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Abstract

The novel iron-substituted Krebs-type polyoxotungstate (C,,N,H;),Na,Hs[(Fe(H,0)3),((FeO,) s(WO,), 5),(f-SbW4055),]
(Fe-1) has been synthesized using ortho-phenylenediamine (opda) as a precursor for the in situ formation of the counter
cation 2,3-diaminophenazinium (C,,N,H,)* (2,3-DAP). Fe-1 has been thoroughly characterized in the solid state by single-
crystal X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), IR spectroscopy, and elemental analysis as well as in
solution by UV-Vis spectroscopy. The crystal structure of Fe-1 reveals z—z-interactions between the aromatic systems of
the unconventional 2,3-DAP counter cation. POM-protein interaction studies using SDS-PAGE revealed a non-proteolytic
behavior of Fe-1 towards Human Serum Albumin (HSA) as a model protein.
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Introduction

Polyoxometalates (POMs) [1] represent a broad class of
anionic clusters, which are composed of metal ions in high
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Krebs-type POMs comprise two lone-pair con-
taining p-Keggin lacunary fragments, e.g.
[B-Sb(III)W9033]9‘ [8]. The first representatives
of the Krebs-archetype with the general formula
[M,(H,0)4(WO,),(B-SbW,0;5),]1472"~ (M =Fe’**, Co**,
Mn?*, Ni**) were reported by Krebs and co-workers in
1997 [8], exhibiting considerable importance in the fields
of both homo- and heterogeneous catalysis [9]. The use of
this archetype for the synthesis of new hexagon-type Sand-
wich POM compounds has recently been reported [10]. As
Krebs-type POMs comprise free accessible metal centers,
the natural ligand-binding interactions between protein side
chains and the peripheral metal centers may be of interest
for POM-assisted protein crystallography [11].

Inspired by the use of opda as a precursor for the
in situ generation of the unconventional 2,3-DAP counter
cation, the novel iron-substituted Krebs-type Sandwich
POM (C,N,H,),Na,Hs[(Fe(H,0);),((FeO,), s(W-
0,)0.5)2(B-SbW,035),] (Fe-1) has been prepared. Herein,
we report on the synthesis and thorough characterization of
the novel Fe-substituted Krebs-type Sandwich tungstoan-
timonate Fe-1. Regarding the scarce number of studies on
the POM-protein interactions of the Krebs-POM archetype
[10] and the potential use of non-proteolytic POM clusters
as additives in POM-assisted protein crystallography, the
POM-protein interactions of Fe-1 with Human serum albu-
min (HSA) as a model protein were investigated using SDS-
PAGE to assess whether Fe-1 shows any proteolytic activity
towards HSA.

Results and discussion
Synthesis of Fe-1

An aqueous solution of Nag[SbWyO;;] contains a mixture
of [a-SbW403;] and [B-SbW40s;] in equilibrium. It is well
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documented that the latter species [B-SbWyO33] dominates
the equilibrium at pH values lower than 6.0 [8]. As a matter
of fact, the reaction was carried out in an acetate buffer at pH
4.8. Upon addition of opda to a warm aqueous acidic reac-
tion mixture of Nag[SbW,O3,] and FeCls, the initially yellow
solution gradually turned dark red indicating the oxidation
of opda to 2,3-diaminophenazine (2,3-DAP) catalyzed by
the in situ formed Fe-1 Krebs-POM. Cooling of the reac-
tion mixture to room temperature resulted in the forma-
tion of dark red crystal plates consisting of polyanion Fe-1
(Scheme 1).

Crystal structure of Fe-1

Single crystal X-ray diffraction (SXRD) studies were per-
formed on Fe-1 revealing a Krebs-type structure which crys-
tallizes in the triclinic space group P-1. The crystal structure
of Fe-1 exhibits two [B-SbWyO4;] lacunary species linked
by two Fe(III) metal centers at the peripheral sites and two
W(VI) centers which show a 50:50 disorder with Fe(III) at
the inner position of the linking belt. Regarding the synthetic
conditions of Fe-1, which include the use of an acidic buffer
(pH=4.8), the disorder with tungsten is in accordance with
the results for the disordered alpha-arsenotungstate com-
pounds observed at lower pH values, reported by Kortz et al.
in 2001 [12] as well as the disordered Krebs-type tungstoan-
timonates recently reported by our group [10]. The periph-
eral iron centers exhibit a distorted octahedral coordination
environment with one acetate ligand and one H,0 molecule
coordinated to the metal center and Fe—O bond lengths rang-
ing from 1.9271(1) at the inner site of the belt to 2.139(1) A
between the peripheral iron centers and the H,O ligand at
the peripheral belt positions (Fig. 1).

Besides SXRD, Fe-1 was also characterized in the solid
state by powder X-ray diffraction (PXRD) (Fig. S1), ATR-IR
spectroscopy (Fig. 2), and elemental analysis.

80°C, 70 min \

[B-SbWy03;]

Scheme 1 Structure and synthesis of Fe-1. The synthesis starts from
the [B-SbW,Os;3] unit and FeCl;. Catalytic oxidation of opda by the
in situ formed Fe-1 anion leads to formation of 2,3-diaminophenazin-
ium (2,3-DAP) which acts as a counteraction for Fe-1. Counter cati-
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ons are omitted for clarity. Color legend: WO, grey; Sb, light blue;
Fe, light orange; disordered Fe/W centers, light orange with dark blue
stripes; O,, red
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Fig. 1 Polyhedral representa-
tion of Fe-1. WOy, grey; Sb,
light blue; Fe, light orange;
disordered Fe/W centers, light
orange with dark blue stripes;
O,, red; C, light grey; N, blue
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Fig.2 IR spectrum of (C,,N,H,,),Na,Hs[(Fe(H,0)5),((FeO,), (WO
20.5)2(B-SbW,033),] (Fe-1)

UV-Vis spectrum of Fe-1

The UV-Vis spectrum of Fe-1 exhibits two major peaks, one
at 271 nm corresponding to the pn(O,) — dn*(W) ligand-to-
metal charge-transfer transition typical for the Keggin-type
framework [13], whereas a second absorption maximum
at 423 nm can be attributed to the aromatic transitions of

300 400 500 600
Wavelength /nm

Fig.3 UV-Vis-spectrum of Fe-1 (5x107% M) in 10 mM NaOAc
buffer pH 5.5 showing typical O— W ligand—to—metal charge-
transfer (271 nm) and aromatic transitions (423 nm)

the 2,3-DAP counter cations present in the structure [14]
(Fig. 3).

POM-protein interactions
Considering the known catalytic activity of Fe(IIl) as a

Lewis acid, the POM-protein interactions of the peripheral
Fe(III) metal centers of Fe-1 with human serum albumin
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(HSA) as a model protein were investigated to assess
whether Fe-1 exhibits any proteolytic activity. SDS-PAGE
was performed on reaction mixtures of HSA and Fe-1 in
a NaOAc buffer [10 mM] pH 5.5 to ensure a stable more
accessible acidic conformation of the model protein [15].
The results revealed no hydrolytic activity of Fe-1 towards
the peptide bonds of the model protein even at 65 °C and
100-fold excess of the POM compound indicated by intact
protein bands at 66 kDa (Fig. 4). This is in good accordance
with our previous results reported for the isostructural man-
ganese- and zinc-substituted DAP-POM derivatives [10].

Conclusion

In conclusion, the synthetic pathway presented in this work
may open new perspectives for the preparation of novel
Krebs-POM archetypes exhibiting unconventional counter
cations. The interactions of the Krebs-POM compound Fe-
1 with HSA as a model protein have been investigated and
the non-proteolytic behavior of Fe-1 may be interesting for
further POM-protein interaction studies ultimately perhaps
opening novel perspectives in the field of POM-assisted pro-
tein crystallography.

Experimental

All reagents were obtained commercially from Aldrich, of
high-purity grade and were used as purchased without fur-
ther purification. Nag[B-a-SbWyO55] was prepared accord-
ing to the literature procedure reported by Bosing et al. [8].
X-ray intensity data were measured on a Bruker X8 APEX2
diffractometer equipped with a multilayer monochromator,

Mo K/o INCOATEC micro focus sealed tube and Oxford
cooling device. The following software was used: Bruker
SAINT software package [16] using a narrow-frame algo-
rithm for frame integration, OLEX2 [17] for structure
solution, refinement, molecular diagrams and graphical
user-interface, Shelxle [18] for refinement and graphical
user-interface SHELXS-2013 [19] for structure solution,
SHELXL-2013 [20] for refinement. Experimental data and
the CCDC-Code are provided in Table S1. Crystal data,
data collection parameters, and structure refinement details
are given in Tables S2 and S3 of the electronic supporting
information. X-ray powder diffraction measurements were
performed on a Bruker D§ ADVANCE diffractometer, Cu
Ko radiation, 1=1.54,056 A, LYNXEYE silicon strip detec-
tor and SolX energy dispersive detector, variable slit aper-
ture with 12 mm, 5° <20 <40°. Attenuated total reflection
Fourier-transform Infrared Spectroscopy: all spectra were
recorded on a Bruker Tensor 27 IR Spectrometer equipped
with a single-reflection diamond-ATR unit. Frequencies are
given in cm™!, intensities denoted as w = weak, m = medium,
s =strong. Elemental analysis (C, H, N, O) was performed at
Mikroanalytisches Laboratorium, Fakultit fiir Chemie, Uni-
versitit Wien using the 2400 CHN Elemental Analyzer and
the EA 3000, respectively. UV—Vis spectra were collected
on a Shimadzu UV 1800 spectrophotometer. The spectra
were recorded in 10 mM NaOAc buffer pH 5.5. SDS-PAGE
was performed according to a standard procedure [21] using
Precision Plus Protein Standard Dual Color (Bio-Rad) as
molecular weight marker. Samples were applied to 14%
polyacrylamide gels under reducing conditions. The sample
amount loaded onto the gel was 5 pg. Gels were stained with
Coomassie Brilliant Blue. Imaging of the gels was applied
with Gel Doc™ XR of BIO-RAD. Human serum albumin
(HSA) (5 pg) was mixed with 1, 10, and 100 equivalents of
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Fig.4 HSA incubated with Fe-1 for 30 min at 20 °C (1-4), at
37 °C (5-8), and at 65 °C (9-12). 1) 5 pg HSA without Fe-1, 2)
1:1 HSA:POM, 3) 1:10 HSA:POM, 4) 1:100 HSA:POM., 5) 5 ug
HSA without Fe-1, 6) 1:1 HSA:POM, 7) 1:10 HSA:POM, 8) 1:100
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HSA:POM, 9) 5 pg HSA without Fe-1, 10) 1:1 HSA:POM, 11) 1:10
HSA:POM, 12) 1:100 HSA:POM in NaOAc buffer [10 mM] 5.5 pH
A) HSA with Fe-1 after 30 min B) HSA with Fe-1 after 3 days
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Fe-1in 10 mM NaOAc buffer pH 5.5 and incubated at three
different temperatures (20, 37, and 65 °C).

(C1,N4Hy4),Na,yHs[(Fe(H,0)5),((Fe0,)q s (WO, 5),(B-
SbW,0;,),] (Fe-1) To a stirred solution of 215 mg
Nag[B-a-SbW,05,] (0.05 mmol) in 20 cm? aqueous sodium
acetate buffer (0.5 M NaOAc/AcOH, pH 4.8), 81 mg FeCl;+6
H,0O (0.3 mmol) was added. The resulting orange reaction
mixture was stirred at 70 °C for 10 min. ortho-Phenylene-
diamine (opda, 21 mg, 0.2 mmol) was added to the reaction
solution and the mixture was stirred for further 60 min at
85 °C. A color change from orange to dark red over the time
period of 60 min was noticed. Dark red crystal plates of Fe-
1 were obtained upon cooling the filtered reaction mixture
to room temperature and further evaporation at 18 °C gave
a total yield of 60% based on W after 3 days. IR (ATR):
¥ =3363.4 (w), 3260.6 (w), 1635.1 (m), 1509.2 (m), 1400.4
(m), 1233.4 (s), 1152.1 (s), 935.8 (s), 744.5 (s) cm™ ..
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