base 
or uracil misincorporation (19). Lesion-specific glycosylases 
recognize the damaged base, and the N-glycosidic bond is 
hydrolytically cleaved. This generates an internal abasic site with 
a remaining external phosphodiester backbone which is then cut 
by a specific endonuclease (AP-endonuclease). The gap is finally 
repaired by polymerase beta and ligase-III. Nucleotide excision 
repair involves the initial enzymatic recognition of local distor-
tions of the DNA helix caused by mismatched bases or bulky 
adducts, followed by the removal of a short single-stranded DNA 
segment containing the lesion. Afterward, DNA polymerase 
fills the gap by synthesizing the short complementary sequence, 
completing the repair (9). Mismatch repair is a complex system 
for recognizing and repairing erroneous insertion, deletion, and 
misincorporation of bases. It involves removal of tens or hundreds 
of bases at both sides of the damaged base, or of the bases that 
do not form Watson–Crick base pairing. It is a highly conserved 
repair pathway in both eukaryotes and prokaryotes (34). Hence, 
human MMR proteins are homologs to the E. coli MMR proteins: 
MutL homologs 1 and 3 (MLH1 and MLH3), MutS homologs 2, 
3, and 6 (MSH2, MSH3, and MSH6), and postmeiotic segrega-
tion increased proteins (PMS1 and PMS2). Therefore, the MMR 
is strand-specific (35). Loss of MMR function results in Lynch 
Syndrome (OMIM #120435) caused by heterozygous mutations 
in MMR genes. Although the DR mechanism is mainly involved 
during the repair of TMZ induced damages, all systems men-
tioned above do participate.

DNA RePAiR AND TeMOZOLOMiDe ACTiON

Direct Repair
Direct repair of the effects of TMZ is carried out by MGMT, 
a small enzymatic protein (22  kDa) that removes the methyl 
group from the O6-MeG adduct (19). It is a stable protein with a 
half-life of more than 24 h. The O6-methyl group is transferred 
from the guanine to an internal cysteine residue (Cys 145) on 
the MGMT, in a one-step reaction without relying on cofac-
tors or enzymes (36) (Figure 2). This process removes methyl/
alkyl molecules at a 1:1 ratio and restores guanine to its normal 
structure, thereby eliminating any further DNA strand breaks.  
In this manner, MGMT acts as an acceptor molecule by removing 
(sequestering/accepting) the methyl group from the O6-MeG.  
It then becomes inactivated and degraded through ubiquitina-
tion (19). For this reason, it has been called a suicide enzyme 
(19, 37). Although MGMT protects healthy cells from alkylat-
ing carcinogens, it also protects tumoral cells from the same 
kind of chemical genotoxicity. The non-discriminating effect of 
MGMT on both healthy and tumoral cells is of concern since it 
can counteract the effects of TMZ treatment. In some tumors, 

O6-methylguanine-DNA methyltransferase (MGMT), which 
removes the methyl group leaving the base intact (9, 15, 32) 
(Figure 2).
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FiGURe 3 | TMZ action and DNA repair mechanisms involved in the prevention and correction of alkylation-induced DNA damage. Based on Ref. (19, 42, 47, 48). 
Abbreviations: BER, base excision repair; DR, direct repair; MMR, mismatch repair; NER, nucleotide excision repair; MPG, DNA methylpurine-N-glycosylase; MGMT, 
O6-methylguanine-DNA methyltransferase; TMZ, temozolomide; SSB, single-strand breaks; DSB, double-strand breaks; DNA, deoxyribonucleic acid.
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low-level expression of MGMT may result from epigenetic 
silencing of its gene. On the contrary, some tumors may display 
increased MGMT activity when compared to their correspond-
ing healthy tissue (38) thereby presenting an increase in tumor 
resistance to TMZ treatment. From this perspective, low-level 
MGMT expression can be considered a favorable predictive 
marker in TMZ-treated patients (39).

The MGMT-mediated repair system is unique in many 
aspects, consequently making it a difficult task to target MGMT 
within tumor cells. The capacity to repair of MGMT depends 
on the number of active MGMT molecules. If the number of 
adducts exceeds the preexisting levels of MGMT molecules, the 
rate of repair will depend on de novo synthesis. This process is 
important since the effect of TMZ depends both on the level of 
MGMT present within the tumor cells, as well as the number of 

DNA adducts (2) and so, an excess amount of DNA adducts can 
completely exhaust the MGMT catalytic levels.

Recently it has been reported that the DNA oxidative demethy lase 
ALKBH2, capable of directly reversing N1-MeA and N3-MeC 
in DNA, was abundantly expressed in established GBM  cell 
lines and human GBM; and that TMZ exposure increased cel-
lular ALKBH2 expression levels (40). Therefore, these authors 
propose that ALKBH2 as a novel mediator of TMZ resistance  
in human GBM.

Base excision Repair
Non-bulky modified or damaged bases are removed and 
repaired by BER (19, 33, 41). As stated earlier, TMZ generates 
mostly N7-MeG and N3-MeA adducts (90–94%) (Figure  3). 
These highly toxic adducts are initially removed by DNA 
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methylpurine-N-glycosylase (MPG), also known as alkylpurine-
DNA–N-glycosylase (APNG) (42–44). MPG belongs to one of 
the four glycosylase families involved in BER (44). Agnihotri 
et al. (42) showed that APNG, together with MGMT, may provide 
TMZ resistance in an additive manner since, in TMZ resistant 
GBM  cell lines, they are both expressed. In addition, APNG 
may be epigenetically regulated due to methylation of the APNG 
gene promoter which attenuates its expression. They also found 
that GMB patients with nuclear APNG immunostaining in their 
biopsies had significantly worse overall survival (OS) (42). On 
the contrary, GBM patients with a methylated MGMT promoter 
and good survival, also had a greater number of APNG-negative 
tumors, suggesting that low MGMT and low APNG immunoex-
pression lead to better TMZ response. Based on these findings, 
they proposed that in GBM patients with methylated MGMT 
promoter, evaluation of APNG immunoexpression would be 
beneficial (42, 45, 46).

In addition, poly(ADP-ribose) polymerase-1 (PARP-1) is an 
essential protein for the adequate function of BER. Therefore, if 
PARP-1 function is disrupted, BER will be inhibited in which case 
the cytotoxic effects caused by TMZ will be increased (19, 45, 48).

Mismatch Repair
The adduct O6-MeG produced by TMZ, if not repaired by 
MGMT, creates a structural distortion of DNA recognized by 
MMR (Figure  3). Mismatch repair can correct the error by 
replacing O6-MeG with guanine or leave single-strand breaks 
which in turn can generate potentially lethal double-strand 
breaks (DSB) during DNA replication. Depending on the type of 
damage, stalling at the replication forks during S phase, cell cycle 
arrest, cytotoxicity, and cell death can occur (49). If, on the other 
hand, MMR does not recognize the O6-MeG-thymine mispairs, 
O6-MeG lesions will be tolerated, and the cells will survive (50). 
Mutagenesis of the O6-MeG adduct can also arise if the original 
[06-MeG]::[C] mispair remains unrepaired until the next cell 
cycle and then, pairing with thymine [06-MeG]::[T] instead 
of cytosine. Subsequent replication cycles, will create a true 
stable mutation due to the formation of a [A]::[T] pair. In short, 
the mutagenesis sequence would be [G]::[C], [06-MeG]::[C], 
[06-MeG]::[T], [A]::[T].

A successful MMR system is therefore required for TMZ 
cytotoxicity (19, 47, 49) and MMR deficient cells are resistant to 
TMZ treatment (Figure 3) (19, 51–53). Publications focusing 
on the mechanisms of acquiring TMZ resistance in pituitary 
tumors have shown that one patient presented progression 
and resistance to TMZ with loss of MSH6 protein immuno-
expression during treatment (54) and in another publication, 
a patient with germline MSH2 mutation was unres ponsive to 
TMZ therapy (55). Therefore, MSH6 and MGMT immuno-
expression analysis has been proposed in the morphologic  
study of pituitary tumors (56–60).

AGGReSSive PiTUiTARY ADeNOMAS 
AND PiTUiTARY CARCiNOMAS

Pituitary adenomas are a heterogeneous group of lesions with dif-
ferent clinical behaviors. Although current treatment protocols 

have been able to control the majority of pituitary adenomas, 
some of them may recur despite repeated surgeries, radiotherapy, 
and pharmacologic treatments. These “difficult to treat” tumors 
have been called aggressive pituitary adenomas (61, 62) and their 
prevalence remains uncertain. According to the current (2017) 
World Health Organization (WHO) classification of tumors of 
endocrine organs (58, 59), pituitary adenomas can only be char-
acterized as pituitary carcinomas when craniospinal or systemic 
metastases are found. Pituitary carcinomas are rare and account 
for approximately 0.12% of pituitary adenomas in the German 
Pituitary Tumor Registry (63).

The previous (2014) WHO classification characterized a 
subtype of adenomas as “atypical” if they presented an elevated 
mitotic index, a Ki-67 labeling index greater than 3%, and 
extensive nuclear staining for p53 immunoreactivity (64). It was 
assumed that these atypical adenomas might have an uncertain 
clinical and biological behavior. This assumption has not been 
proven and, to date, it also has not been able to accurately predict 
tumor recurrence or resistance to therapy (65, 66). Thus, in the 
recent 2017 WHO classification of pituitary adenomas, the term 
“atypical adenomas” is no longer recommended (59, 67, 68).

In the past, the terms atypical, invasive, and aggressive have 
been applied to pituitary adenomas in different contexts with 
diverse interpretations. The terms typical and atypical adenoma 
should refer only to pathologic features. Invasive and non-
invasive to radiological, surgical or morphological findings of 
invasion, and finally, aggressive and non-aggressive to the clinical 
behavior (69).

TeMOZOLOMiDe TReATMeNT OUTCOMe

Since 2006, TMZ has been used for the treatment of both aggres-
sive adenomas and pituitary carcinomas. Based on literature 
search results, to date and to our knowledge, approximately 160 
cases have been treated. Numerous publications outlining case 
reports, retrospective patient studies, clinical practice guidelines, 
and an international survey have reviewed the outcome of TMZ 
treatment (39, 66, 70–77). In a recent meta-analysis, the 5-year OS 
for aggressive pituitary adenomas treated with TMZ was 57.4% 
and for pituitary carcinomas 56.2% (72). The 5-year progression-
free survival was 21.9% for patients with aggressive pituitary 
adenomas and 36.1% for patients with pituitary carcinomas 
(72). The mean survival rate of pituitary carcinomas before TMZ 
was introduced as a treatment option was 1.9 years (78). Hence, 
TMZ has signified an enormous advancement in the treatment of 
pituitary tumors (66).

Many parameters may influence response, therefore, with 
any treatment option, data regarding response rates is of critical 
importance for clinicians and surgeons. Unfortunately, lack of 
standardization regarding the criteria to evaluate response rate 
has generated discrepant results. Some studies consider only 
complete and partial radiological response as a successful out-
come. If the stable radiological disease is included, the response 
rate for aggressive adenomas varies from 50 to 80.6% and for 
carcinomas from 50 to 87.6% (72). In aggressive adenomas, TMZ 
is used as a last resort after various therapeutic options have 
been exhausted without inhibiting the progression of the tumor. 
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In these cases, as well as in pituitary carcinomas, it should be 
taken into consideration that a stable disease response may be 
considered a good response (66).

Remarkably, as it was demonstrated in the largest cohort 
published (77), when comparing demographic characteristics, 
functional status of the tumors, previous surgeries, previous 
radiotherapy, and pathological features, no statistically significant 
differences were found between patients with aggressive pituitary 
adenomas and pituitary carcinomas. The only difference was the 
presence of metastases. Data from this study are illustrated in 
Figures 4 and 5 (77). Due to the lack of morphologic, biochemi-
cal, or molecular biomarkers that can indicate in advance which 
tumors will behave in an aggressive manner, different designa-
tions have been used to describe them: premetastatic lesions in 
the sellar phase (79), carcinomas in situ (80), localized pituitary 

carcinomas (81), and invasive/proliferative tumors with high risk 
of recurrence—individualizing grade 2b tumors, suspected to be 
carcinomas without metastases (82). It is possible that some of the 
tumors diagnosed as aggressive adenomas have already under-
gone the “malignant switch” and have transformed to carcinomas 
without recognized metastases. Their identification would be of 
practical significance because it would bring to light better prog-
nosis and treatment options. To recognize the variable behavior 
and impact of pituitary tumors on patients, a recent proposal to 
replace the term pituitary adenoma to pituitary neuroendocrine 
tumor (PitNET) has been made (83).

The decision to start TMZ in pituitary carcinomas is clear 
(66, 76) but in aggressive pituitary adenomas other factors such 
as age, previous medical therapy, radiotherapy, number of previ-
ous surgical interventions, invasion, proliferation markers, and 
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FiGURe 5 | Pathological subtype of tumors, proliferative markers, and O6-methylguanine-DNA methyltransferase (MGMT) immunoexpression in aggressive pituitary 
adenomas and pituitary carcinomas treated with temozolomide. Data from Ref. (77). Abbreviations: TSH, thyroid-stimulating hormone; GH, growth hormone; NPPA, 
non-functioning pituitary adenoma; PRL, prolactin; ACTH, adrenocorticotropic hormone; HPF, high-power field; MGMT, O6-methylguanine-DNA methyltransferase.
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histologic subtype of the tumor must be considered (66, 84). The 
benefits of starting TMZ must outweigh the risks of repeated sur-
geries, re-irradiation, and potential complications with standard 
treatments, and in all cases, the decision must be considered from 
an interdisciplinary perspective (74, 76).

Since studies have shown that pituitary tumors with low MGMT 
protein expression have had positive response to TMZ (39, 76, 77),  
it is prudent, but not necessary, to perform MGMT immunohis-
tochemical analysis before starting TMZ therapy (76). If this is 
not possible, or even if MGMT immunoexpression is high, TMZ 
can be started for 3–6 cycles to determine the response of the 
tumor to therapy (76). Standard dosage of TMZ is 150–200 mg/
m2/day for 5 of every 28 days (5/28). To increase the efficacy of 
TMZ and tumor response, levels of MGMT should be diminished 
or depleted. TMZ response is schedule dependent, and alternative 

dosing regimens may enhance its effectiveness (37, 85). No seri-
ous side effects have been reported in TMZ-treated patients with 
pituitary tumors, and common adverse effects include nausea, 
vomiting, fatigue, headache, and constipation (66). TMZ is known 
to affect the formation of sperm in men; thus, couples interested 
in having children should consider sperm banking before starting 
treatment. The adverse effects of TMZ and childbearing extend 
to women as well. Women should not receive TMZ if they expect 
to become pregnant, are pregnant, or are breastfeeding. In this 
instance, couples should discuss egg harvesting before treatment 
initiation.

In TMZ responsive cases, a rapid, early reduction of 
mass effect has been noted and, in functional tumors, with a 
remarkable decrease of plasma hormone values (71, 72). As 
the response can be seen after 3–6 months of therapy, the first 
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TABLe 1 | Response to temozolomide treatment according to immuno-
expression of MGMT, MPG, and functional MMR.

MGMT+ MGMT−

Adequate MMR Nonfunctional MMR

MPG+ Resistance Cytotoxicity? Resistance?
MPG− Cytotoxicity Cytotoxicity Cytotoxicity

Based on Ref. (19, 42, 47, 48).
MPG, DNA methylpurine-N-glycosylase; MGMT, O6-methylguanine-DNA 
methyltransferase; MMR, mismatch repair.
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imaging evaluation can be performed after three cycles (76). In 
patients responding to TMZ treatment, cystic change, hemor-
rhage, tumor necrosis, and shrinkage of the tumor have been 
seen on MRI (86).

A small number of patients has been treated with a combina-
tion of TMZ along with other medications such as capecitabine 
(87), pasireotide (88, 89), octreotide (90), bevacizumab (91), and 
thalidomide (76). In patients with functional tumors, the addi-
tion of a second medication may be useful. Data regarding these 
treatment options are limited, and the small number of patients 
evaluated thus far does not permit an appropriate analysis of 
these combinations. Their use must be decided according to each 
case (76).

ReSiSTANCe TO TeMOZOLOMiDe 
THeRAPY

Drug resistance is a significant problem that restricts the effec-
tiveness of chemotherapeutic therapy. Although TMZ remains 
part of the gold standard treatment for GBM, it is well known that 
a subset of tumors does not respond to TMZ treatment despite 
MGMT inactivation. This is an indication that other mechanisms 
may also modulate the tolerance to TMZ; therefore, overcoming 
TMZ resistance is a critical matter that must be considered in 
order to improve treatment outcomes (48).

Currently, it has been shown that MGMT-mediated repair, 
counteracts the effects of TMZ treatment (19). The key marker 
of TMZ resistance is the level of gene methylation and protein 
expression occurring within the cells. Methylation of the MGMT 
promoter occurs in approximately 45% of GBM patients, and it 
has become a reliable prognostic indicator of TMZ therapy in 
this type of tumor (92). Contrary to GBM, in pituitary tumors, 
immunohistochemistry analysis of MGMT has been frequently 
used, and tumors with low MGMT immunoexpression have 
generally had a better response to treatment (39, 76, 77, 93). 
Direct repair by MGMT is the most-documented mechanism 
associated with TMZ drug resistance, but, apart from the 
level of MGMT present in cells, other mechanisms may also 
be involved in acquiring resistance to TMZ. To date, various 
new molecular mechanisms underlying such resistance are 
emerging.

In pituitary tumors, low-level immunoexpression of MGMT 
has been associated with a positive response to TMZ, and high 
MGMT expression, with lack of response. Nevertheless, some 
cases with low MGMT expression may not respond to TMZ 
treatment and a few, with high MGMT could respond (39, 72, 
76, 77). Temozolomide produces mainly O6-MeG, N7-MeG, 
and N3-MeA adducts. The first one is repaired by MGMT (by 
DR) and the other two by MPG (by BER) (Figure 3). Based on 
recent findings in GBM, it could be hypothesized that MPG may 
behave in a similar way in pituitary tumors (42, 43, 94). Hence, 
pituitary tumors showing low MGMT and low MPG expres-
sion would be highly responsive to TMZ, because unrepaired 
O6-MeG, N7-Meg, and N3-MeA adducts, would trigger cyto-
toxicity by different ways (Table 1). Tumors with high MGMT 
expression and low MPG could also respond because N7-MeG 

and N3-MeA adducts, not repaired by BER, would cause cell 
death. On the other hand, if MPG expression and MGMT 
were both high, the tumor would be highly resistant because 
all adducts would be repaired. Finally, if the tumor presented 
low MGMT and high MPG expression, cytotoxicity or resistance 
would depend on several factors: an integral MMR pathway, the 
persistence of mismatch pairing, the tolerance of mutations, and 
the adequate repair of adducts by BER (Table  1). According 
to this, in pituitary tumors, it would be advisable to perform 
immunohistochemical analysis for MGMT as well as for MSH2, 
MSH6, MLH1, PMS2, and MPG, to evaluate the DNA repair 
pathways—DR, MMR, and BER, respectively—and the possible 
response to TMZ therapy (42).

Tumors may be intrinsically resistant to TMZ before initial 
treatment; however, resistance may also be acquired during 
treatment in tumors that were previously sensitive to it. This 
acquired resistance may be the result of drug-induced genetic 
changes within tumor cells which impart a survival advantage 
to certain cells (19). Hence, tumor cells that remain sensitive to 
TMZ treatment will be eradicated while those that have acquired 
resistance proceed to divide and produce daughter cells that are 
also resilient to the effects of TMZ. This acquired resistance may 
be responsible for TMZ treatment failure in individual patients 
(19, 95), either because those cells already existed before the 
onset of treatment as natural phenotypes, or due to the drug-
induced mutagenicity. The result is an internal natural selection 
of genetically heterogeneous clones (96–98).

In GBM cases, it has been shown that TMZ treatment failure 
may also be the result of an inherent resistance conferred by 
various mechanisms. It was demonstrated that multi-drug resist-
ance proteins (MRP) intrinsically expressed in gliomas did not 
respond to chemotherapy (99). Multi-drug resistance proteins 
along with ABC transporter proteins such as P-glycoprotein 1 
(permeability glycoprotein, Pgp) have been shown to cause an 
increase in drug efflux since they can actively transport various 
drugs out of the cells (99–101). In this instance, resistance may 
also be the result of decreased drug influx, although the exact 
mechanism is still unclear.

The Sonic Hedgehog (SHH) pathway plays a crucial role in 
neural development. Recently it was found that tumor cells use 
this pathway to acquire and maintain resistance to TMZ. In stud-
ies focusing on GBM, SHH signaling in tumor cells was mediated 
through an overexpression of the MDR1 gene which can cause 
an increase in drug efflux by actively transporting drugs out of 
cells (99–102).
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Another area that may trigger TMZ resistance is the overall 
mutagenesis—caused by the drug itself—to the entire genomic 
cellular DNA, impairing, among others, the capacity of tumor 
cells to repair its DNA. The ability for cells to counter DNA dam-
age is the determining factor of whether these cells are killed 
by TMZ treatment or if they can become resistant and survive.  
As mentioned, TMZ treatment causes methylation mainly in 
guanine but also in adenine. If these adducts remain unrepaired, 
they will cause replication fork collapse and DNA DSB, resulting 
in cell cycle arrest (G2/M) and apoptosis (49). For instance, the 
MMR system plays a significant role in TMZ treatment since 
it can recognize and remove mispaired bases and insertion/
deletion loops produced during DNA synthesis (Figure  3). 
Therefore, the MMR system must function properly for TMZ 
to carry out its cytotoxic effects. In a study by Goellner et  al., 
they looked at the relationship between MMR system failure 
and TMZ resistance in GBM cases (103). Tumors with low-level 
MGMT expression responded well, initially, to TMZ treatments 
but concurrently accumulated mutations within the DNA of 
surviving cells. It was believed that the surviving tumor cells 
acquired MMR mutations that then resulted in TMZ resistance 
during further TMZ treatments.

Adaptive response to alkylating agents may have a role in 
TMZ resistance, especially patients in which TMZ treatment 
has been discontinued, resulting in tumor progression, and 
resistance to a second course of treatment (77). The adaptive 
response to alkylating damage was demonstrated many years 
ago in studies using E. coli. It was noted that E. coli exposed to 
non-toxic doses of alkylating agents, became more resistant to 
mutations and death. They also became more capable of dealing 
with higher subsequent doses of the same agent (104–106). This 
response was also confirmed in human cells (107). Methylating 
agents triggered the adaptive response in E. coli by generating an 
intracellular signal for its induction (108). If a tumor progresses, 
tumoral cells may have a similar adaptive response to TMZ, 
rendering a second course of treatment ineffective (77). In tumor 
microenvironment MGMT, after its inactivation, may interact 
with transcription factors of different adaptive response genes, 
as it has been shown with ROS (109), which induce resistance to 
subsequent courses of TMZ.

FUTURe DiReCTiONS

Molecular drug resistance remains a difficult issue to resolve. 
It can only be overcome by developing new technologies that 
allow better characterization of novel signaling pathways, 
involved in tumor cell response to chemotherapeutic agents. 
This, in turn, will enable researchers and clinicians to design 
new treatment regimens that will maximize drug efficacy, 
while eliminating the mechanism behind drug resistance and 
minimizing unfavorable health effects.

Temozolomide has shown to be an effective treatment for 
aggressive pituitary adenomas and pituitary carcinomas, yet 
some tumors escape its anti-tumor activity. This chemoresist-
ance can be counteracted by targeting several biochemical 
mechanisms. It has been shown that MGMT is an important 
TMZ resistance factor. Future studies should focus on developing 

therapeutic agents that can work in conjunction with TMZ to 
suppress the effects of MGMT in tumor cells or to attenuate 
TMZ resistance. For example, an ideal MGMT inhibitor would 
be a molecule that could specifically dock in the MGMT amino 
acid sequence (Pro-Cys-His-Arg) that contains the active 
site (110). Second, novel imidazotetrazine analogs have been 
recently tested in orthotopic mouse xenografts that showed 
significantly better brain to plasma ratios compared with TMZ 
(111). Researchers used imidazotetrazine analogs that acted in 
the same manner as TMZ yet treatment using these compounds 
showed lipophilic binding to the entire brain tissue, reducing 
its availability to the target tumor cells. Nevertheless, chemical 
modifications are attainable and are under investigation (111). 
Future research should target the competition of TMZ with the 
P-glycoprotein (P-gp) which acts as a drug efflux pump that 
expels the drugs from the cell, reducing its effectiveness in the 
membrane of tumor cells. Different P-gp inhibitors have been 
discovered thereby paving the way for an alternative form of 
combined therapies (112). High levels of MGMT in tumor tissue 
may be depleted with pseudo-substrates that resemble 06-MeG. 
O6-benzylguanine and lomeguatrib can deplete MGMT and 
increase TMZ cytotoxicity (113, 114). Manipulating the BER 
pathway using methoxyamine can increase TMZ efficacy. To 
begin the repair process of alkylation, the BER pathway removes 
the alkylated DNA base, creating an apurinic/apyrimidinic (AP) 
site which is then repaired. Methoxyamine can form a stable 
adduct in the AP site, refractory to the downstream members 
of the BER pathway (46). Future research should focus on 
developing drug combinations that target various mechanisms. 
Bevacizumab has been used alone as an alternative in a case 
of one pituitary carcinoma resistant to TMZ therapy (115). 
Combined anti-angiogenic therapy along with TMZ treat-
ment could be beneficial, but at this time, the small number of 
patients treated with this option does not allow proper analysis 
of the effects of this combination (77). Because of the limited 
availability of clinical samples and the high cost of performing 
clinical trials, the use of preclinical in  vitro human cell line 
models should be encouraged (116).

The etiology from aggressive to malignant pituitary tumor 
remains largely unknown. Genomic studies to decipher the 
driving events are ongoing but are hampered by the limited 
understanding of the mechanism underlining the tumorigenesis 
of pituitary adenomas. Novel studies are focusing on changes in 
microRNAs expression—such as miR-183 and KIAA0101—that 
result from inhibition of specific transcription factors which 
would, in turn, lead to overexpression of genes and other 
molecular events that are upregulated in aggressive tumors. This 
“aggressive pathway” leads to the activation of cell proliferation 
responsible for pituitary tumor progression (117). Researchers 
have also focused on a protein which is involved in estrogen 
receptor transactivation and metalloproteinase-9 (MMP-9) 
expression. It was shown that elevated expression of metastasis-
associated gene-1 (MTA1) was linked to the aggressive nature of 
pituitary tumors (118).

A complex network of DNA damage response (DDR) is 
triggered after damage to tumoral DNA (119). This DDR 
involves multiple repair mechanisms, cell cycle checkpoints, and 
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tolerance to damage. According to the nature of the DNA injury 
and the phase of the cell cycle in which the lesion is produced, 
the cell cycle can be arrested at the G1/S transition, within the 
S-phase, or at the G2/M transition (119). While potentiation of 
TMZ treatment can be enhanced by inhibiting the mechanisms 
behind drug resistance, novel approaches to inhibit the effects 
of MGMT, BER, and MMR, that invariably arm tumor cells 
with the ability to combat TMZ activity, must be developed and 
implemented. Dysfunction of one DNA repair pathway may be 
compensated for another one, which may contribute to resist-
ance to TMZ treatment in pituitary tumors.

CONCLUSiON

Temozolomide has shown to be effective in the treatment of aggres-
sive pituitary adenomas and pituitary carcinomas. Overcoming 
and treating TMZ resistance has been a difficult clinical challenge. 
Although medical management of TMZ resistance is limited at 
this time, great strides to understand its underlying mechanisms 

are being taken. It is evident that arduous challenges persist and 
that it is crucial that research focus on the development of novel 
drugs that either enhance the effectiveness of TMZ or overcome 
its resistance. This will also be beneficial in an attempt for per-
sonalized and targeted therapy for pituitary tumors.
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