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ABSTRACT Here, we report the complete genome sequence of the multidrug-resist-
ant (MDR) strain Pseudomonas aeruginosa NRD619, assembled via long- and short-
read hybrid assembly. P. aeruginosa is a Gram-negative bacterial pathogen that is a
significant public health burden. NRD619 was isolated from a left ventricular assist
device (LVAD) draining sinus tract.

P seudomonas aeruginosa is a Gram-negative bacillus commonly found in soil and
water as well as plants and humans. Classified as an opportunistic pathogen, P.

aeruginosa is a major cause of illness and mortality in humans. Importantly, persistent
infections arise in patients with immunosuppressive or chronic illnesses, such as cystic
fibrosis, burns, wounds, cancer, and conditions requiring ventricular assist devices (1,
2). The genome of P. aeruginosa, which is especially large for a bacterium and averages
5.5 to 7 million base pairs (Mbp), has provided an understanding of the metabolic and
pathogenic mechanisms that underlie the success of this versatile pathogen (2). It is
also a model for understanding microbial evolution in chronic diseases, particularly
those strains with increased antibiotic resistance (3).

In this study, we present the complete genome sequence of P. aeruginosa NRD619.
This strain was isolated from a draining sinus tract and from blood cultures from a left
ventricular assist device (LVAD) recipient after almost 2 years of ongoing infection.
Blood was collected in BD Bactec blood culture tubes, and 5ml was incubated at 37°C
in aerobic and anaerobic environments. Positive blood cultures and a swab culture
from the draining sinus tract were then streaked onto MacConkey, Columbia nalidixic
acid (CNA), and chocolate agar plates and incubated at 37°C. Final identification was
performed using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF)
mass spectrometry. Although LVADs have revolutionized the treatment of advanced
heart failure, infections remain a substantial risk (1). The strain exhibited antibiotic sen-
sitivity to amikacin (,8mg/ml), aztreonam (,2mg/ml), ceftazidime (4mg/ml), genta-
micin (,2mg/ml), piperacillin-tazobactam (8/4mg/ml), and tobramycin (,2mg/ml)
and resistance to cefepime (16mg/ml), ciprofloxacin (.2mg/ml), and meropenem
(8mg/ml). This patient was treated under institutional review board (IRB)-approved
protocol 191417, which included sample collection.

Chromosomal DNA was extracted from an overnight culture from a single colony
on Luria broth (LB) agar at 37°C using the NucleoSpin microbial DNA isolation kit
(Macherey-Nagel, Düren, Germany). The DNA Link Sequencing Lab (San Diego, CA) pre-
pared a library using the SMRTbell template prep kit version 1.0, and fragments smaller
than 20 kb were removed with the automated BluePippin size selection system (Sage
Science, Beverly, MA). After validation using the Agilent 2100 Bioanalyzer instrument,
the library was sequenced on 1 single-molecule real-time (SMRT) cell of the PacBio RS
II platform (Menlo Park, CA). A total of 171,246 long reads and 1,647,640,675 bp were
produced, corresponding to an estimated coverage of 255-fold. After subread filtering
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and de novo hierarchical genome assembly (HGAP version 2.3) (4), consensus polishing
with Quiver resulted in a single contig of 6,461,122 bp. The N50 value for the PacBio
subreads was 13,055 bp, and after polishing, the N50 value for the assembly was
6,461,122 bp. Unless otherwise noted, default parameters were used for all software
tools. Next, the Microbial Genome Sequencing Center (MiGs; Pittsburgh, PA) prepared
a library for Illumina NextSeq 550 paired-end sequencing using the Nextera DNA Flex
sample preparation kit (Illumina, San Diego, CA, USA). A total of 4.6 million reads of
150 bases were obtained. The paired-end reads were processed with fastp version
0.19.4 (5) and used to polish the long-read HGAP assembly using Pilon version 1.23 (6).
The complete genome sequence of P. aeruginosa NRD619 is 6,438,945 bp with a rich
G1C content of 66.42%. This is consistent with other P. aeruginosa genome sequences
(sizes, 5.5 to 7Mbp; G1C contents, 65 to 67%) (7).

Next, we annotated the complete genome of NRD619 using RAST (Rapid Annotations
using Subsystems Technology) (8). This estimated 6,296 coding regions, revealing a wide
range of metabolic and pathogenic mechanisms, including choline transport (choV, choW,
choX, and betT1) (9), growth regulation (potA, potB, potC, potD, potF, potG, and potH) (10),
and metabolic (madL and madM) (11) and transcriptional regulator (pcaR) (11, 12) genes.
In addition, NRD619 contains genes encoding multiple drug efflux pump systems (MexA-
MexB-OprM, MexC-MexD-OprJ, MexE-MexF-OprN, and MexX-MexY-OprM), antibiotic resist-
ance (C and D beta-lactamases), and biofilm formation (pelG) (13).

P. aeruginosa NRD619 was found to harbor 2 prophages as predicted using PhiSpy
(14). One prophage is 22,692 bp long and has 95% homology to the Pseudomonas
phage phi3, while the other is 41,439 bp, with 95% homology to the Pseudomonas
phage MD8. Interestingly, the latter MD8-like prophage also contains a gene with
homology to the luxR transcriptional regulator that is involved in quorum sensing (15).

In summary, we report the new genome sequence of a P. aeruginosa isolate that
caused chronic infection in an LVAD patient. This new genome of P. aeruginosa
NRD619 displays features of virulence and antibiotic resistance, such as a bacteriocin,
multidrug efflux pumps, and beta-lactamases, which are common in human isolates of
P. aeruginosa (16, 17). Given the high rate of MDR infections, a greater understanding
of metabolism, virulence, resistance, and evolutionary mechanisms will aid in improv-
ing treatment and developing alternative antimicrobials like phage therapy (18, 19).

Data availability. The genome sequence of P. aeruginosa strain NRD619 was de-
posited in GenBank under the accession number CP060703, where PGAP annotation is
also available. RAST annotation of the genome is available on Zenodo (https://zenodo
.org/record/4062504#.X5G_B3V7nIU). Reads were deposited in the Sequence Read
Archive under accession numbers SRX8974486 for PacBio reads and SRX8974485 for
Illumina reads under the BioProject accession number PRJNA658200 for BioSample
number SAMN15860813.
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