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Parkinson’s disease (PD) is recognized as the second most common neurodegenerative 
disorder after Alzheimer’s disease. Unfortunately, there is no cure or proven disease 
modifying therapy for PD. The recent discovery of a number of genes involved in both 
sporadic and familial forms of PD has enabled disease modeling in easily manipulable 
model systems. Various model systems have been developed to study the pathobiology 
of PD and provided tremendous insights into the molecular mechanisms underlying dopa
minergic neurodegeneration. Among all the model systems, the power of Drosophila has 
revealed many genetic factors involved in the various pathways, and provided potential 
therapeutic targets. This review focuses on Drosophila models of PD, with emphasis 
on how Drosophila models have provided new insights into the mutations of dominant 
genes causing PD and what are the convergent mechanisms.

Keywords: Parkinson’s disease, Drosophila, modeling, leucine-rich repeat kinase 2, α-synuclein, glucocerebrosidase, 
vacuolar protein sorting 35

iNTRODUCTiON

Parkinson’s disease (PD) is recognized as the most common movement disorder and the second 
most common neurodegenerative disorder after Alzheimer’s disease (1). The classical motor features 
including akinesia, resting tremor, muscle rigidity, and postural imbalance are clinical symptoms 
in PD patients, and the none-motor features including cognitive impairment, psychiatric symp-
toms, sleep disorders, autonomic dysfunction, pain, and fatigue also frequently occur (1). The 
progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta 
is the cause for the cardinal symptoms (2). Although the majority of PD cases appear to be spo-
radic, the identification of causative genes that cause familial forms of PD has led to important 
insights into the pathogenesis of this progressive neurodegenerative disease (3). To date, genes 
encoding α-synuclein (α-Syn), leucine-rich repeat kinase 2 (LRRK2), Parkin, phosphatase and 
tensin homolog deleted on chromosome 10-induced putative kinase 1 (PINK1), DJ-1, vacuolar 
protein sorting 35 (VPS35), and glucocerebrosidase (GBA), among others are associated with 
genetic forms of PD that closely resemble idiopathic PD (3–8). Among these genes, LRRK2,  
α-synuclein, GBA, and VPS35 are the dominant traits, and parkin, DJ-1, and PINK1 are the recessive 
genes. Various model systems have been developed to study the function of PD-causing genes 

Abbreviations: PD, Parkinson’s disease; LRRK2, leucine-rich repeat kinase 2; PINK1, phosphatase and tensin homolog 
deleted on chromosome 10-induced putative kinase 1; VPS35, vacuolar protein sorting 35; GBA, glucocerebrosidase; DA, 
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ubiquitin-protease system; HDAC6, histone deacetylase 6; TRAP1, tumor necrosis factor receptor associated protein-1; ER, 
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and provided tremendous insights into the molecular mecha-
nisms underlying DA neurodegeneration. While few of genetic 
models in rodents recapitulate the cardinal features of PD, the 
power of Drosophila has revealed many genetic factors involved 
in the various pathways, and provided potential therapeutic 
targets. Here, we focus on the dominant genes causing PD.  
We discuss how Drosophila models have provided new insights 
into the mutations of dominant genes causing PD and what are 
the convergent mechanisms.

Drosophila AS A MODeL  
iN THe STUDY OF PD

Drosophila melanogaster, as a non-mammalian animal, provides a 
simple, yet powerful, in vivo system to model PD pathobiology. 
Drosophila has well-defined nerve system. Particularly, in adult 
brain, Drosophila has distinct DA neuronal clusters including 
about 200 DA neurons and displays complicated behaviors 
mimicking some human behaviors which are DA dependent. 
Both transgenic and knockout approaches have been utilized 
to develop Drosophila models of PD. The Drosophila Gal4/UAS 
system is a powerful tool for targeted transgene expression and 
has been used to direct selective expression of mutant PD genes. 
As a simple organism, Drosophila provides great advantages 
in conducting genome-wide modifier screenings and high-
throughput drug screenings. Modifier screenings allow analyses 
of genome-wide genetic interactions based on the modification 
of given phenotypes and further identify components of diverse 
signaling pathways involved in PD pathogenesis.

Several steps can be taken to establish and utilize Drosophila 
models to study PD:

 (1) Develop Drosophila lines carrying mutant PD genes,
 (2) Characterize the phenotypes of the Drosophila models and 

determine whether they recapitulate the pathogenesis of the 
disease,

 (3) Explore the molecular mechanisms underlying the pheno types,
 (4) Identify genetic modifiers that suppress or enhance the 

disease phenotypes through genetic screenings, and dissect 
the signaling pathways and pathogenic mechanisms involved 
in pathogenesis,

 (5) Screen for drug candidates,
 (6) Study the impact of environmental (e.g., toxin) or aging  

influence in combination with genetic factors on the patho-
genesis of PD.

MODeLiNG LRRK2-ASSOCiATeD  
PD iN Drosophila

Mutations in the LRRK2 gene (PARK8, dardarin) is the most 
common known genetic cause of PD and cause late-onset, 
autosomal dominant PD with age-related penetrance and clini-
cal features identical to late-onset sporadic PD (9, 10). LRRK2 
is a large multifunctional protein about 280 kD. It includes two 
important enzymatic domains, which are a GTPase domain and 
a kinase domain, and several protein interaction domains including 
a LRRK2-specific repeat domain, a leucine-rich repeat, and 

a WD40 repeat (11–13). Disease causing mutations are found 
in both enzymatic domains, indicating their importance in 
disease pathogenesis (11, 12). The most prevalent LRRK2 
mutation, G2019S, within the kinase domain, accounts for ~1% 
of sporadic late-onset PD and 5–6% of familial PD worldwide 
(14). In North African Arabs and Ashkenazi Jews, the frequency 
of LRRK2–G2019S mutation can be as high as 30–40% in PD 
patients (15, 16). Patients with the G2019S mutation exhibit 
Lewy bodies (LBs) in most cases and incomplete penetrance even  
at advanced ages (1). However, mutations in the GTPase domain 
such as R1441 C/G often vary on LB pathology and exhibit nearly 
complete penetrance (9, 10). This suggests that these pathogenic 
mutations may cause disease via distinct pathogenic pathways/
mechanisms. Tremendous work suggests LRRK2 GTPase and 
kinase enzyme activities may reciprocally regulate each other to 
direct LRRK2 functions in diverse cellular signaling pathways  
(17, 18). LRRK2 is demonstrated to be involved in protein trans-
lation, vesicle trafficking, mitochondrial function, lysosomal–
autophagy, and cytoskeletal dynamics (13, 18–22). However, how 
LRRK2 mutations cause neurodegeneration in PD still need to be 
defined. To this end, various animal models of LRRK2-associated 
PD have been generated (23–25). Among these models, LRRK2 
Drosophila models have provided unique and critical insights on 
LRRK2 functions (Table 1).

LRRK2 Drosophila Models
LRRK2 Knockout Drosophila Models
Drosophila has a single human LRRK2 homolog, dLRRK. Resi-
dues changed by PD-causing mutations in human LRRK2 are 
highly conserved in dLRRK (Table 1). To study the physiological 
function of endogenous LRRK2, dLRRK loss-of-function mutant  
fly lines have been generated. One major line used in the stud-
ies is LRRKe03680 from the Exelixis Collection at the Harvard 
Medical School. It was generated with piggyBac element inser-
tion in the intron between exon 5 and exon 6 of dLRRK gene.  
In characterization of dLRRK knockout Drosophila model on 
PD related pathogenesis, one study reported knockout of dLRRK 
exhibited a decrease in tyrosine hydroxylase (TH) immunostain-
ing, shrunken DA neurons, and locomotor activity deficits (26), 
while three studies reported that the homozygous mutant flies 
developed unchanged number and pattern of DA neurons as 
well as a normal life span (27–29). Furthermore, the sensitivity 
of those dLRRK2 knockout flies response to oxidative stress have 
been examined. Wang et al. showed that dLRRK mutant flies are 
selectively sensitive to H2O2 (27). By contrast, a report by Imai 
et  al. demonstrated that dLRRK knockout flies are relatively 
resistant to paraquat and H2O2 treatment (28). Thus, the exact 
role of dLRRK in PD-related pathogenesis remains elusive.  
As the majority of studies supported that dLRRK is not required 
for DA neurons survival and this is consistent with the results from 
LRRK2 knockout rodents (mice or rats), the general agreement is 
that LRRK2-induced neuronal toxicity is from a gain-of-function 
but not a loss-of-function mechanism.

LRRK2 Transgenic Drosophila Models
Patients carrying heterozygou s or homozygous LRRK2 pathogenic 
mutations have similar disease risk and progression, supporting 
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TAbLe 1 | Drosophila models for leucinerich repeat kinase 2 (LRRK2)associated Parkinson’s disease.

Genetic 
manipulations

References LRRK2 variants Neurodegeneration Motor activities/life span Other functions

Knockout (26) dLRRK Tyrosine hydroxylase (TH) 
neurons: no changes
TH neurons shrunken  
TH staining ↓

Locomotor activity ↓ ND

(27) dLRRK No changes Life span ↓ Sensitive to hydrogen peroxide, 
not to paraquat, rotenone,  
and βmercaptoethanol

(28) dLRRK TH neurons: no  
changes; DA content ↑

Life span ↓
Fertility ↓  
Malformed abdomen

Hydrogen peroxide ↓  
Paraquat ↓

(29) dLRRK ND Locomotor activity ↓ ND

Transgenic (26) dLRRK No changes No changes ND

(30) hLRRK2 TH neurons ↓
No response to lDOPA
Retinal degeneration

Locomotor activity ↓
Life span ↓
Response to lDOPA

ND

hG2019S TH neurons ↓↓
No response to lDOPA
Retinal degeneration

Locomotor activity ↓
Life span ↓
Response to lDOPA

ND

(28) dLRRK No changes ND No changes

dY1383C
dI1915T

TH neurons: no changes
TH staining ↓
DA content ↓

ND Hydrogen peroxide ↑
Paraquat ↑

(31) hLRRK2 (at 29°C) TH neurons ↓
Retinal degeneration

Locomotor activity: 10 days ↓
20 days ↑
Life span ↑
Fertility ↑

Rotenone ↑

hI1122V (at 29°C)
hY1699C (at 29°C)
hI2020T (at 29°C)

TH neurons ↓ the most  
with I2020T
Retinal degeneration

Locomotor activity: 10 days ↓
20 days ↑
Life span ↑ in hY1699C, hI2020T
Fertility ↑ in hI1122V, hI2020T

Rotenone ↑

(32) hLRRK2 No changes No changes No changes

hG2019S
hY1699C
hG2385R

TH neurons ↓ Locomotor activity ↓
Life span ↓

hG2019S, hG2385R ↑
hY1699C no change

(33) hLRRK2 ND Locomotor activity:  
no changes
Life span ↓

Dendritic ends ↓

hG2019S TH neurons ↓ Locomotor activity ↓↓
Life span ↓↓

Dendritic ends ↓↓
Axon degeneration ↑

hR1441C ND Locomotor activity ↓ Dendritic ends ↓

hG2385R Life span ↓

(34) hLRRK2 ND ND Visual function: no changes

hG2019S ND ND Visual function ↓

hI1122V
hR1441C
hY1383C
hI1915T
hI2020T
hG2385R
hG2019/K
1906M

ND ND Visual function: no changes

(Continued )
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Genetic 
manipulations

References LRRK2 variants Neurodegeneration Motor activities/life span Other functions

(35) hLRRK2
hG2019S

ND Locomotor activity: no changes Axon transport: no changes

hR1441C
hY1699C

ND Locomotor activity ↓ Axon transport ↓

dR1069C
dY1383C

ND Locomotor activity ↓ Axon transport ↓

(36) hG2019S
hI2020T

ND Bradykinesia, akinesia, hypokinesia,  
and increased tremor

Proboscis extension response ↓

hR1441C
hG2019/K  
1906M

ND No changes No changes

ND, not determined; O/E, overexpression; ↑, increased; ↓, decreased.

TAbLe 1 | Continued
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LRRK2 dominant nature (1) (Table  1). Indeed, in contrast to 
dLRRK loss-of-function mutant, overexpression of either human 
LRRK2 (hLRRK2) or dLRRK pathogenic mutations in flies 
leads to an age-dependent DA neuronal loss and DA-responsive 
locomotor deficits (28, 30–33, 36, 37). Notably, different LRRK2 
mutations cause different phenotypes of the degeneration. One 
study demonstrated that dopaminergic expression of LRRK2 
G2019S led to non-autonomous neurodegeneration in visual 
system (34). This degeneration is specific to G2019S mutation 
and dependent on kinase activity. Another report showed that 
GTPase-COR domain mutations R1441C or Y1699C, but not 
G2019S, preferentially inhibits axonal transport in Drosophila 
and causes locomotor deficits (35). This suggests that the defects 
depend on LRRK2 GTPase activity (35). Recently, Cording et al. 
reported that expressing either the G2019S or I2020T but not 
R1441C, or kinase dead LRRK2 in DA neurons reduces proboscis 
extension response, with bradykinesia, akinesia, and tremor (36). 
These studies support the possibility that different LRRK2 patho-
genic mutations act at distinct pathways and cause disease via 
distinct pathogenic mechanisms. The LRRK2 transgenic fly mod-
els support the gain-of-function of LRRK2 in PD pathogenesis.

LRRK2 Drosophila Models Reveal  
LRRK2 Functions in PD
LRRK2 Functions in Vesicular Trafficking
Vesicular trafficking has been implicated to play crucial roles 
in neurodegeneration (38). LRRK2 Drosophila models have 
provided extensive evidence of potential roles for LRRK2 in vari-
ous vesicle trafficking processes including endocytosis, ER-Golgi 
and retromer trafficking, and autophagy–lysosomal pathways 
(39). dLRRK was reported to localize to the membranes of late 
endosomes and lysosomes, physically and functionally interacts 
with Rab7, a key mediator of late endosomal transport and 
lysosome biogenesis (40). Nonsense alleles in dLRRK induced by 
ethyl methanesulfonate  causes striking defects in the autophagy–
lysosomal pathways (41). Furthermore, LRRK2 has been shown 
to interact with clathrin-light chains to limit Rac1 activation on 
endosomes (42). Importantly, studies in Drosophila show that 
LRRK2 phosphorylates endophilin A (EndoA), a central compo-
nent of synaptic endocytosis, and synaptojanin 1 (SJ1), a synaptic 

vesicle protein which was recently linked to recessive PD (37, 
43–45). LRRK2 regulates EndoA and SJ1 by phosphorylation at 
synapses, which facilitates synaptic endocytosis through clathrin 
uncoating at the synaptic terminals. In addition, LRRK2’s role 
in retromer and ER–Golgi trafficking was highlighted by genetic 
interactions between LRRK2 and VPS35, Rab7L1, ArfGAP1 in 
Drosophila (46–49). Moreover, dLRRK has been demonstrated 
to regulate axonal transport and Golgi outpost dynamics in 
dendrites through the golgin Lava lamp (35, 50). Taken together, 
these studies strongly support the roles of LRRK2 in vesicular 
trafficking processes, which may provide potential mechanisms 
for α-Syn accumulation in LRRK2-associated PD.

LRRK2 Functions in Protein Translation Machinery
The first evidence of LRRK2 function in protein translation was 
demonstrated in Drosophila (28). In this study, both dLRRK 
and human LRRK2 can phosphorylate eukaryotic initiation 
factor 4E-binding protein (4E-BP), a negative regulator of 
eukaryotic initiation factor 4E-mediated protein translation and 
a key mediator downstream of mTOR signaling to various stress 
responses (28). The notion that LRRK2 functions in protein 
translation was further strengthened by the study from the same 
group that LRRK2 interacts with the microRNA pathway to 
regulate protein synthesis (51). However, these studies were done 
in Drosophila system and need to be extended to mammalian 
systems. Subsequently, Martin and colleagues, using LRRK2 
Drosophila model and human DA neurons, demonstrated that 
LRRK2 phosphorylates ribosome protein s15 to regulate protein 
translation and mediate LRRK2-induced neurodegeneration 
(52). Recently, Penney et al. showed that LRRK2 targets Furin1 to 
promote cap-dependent translation, which is required for LRRK2 
synaptic function (53). Taken together, these findings support 
convergent evidence that LRRK2 regulates protein translation 
machinery directly or indirectly, which could be a potential 
therapeutic avenue for LRRK2-associated PD.

LRRK2 Functions in Dendritic Degeneration  
and Synaptic Dysfunction
Mutant LRRK2 functions in dendritic degeneration were 
first revealed by the evidence that LRRK2 G2019S induces 
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mislocalization of the axonal protein tau in dendrites and in 
turn causes dendrite degeneration (33). This may act through 
tau phosphorylation by the glycogen synthase kinase 3β, which is 
promoted by LRRK2 G2019S (33). In addition, LRRK2 regulates 
synaptic morphology through phosphorylation of Futsch at the 
presynaptic compartments and interaction with 4E-BP at the 
postsynaptic site of the Drosophila neuromuscular junctions 
(NMJs) (54). Furthermore, a recent finding indicates that loss 
of dLRRK disrupts the retrograde synaptic compensation while 
overexpression of either dLRRK or hLRRK2 can induce a retro-
grade enhancement of presynaptic release (53). This regulation 
of synaptic homeostasis might act through a mechanism that 
LRRK2 promotes cap-dependent translation (53). These studies 
suggest that LRRK2 might regulate synaptic function in neural 
circuits.

LRRK2 Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
The genetic LRRK2 Drosophila models provide promising 
in vivo platforms for inhibitor identification and validation, and 
drug development. It has shown that sorafenib, curcumin, or 
GW5074 significantly suppressed LRRK2 PD-like phenotypes 
in Drosophila (55, 56). Melatonin attenuates hLRRK2-induced 
synaptic dysfunction and sleep disorders (57). Although candi-
date compounds have been used in these studies, they open the 
possibility of performing compound screens. Recently, Lin et al. 
identified compounds from the FDA-approved licensed drug 
library that could rescue LRRK2-induced neurite degeneration, 
motor disability, and DA neuron loss (58). Of 640 compounds, 
lovastatin had the highest lipophilicity, which facilitates crossing 
the blood–brain barrier (58). These studies provide significant 
steps toward the development of new drugs for treatment of 
LRRK2-associated PD.

MODeLiNG α-Syn-ASSOCiATeD  
PD iN Drosophila

The discovery of the first missense mutation A53T in the SNCA 
gene in 1997 (59) and the insoluble aggregated α-Syn forms as 
the major component of LBs, a pathological hallmark of PD 
(60), heralded a new era in PD research. Since then, more SNCA 
pathogenic mutations as well as multiplications of SNCA have 
been identified as genetic causes of PD [review in Ref (61).]. 
In addition, multiple genome-wide association studies have 
identified SNCA as a risk factor for sporadic PD (62, 63). These 
findings revealed a central role of SNCA in PD. SNCA encodes 
α-Syn protein, a small protein with 140 amino acid residues.  
It is highly soluble and enriched at presynaptic terminals, where 
it binds lipids and regulates synaptic vesicle release and it has 
a propensity of self-aggregate to form oligomeric species and 
LB-like fibrils (64, 65). Multiple evidence suggest that oligomeric 
species of α-Syn, which are precursors for higher-order fibrillar 
aggregates in LBs, are pathogenically toxic and the culprits for 
neuronal degeneration (66). Recently, prion-like behavior of  
α-Syn has attracted a lot of attention and been debated in playing 

an important role in the pathogenesis of PD (67, 68). Although 
Drosophila have no homolog of SNCA, pathogenic mutations  
and multiplication of SNCA causing PD with dominant inherit-
ance pattern implicates a toxic gain-of-function mechanism, 
which led to suitable transgenic modeling in fly by overexpressing 
wild-type or mutant α-Syn (69) (Table 2).

α-Syn Transgenic Drosophila Models
Feany and Bender first developed α-Syn transgenic Drosophila 
models by overexpressing either wild-type or familial mutants 
A53T and A30P of human α-Syn using the conventional Gal4/
USA expression system (70). These models recapitulate the essen-
tial features of PD: adult-onset loss of DA neurons, filamentous 
intraneuronal inclusions containing α-Syn and locomotor dys-
function (70). In an independent study, Auluck et al. confirmed 
the phenotypes reported by Feany and Bender (71). In addition to 
these phenotypes, Chen et al. demonstrated olfactory deficits and 
elevated anxiety in a α-Syn transgenic Drosophila model expressing 
A30P (79, 80). There are deficits in two out of three olfactory 
modalities, odor discrimination and tested-olfactory acuity. A30P 
expression in dopamine neurons is necessary for both acuity and 
discrimination deficits. Gajula Balija et al. showed the non-motor 
symptoms such as an abnormal sleep-like behavior, locomotor 
deficits, and abnormal circadian periodicity when targeted 
expression of pre-fibrillar α-Syn mutants in a subset of seroton-
ergic and DA neurons (78). In 2017, the Feany group expended 
the scope of their previous α-Syn transgenic Drosophila models 
using a binary expression system, the Q system, which relies on 
the transcriptional activation by the Neurospora protein QF2 to 
activate transgene expression (81). This new α-Syn Drosophila 
model shows robust neurodegeneration, early-onset locomo-
tor deficits, and abundant α-Syn aggregation (81). Although 
there is some discrepancy over the strength of the phenotypes  
(73, 82), the α-Syn transgenic Drosophila models are widely used 
to delineate underlying pathogenic mechanisms and identify 
novel proteins mediating α-Syn toxicity.

α-Syn Drosophila Models Reveal α-Syn 
Functions in PD
α-Syn Aggregation and Misfolding  
in α-Syn-Induced Neurotoxicity
Accumulating evidence revealed α-Syn aggregation and mis-
folding plays a central role in the pathogenesis of PD and synu-
cleinopathies. Wild type or mutant α-Syn has been demonstrated 
to be aggregated as inclusions when overexpressing in flies  
(70, 71, 81). Structurally engineered α-Syn mutants with an 
increased oligomerization propensity increase neurotoxicity in 
Drosophila (76). Truncation of α-Syn contributes to aggregation 
and LB formation. Expression of α-Syn with a deletion of NAC 
domain (α-Syn Δ71–82) did not show evidence of α-Syn aggre-
gation and any DA neurodegeneration, suggesting the essential 
role of NAC domain of α-Syn in aggregation and toxicity (75). 
By contrast, a C-terminal truncated α-Syn has ability to promote 
aggregation and enhance neurotoxicity (75). Interestingly, 
calpain-cleaved α-Syn fragments with similar molecular weight 
to truncated α-Syn have been identified in the PD/DLB patient 
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TAbLe 2 | Transgenic Drosophila models of αSynassociated Parkinson’s disease.

Transgenic 
systems

References α-Syn variants Neurodegeneration Motor/non-motor  
activities and life span

Cellular  
functions

(70) αSynWT
A30P
A53T

Tyrosine hydroxylase (TH)  
neurons ↓
Retinal degeneration ↑

Locomotor activity ↓ Filamentous intraneuronal inclusions 
containing αSyn

(71) αSynWT
A30P
A53T

TH neurons ↓ ND Lewy body and LNlike inclusions, 
Hsp70 protected against αSyn–induced 
dopaminergic neuronal degeneration

(72) αSynWT ND ND Phosphorylation of αSyn at S129 ↑

A30P Phosphorylation of αSyn at S129 ↑↑ 

A53T Phosphorylation of αSyn at S129 ↑↑↑

(73) αSynWT
A30P
A53T

TH neurons: no changes
No retinal degeneration

Locomotor activity:  
no changes

ND

(74) αSynW TH neurons ↓
Retinal degeneration ↑

ND ND

S129A TH neuron: no changes
No retinal degeneration

S129D TH neurons ↓↓
Retinal degeneration ↑↑

Gal4/UAS system (75) αSynWT TH neurons ↓ ND αSyn aggregation ↑

αSynΔ71–82aa TH neurons: no changes No αSyn aggregation 

Syn 1–120aa TH neurons ↓↓ αSyn aggregation ↑↑

(76) αSynWT TH neurons: no changes Locomotor activity: no changes Soluble oligomers of αSyn in vitro

A30P
A53T
A56P

TH neurons ↓ Locomotor activity ↓ Soluble oligomers of αSyn in vitro ↑

A30P/A56P/A76P (TP) TH neurons ↓↓ Locomotor activity ↓↓ Soluble oligomers of αSyn in vitro ↑↑

(77) αSynWT TH neurons ↓
Retinal degeneration ↑

ND Soluble oligomers of αSyn ↑

Y125F/Y133F/ 
Y136 F (YF)

TH neurons ↓↓
Retinal degeneration ↑↑

Soluble oligomers of αSyn ↑↑

S129D TH neurons ↓↓
Retinal degeneration ↑↑

Soluble oligomers of αSyn ↑↑

(78) αSynWT ND Sleep behavior normal
Circadian locomotor  
activity defects ↑

ND

A53T Sleep behavior abnormal ↑ 
Circadian locomotor activity  
defects ↑

A30P/A56P/ 
A76P (TP)

ND Sleep behavior abnormal ↑↑
Circadian locomotor activity  
defects ↑↑

ND

(79) A30P ND Olfactory deficits ND

(80) A30P TH neurons ↓ Locomotor activity ↓ Anxiety ↑ ND

Q system (81) αSynWT TH neurons ↓↓ Locomotor activity ↓↓ αSyn aggregation ↑↑

ND, not determined; ↑, increased; ↓, decreased.
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brains and α-Syn-expressing flies (83). This suggests the physi-
ological and pathological importance of the truncated α-Syn.

Protein quality control systems including molecular chaper-
ones and protein degradation function as a defense mechanism 
against protein misfolding and aggregation. Identification of 

suppressors in these systems further supports a critical role 
of toxic oligomers and aggregation in α-Syn-induced neu-
rotoxicity. Histone deacetylase 6 suppresses α-Syn-induced 
DA neurodegeneration and promotes the formation of α-Syn 
inclusions by reducing α-Syn oligomers (84). Auluck et  al. 
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demonstrated that increasing the level of chaperone Hsp70 
ameliorated the toxicity of α-Syn to DA neurons while a 
reduc tion in chaperone activity enhanced α-Syn-induced DA 
neuronal loss in Drosophila system (71). In addition, decreased 
level of the mitochondrial chaperone protein tumor necrosis 
factor receptor associated protein-1 enhanced A53T-α-Syn-
induced age-dependent DA neuron loss in fly (85). Molecular 
chaperones assist proper protein folding and thus protect 
against α-Syn misfolding and aggregation. If proteins have been 
misfolded and aggregated, they are cleared by degradation. 
The ubiquitin-protease system and the autophagy-lysosome 
systems are two major protein degradation systems. Using 
Drosophila and cell culture systems, Lee et al. demonstrated 
that co-expression of ubiquitin can rescue α-Syn-induced 
neurotoxicity. This neuroprotection is dependent on the 
formation of lysine 48 polyubiquitin linkage, which is known  
to target protein degradation (86). This observation is further 
strengthened by evidence that overexpression of the ubiq-
uitin ligase Nedd4 can rescue α-Syn-induced degenerative 
phenotype in fly (87). Furthermore, the deubiquitinase Usp8 
interacted and partly colocalized with α-Syn, and deubiqui-
tinated K63-linked chains on α-Syn. Knockdown of Usp8 in 
fly reduced α-Syn levels and α-Syn-induced toxicity (88). In 
addition, Cullen et al. showed that the defect of cathepsin D, 
a major lysosomal aspartyl protease, enhanced α-Syn-induced 
neurodegeneration in vivo in Drosophila (89). Taken together, 
these results confirmed that protein quality control systems 
function as a protection mechanism against α-Syn aggrega-
tion and misfolding.

α-Syn Phosphorylation Controls Neurotoxicity 
Inclusion Formation
Phosphorylation of α-Syn plays a key role in the PD patho-
genesis. Phosphorylation at Ser129 is the one extensively 
phosphorylated in brain tissues from PD patients and related 
disorders, suggesting a role for Ser129 phosphorylation in 
disease pathogenesis (90, 91). In transgenic flies, it has been 
demonstrated that human α-Syn is phosphorylated at Ser129, 
and phosphorylation increases with age as DA neurons degener-
ate, mimicking the pathogenic phenomena in PD patient (72). 
Later on, Chen and Feany generated transgenic flies carrying 
the mutations at S129 of α-Syn (S129A to block phosphoryla-
tion and S129D to mimic phosphorylation) (74). Using these 
transgenic lines, they demonstrated phosphorylation of S129 
is critical for α-Syn-induced DA neuron degeneration, and 
blocking S129 phosphorylation increases inclusion formation 
(74). As increased number of inclusion bodies correlates with 
reduced toxicity, this study suggested inclusion bodies might 
have protective function. Recently, the Feany group reported 
that tyrosine and serine phosphorylation of α-Syn have oppos-
ing effects: levels of soluble oligomeric species of α-Syn were 
increased by serine 129 phosphorylation and decreased by 
tyrosine 125 phosphorylation, suggesting detrimental effects 
of S129 phosphorylation and a neuroprotective action of T125 
phosphorylation (77). These studies reveal that phosphorylation 
of α-Syn plays an important role in α-Syn-induced inclusion 
body formation and DA neurodegeneration.

α-Syn Functions in Vesicular Trafficking
The first evidence of α-Syn functions in trafficking in animal 
models has been reported by Cooper et al. using a combination 
of a genetic screening in yeast and validation in α-Syn transgenic 
Drosophila models (92). In this study, Rab1 rescues the neuron loss in 
the flies (92). Recently, using Drosophila models of α-Syn toxicity, 
several reports have implicated α-Syn functions in vesicular traf-
ficking particularly through the small GTPase Rab proteins. The 
endosomal recycling factor Rab11 was demonstrated to modulate 
synaptic vesicle size, decrease α-Syn aggregation and ameliorate 
several α-Syn-dependent phenotypes (93). Rab7, regulating 
trafficking of late endosomes and autophagosomes, and Rab8, 
modulating post-Golgi vesicle trafficking, rescue the locomotor 
deficit in α-Syn flies (94, 95). Notably, other PD genes such as 
LRRK2 and PINK1 have also recently been linked to Rab proteins 
(48, 96–98). Thus, determination of the precise mechanisms of 
Rabs-mediated functions in PD pathogenesis is warranted.

α-Syn Functions in Mitochondrial Dysfunction  
and Oxidative Stress
Oxidative stress and mitochondrial dysfunction have been pro-
posed as important causative factors for the progression of PD. 
Botella et al. found that DA neurons are specifically sensitive to 
an environmental oxidative insult (hyperoxia) induced oxida-
tive stress. The mutant forms of α-Syn enhanced the toxicity 
under this stress in the Drosophila model (99). In addition, the 
co-expression of Cu/Zn superoxide dismutase protects against 
mutant α-Syn-induced DA neuronal loss (99). The same group 
also demonstrated that dopamine, which produces reactive oxy-
gen species, might be involved in the α-Syn-induced neurotoxic-
ity through oxidative stress (100). Furthermore, α-Syn-induced 
neuronal death in Drosophila is enhanced by the mutants that 
promote glutathione synthesis and conjugation (101). Natural 
antioxidants attenuate locomotor deficits of α-Syn transgenic 
flies (102). GPI, an enzyme in glucose metabolism, acts as neu-
roprotection from α-Syn proteotoxicity in flies (103). Recently, 
Feany group provided evidence that the interaction of α-Syn with 
spectrin initiates pathological alteration of the actin cytoskeleton 
and downstream neurotoxicity, and consequent mitochondrial 
dysfunction through altered Drp1 localization (81). These results 
suggest that oxidative stress and mitochondrial dysfunction are 
features of α-Syn toxicity.

α-Syn Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
Based on the functions and mechanisms revealed by α-Syn 
Drosophila models, several pharmacological interventions 
have been developed in Drosophila to ameliorate α-Syn 
toxicity. Geldamamycin, an Hsp90 inhibitor and chaperone 
inductor, was able to protect α-Syn-expressing neurons in 
Drosophila (104). Nicotinamide, the principal form of 
niacin (vitamin B3), has been demonstrated to improve 
the motor dysfunction in α-Syn transgenic flies through 
improvement of oxidative mitochondrial dysfunction (105). 
The dopamine agonists pergolide, bromocriptine, and 
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TAbLe 3 | Drosophila models of glucocerebrosidase (GBA)associated Parkinson’s disease.

Genetic 
manipulations

References GbA variants Neurodegeneration Motor activities/ 
life span

Cellular  
functions

Knockout/
knockdown

(118) dGBA1a−/− ND Locomotor activity:  
no changes
Life span ↑

ND

dGBA1b−/−

dGBA1a,b−/−

Tyrosine hydroxylase (TH) 
neurons ↓

Locomotor activity ↓↓
Life span ↓↓

Changes in lipid metabolism,  
accumulation of substrate GlcCer,  
deficits in lysosomal–autophagy pathway, 
and abnormality of mitochondria

(119) dGBA1a,b−/−(ΔTT) TH neurons: no changes
Other neurodegeneration

Locomotor activity ↓
Life span ↓
Memory deficits

Ubiquitinated proteins ↑
αSyn aggregates ↑
αSyn expression does not  
enhance the phenotypes

(120, 121) dGBA1a,b−/− TH neurons ↓ Life span ↓ GCase activity ↓

(122) dGBA1aRNAi TH neurons ↓
Retinal degeneration

Locomotor activity ↓ Proteinase Kresistant αSyn accumulation 
when crossed with αSyn flies

Transgenic (120, 121) hGBAWT No changes No changes No changes

hN370S
hL444P

TH level ↓ Locomotor activity ↓
Life span ↓

GCase activity ↓
ER stress ↑

(123) hGBAWT ND ND Neurodevelopment in fly eyes: no changes
ER stress: no changes

hR120W Neurodevelopment in fly eyes: no changes
ER stress ↓

HRecNcil 
(L444P + A456V + V460V)

Neurodevelopmental defects in fly eyes ↑
ER stress ↓

(124) hGBAWT TH neurons: no changes Locomotor activity:  
no changes

ER stress ↑

hN370S
hL444P

TH neurons ↓ Locomotor activity ↓ GCase activity ↓ compared  
with WT
ER stress ↑

ND, not determined; ↑, increased; ↓, decreased.
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2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine 
(SK&F 38393), D-519, and D-520 were substantially effective 
on improvement of locomotor function of α-Syn flies (106, 
107). Atropine, the prototypical muscarinic cholinergic recep-
tor antagonist, was effective (106). A potent dopamine D2/D3 
receptor agonist D-607 exhibited significant neuroprotection 
in a Drosophila model of synucleinopathy (108). In addition, 
HDAC inhibitors such as sodium butyrate or SAHA, and SIRT2 
inhibitors have been identified to protect against α-Syn-induced 
neurotoxicity in flies (109, 110). Taken together, these studies 
suggest that protein quality control systems, oxidative stress, 
mitochondrial function, and DA biosynthesis pathways are 
potential targets for developing therapeutic agents for α-Syn 
toxicity.

MODeLiNG GbA-ASSOCiATeD PD  
iN Drosophila

Heterozygous mutations in glucocerebrosidase (GCase, encoded 
by GBA1 gene) are recently emerging to be the most common 
known genetic risk factor for PD (111). GCase is a lysosomal 
protein and homozygous mutations cause Gaucher’s disease, 

a lysosomal storage disorder (112). As a lysosomal enzyme, 
GCase is synthesized in the endoplasmic reticulum (ER).  
At ER, it undergoes N-linked glycosylation on four asparagines. 
After correctly folded, it processes to the Golgi for further 
modifications on its N-linked glycans, and finally it traffics to 
the lysosomes (113). GCase cleaves the β-glucosyl linkage of 
glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). 
Mutations in GBA cause accumulation of lipid substrates 
of GCase such as GlcCer and GlcSph (114). Recent reports 
demonstrated that mutations in GBA not only contribute to the 
occurrence of PD but also lead to more significant and rapid 
cognitive decline in PD (115). Most disease causing mutations 
of GBA are thought to be dominant-negative mutations that 
lead to the GBA deficiency, compromised GlcCer metabolism 
and the subsequent failure of lysosomal mediated degradation 
of GBA substrates and α-Syn. A severe heterozygous mutation 
L444P and a mild heterozygous mutation N370S are the most 
common mutations of GBA in PD. Mutations L444P and N370S 
cause ER stress, decreased lysosomal GCase, and accumulation 
of α-Syn aggregates (116, 117). Drosophila as one of the major 
model systems so far for studying GBA-associated PD has 
revealed significant insights (Table 3).
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GbA Drosophila Models
GBA Knockout/Knockdown Drosophila Models
Drosophila has two homologs of the human GBA1 gene, CG31148 
and CG31414, which are referred to dGBA1a and dGBA1b, 
respectively, and shares 32% amino acid identity. These two genes 
are found on the same chromosome with the CG31413 gene in 
between and show differential tissue expression. dGBA1b is 
expressed in the adult brain at low levels as well as in the adult fat 
body, whereas dGBA1a is predominantly expressed in the adult fly 
gut but not in the adult brain (FlyAtlas) (125). As GBA mutations 
in PD show a dominant-negative function, the loss-of-function 
of GBA was investigated in Drosophila by either knockdown or 
knockout dGBA1.

Kinghorn et  al. generated dGBA1a, dGBA1b single knock-
outs (dGBA1a−/−, dGBA1b−/−) or dGBA1a/b double knockouts 
(dGBA1a,b−/−) using ends-out homologous recombination (118). 
dGBA1b−/− and dGBA1a,b−/− showed a significantly decreased 
survival and age-dependent locomotor deficits compared with 
control flies while dGBA1a−/− showed opposite phenotype with 
increased survival and without significant effect on climbing 
ability over time. As dGBA1b is expressed in the adult brain, 
the study was focusing on dGBA1b−/− and dGBA1a,b−/−, both 
of which showed similar phenotypes (118). Knockout of dGBA 
resulted in changes in lipid metabolism, accumulation of substrate 
GlcCer, deficits in lysosomal–autophagy pathway, neurodegen-
eration, and abnormality of mitochondria. Importantly, mTOR 
inhibitor rapamycin partially ameliorated the lifespan, locomo-
tor, and starvation phenotypes in dGBA deficient flies (118). 
Another group used publicly available transposon insertions in 
dGBA1a and dGBA1b to create deletion of dGBA1 (GBA1ΔTT) 
(119). Using this approach, they removed the majority (first 
433aa) of dGBA1b, small potion (33 codons) of c-terminal of 
dGBA1a, and the whole CG31413 gene in between. Consistent 
with the study by Kinghorn et al. GBA1ΔTT homozygotes exhibit 
shortened lifespan, behavioral phenotypes, memory deficits and 
neurodegeneration but no DA neuronal loss (119). GBA1ΔTT 
homozygotes increased accumulation of ubiquitinated proteins 
and α-Syn aggregates. However, α-Syn expression does not 
enhance GBA1ΔTT fly phenotypes (119). In addition to these 
two knockout dGBA1 fly lines, Maor et al. took advantage of two 
other fly lines, each of which has a minos insertion in dGBA1a 
and dGBA1b, respectively, to cause premature termination 
of dGBA1a and dGBA1b. By crossing these two lines, double 
heterozygous flies have been generated. This fly model exhibited 
about 30% decrease in GCase activity and has decreased TH 
immunoreactivity, shortened lifespan, and an age-dependent 
DA neurodegeneration (120, 121). Besides the knockouts of 
dGBA1, Suzuki et al. used transgenic RNAi flies to knock down 
dGBA1a and dGBA1b (122). dGBA1a-RNAi flies exhibited a 
bout 80–90% decrease in GCase activity while dGBA1b-RNAi 
flies only showed about 20% decrease. Thus, the study focused on 
dGBA1a-RNAi flies, which exacerbated the locomotor dysfunc-
tion, loss of DA neurons, retinal degeneration, and accumulation 
of proteinase K-resistant α-Syn in α-Syn-expressing flies (122).

Both knockdown and knockout of dGBA1 in fly have been 
consistently shown shortened lifespan, behavioral phenotypes 
and accumulation of α-Syn aggregates, despite of different 

phenotypes in DA neurodegeneration. These GBA fly models 
provide useful platforms for further study of GBA function in PD.

GBA Transgenic Drosophila Models
Heterozygous mutations L444P and N370S are the most com-
mon and thought to be dominant-negative mutations of GBA in 
PD. To investigate GBA functions in PD, transgenic Drosophila 
expressing human WT, N370S and L444P were generated  
(120, 121, 124). N370S and L444P transgenic flies exhibited 
significant decreased GCase activity by 82 and 75%, respectively, 
compared with GBA WT transgenic flies despite equivalent 
expression levels of GBA protein (124). N370S and L444P trans-
genic flies consistently showed shortened life span, a progressive 
climbing defect, increased level of ER stress and DA neurodegen-
eration (121, 123, 124). This suggests that those transgenic flies 
can recapitulate some PD signs.

GbA Drosophila Models Reveal  
GbA Functions in PD
Two major functions of GBA have been implicated in GBA 
Drosophila models. One is the function in ER stress and 
unfolded protein response (UPR) in the ER. Mutant GCase are 
recognized as misfolded proteins and undergo various degrees 
of ER associated degradation. The accumulation of midfolded 
molecules in the ER activate signaling events known as UPR 
(120). Immunostaining in GBA transgenic flies revealed that a 
significant amount of GCase colocalized with ER and N370S 
and L444P caused abnormal aggregates and swelling within 
the ER (124). To measure UPR activation, an ER stress reporter 
transgene Xbp1 was used. N370S and L444P GBA mutations 
induced significant higher Xbp1 level compared to WT GBA 
flies, suggesting of an increased level of ER stress (120, 124). 
Another function revealed by GBA fly models is in lysosomal-
autophagic pathway. Using LysoTracker and LC3 as markers 
to monitor lysosomal and autophagic pathology, Kinghorn 
et al. demonstrated that enlarged and abnormal lysosomes and 
accumulated Atg8, the fly LC3 homolog, were present in dGBA 
knockout fly brains (118). The probable downstream effects of 
lysosomal-autophagic dysfunction could be the accumulation 
of p62, a marker for lysosomal-autophagic degradation, and 
polyubiquitinated proteins (118). While these studies provide 
significant phenotyping investigation on GBA functions, the 
detailed molecular mechanisms are still largely unknown. 
Using these GBA Drosophila models, further dissection of the 
molecules involved in these pathways is warranted.

GbA Drosophila Models as Platforms  
to identify Potential Therapeutic 
Compounds
The clear evidence showed that mutant GCase causes increased 
ER stress and activated UPR in fly, therefore removal of mutant 
misfolded GCase by pharmacological chaperones from the ER 
should at least partially rescue the phenotype. Two chaperones, 
ambroxol and isofagomine, were previously used to increase 
amount and lysosomal activity of mutant GCase (126–129). 
Indeed, ambroxol and isofagomine reduced ER stress, and 
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TAbLe 4 | Drosophila models of vacuolar protein sorting 35 (VPS35)associated Parkinson’s disease.

Genetic 
manipulations

References vPS35 variants Neurodegeneration Motor activities/ 
life span

Cellular  
functions

Knockdown (135) dVPS35 siRNA in 
αSyn transgenic fly

ND Locomotor activity ↓ Accumulation of the detergentinsoluble αSyn,  
cathepsin D activity
↓ Mild eye disorganization

Knockout (46) dVPS35−/− Tyrosine hydroxylase (TH) 
neurons: no changes

ND Defects on synaptic vesicle recycling, dopaminergic  
synaptic release and sleep behavior associated with 
dopaminergic activity; genetic interaction with  
leucinerich repeat kinase 2 and Rab5, Rab

(136) dVPS35−/− ND Locomotor activity ↓ Synaptic overgrowth ↓

Transgenic (137) hVPS35WT
hL774M

TH neurons: no changes No changes Sensitive to rotenone: no changes

hD620N
hP316S

TH neurons ↓ Locomotor activity ↓
Life span ↓

Sensitive to rotenone ↑

(136) dVPS35WT
dD650N
dR550W
dL800M
hVPS35WT
hD620N
hR524W
hL774M

No retinal degeneration Locomotor activity: 
no changes
Life span: no changes

D620N mutation confers a partial loss of  
function; VPS35 genetically interacts with Parkin

ND, not determined; ↑, increased; ↓, decreased.
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reversed locomotor deficits in GBA mutant flies in vivo (121, 124). 
This suggests that removal of mutant misfolded GCase from the 
ER may alleviate PD symptoms. Small chaperones can cross the 
blood–brain barrier, bind to GCase and stabilize proper folding 
and ensure delivery to lysosomes. Thus, small chaperones may be 
applicable for GBA-associated PD.

MODeLiNG vPS35-ASSOCiATeD  
PD iN Drosophila

Mutations in the VPS35 gene encoding a core subunit of a het-
eropentameric complex referred to the retromer have recently 
emerged as a new cause of late-onset, autosomal dominant familial 
PD (7, 8). The mutation, D620N, has so far been unambiguously 
identified to cause PD. The VPS35 protein functions as a core 
component of the retromer, a protein complex that associates with 
the endosome to facilitate recycling of transmembrane protein 
cargoes from both endosome-to-Golgi and endosome-to-plasma 
membrane transport (130). The retromer is a highly conserved 
multi-protein complex, the core of which consists of the subunits 
VPS35, VPS29, and VPS26. The only identifiable VPS35 homolog 
in Drosophila is encoded by CG5625.

vPS35 Drosophila Models
VPS35 Knockout/Knockdown Drosophila Models
Two lines of null mutation in VPS35 were generated by either 
imprecise excision of a P-element inserted at the 5′ end of CG5625 
(P[EPgy2]CG5625EY14200), or by a deletion of nearly 2 kb, which 
removes the first three exons including the translation start site 
(VPS35MH20) (Table 4). Both mutants die at late larval or pupal 

stages, indicating the essential function of VPS35. VPS35-null 
mutants and RNAi lines (the Vienna Drosophila RNAi Center) 
were consistently demonstrated to reduce Wingless secretion 
but not Hedgehog signaling by reducing the recycle of Wntless 
from endosomes to the trans-Golgi network (131–133). Loss of 
VPS35 inhibits scavenger receptor ligand endocytosis, causes 
signaling defects at the NMJ, and leads to over proliferation of 
blood cells in larvae, which suggests VPS35 has tumor suppres-
sor properties (134). Mechanistically, the endocytic and signal-
ing defects of VPS35 mutants maybe due to VPS35 negatively 
regulation of actin polymerization (134). As these studies were 
at early stages before mutations of VPS35 has been identi-
fied to associate with PD, the PD pathological phenotypes in 
VPS35 knockout or knockdown mutants were not investigated.  
In recent studies, knockdown of VPS35 in Drosophila induced the 
accumulation of the detergent-insoluble α-Syn in the brain and 
exacerbated locomotor deficits, compound eye disorganization, 
and interommatidial bristle loss in α-Syn transgenic flies (135). 
These findings indicate that the retromer may play a crucial role 
in α-Syn degradation. The loss of Drosophila VPS35 (dVPS35) 
affects synaptic vesicle recycling, DA synaptic release and sleep 
behavior (46). The manipulation of Drosophila LRRK2 dLRRK 
together with Rab5 and Rab11 improves the VPS35 synaptic 
phenotypes (46). Taken together, VPS35 knockout/knockdown 
Drosophila models mimic some pathogenesis of PD, indicating 
that these fly models could be useful platforms to study VPS35-
associated PD.

VPS35 Transgenic Drosophila Models
Vacuolar protein sorting 35-linked PD is inherited as a domi-
nant trait, which may imply that the mutation of VPS35 has a 
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gain-of-function toxicity (Table  4). One study demonstrated 
that VPS35 D620N transgenic flies led to late-onset loss of DA 
neurons, locomotor deficits, shortened lifespans, and increa-
sed sensitivity to a PD-linked environmental toxin, rotenone 
(137). However, Malik and colleagues did not find evidence of 
dominant toxicity from any variants including the pathogenic 
D620N mutation, even with aging. By a definitive test to deter-
mine whether transgene expression can rescue endogenous 
VPS35 mutant phenotypes, they concluded that the D620N 
mutation confers a partial loss of function (136). This notion is 
further supported by other studies in fly or mouse systems that  
VPS35 DN mutation acts as a dominant-negative function  
(47, 48, 138, 139).

vPS35 Drosophila Models Reveal vPS35 
Functions in PD
To date, VPS35 Drosophila models have revealed three major 
functions of VPS35 in trafficking pathways in neuronal system. 
First, VPS35 regulates synaptic vesicle endocytosis through the 
endosomal pathway. Loss of VPS35 increases the number of 
synaptic boutons of the NMJ in larval motor neurons (46, 134). 
It has been demonstrated that VPS35 cooperates with LRRK2 
to regulate synaptogenesis, synaptic dynamics and endocytosis, 
and synaptic vesicles regeneration through the Rab-mediated 
endocytic pathway (46). Importantly, it in turn regulates DA 
activity and survival, a key element of PD etiology (46). Second, 
VPS35 mediates endolysosomal and Golgi apparatus sorting. 
Wild-type VPS35, but not a familial PD-associated mutant form, 
can rescue LRRK2 led to endolysosomal and Golgi apparatus 
sorting defects (48). In addition, it has been reported by several 
groups that VPS35 functions in endosome-to-Golgi retrieval are 
required for Wingless secretion (131–133). However, whether 
this function is related to DA neurodegeneration is unknown. 
Third, VPS35 functions in lysosomal degradation pathway. 
VPS35 dysfunction impairs the maturation of a lysosome 
protease cathepsin D in regulating the proteolytic pathway that 
is important for α-Syn metabolism, and in turn exacerbates 
neurotoxicity and causes eye degeneration and motor disability 
(135). These findings indicate that VPS35 may play a crucial 
role in α-Syn degradation and might thereby contribute to the 
pathogenesis of the disease. While it remains unclear if these 
functions are causally for DA neurodegeneration caused by 
VPS35 PD mutant, these studies have provided important 
insights into cellular pathways that are perturbed by VPS35 
mutations in neurons.

CONveRGeNT MeCHANiSMS

Dissecting genetic interaction among PD genes will be crucial to 
establish convergent functional pathways of these genes or risk 
factors. Drosophila as a classic genetic model provides power-
ful tools to study genetic interactions between different genes. 
Genetic dissection revealed that LRRK2 interacts with other 
PD genes or risk factors such as Parkin, DJ-1, PINK1, VPS35, 
and RAB7L (31, 46–48) and implicated several potential func-
tions. Genetic interaction between LRRK2 and VPS35 or Rab7L 

indicates LRRK2 function in retromer and lysosomal pathways 
(46–48). Genetic interaction between LRRK2 and Parkin or 
PINK1 indicates LRRK2 function in mitochondria dysfunction 
and also suggests that dominant PD genes may act via common 
pathways with the recessive PD genes (31). Furthermore, VPS35 
genetically interacts with Parkin but interestingly not with 
PINK1(136). Notably, α-Syn, LRRK2, and PINK1 have recently 
been linked to Rab proteins (48, 92–98), and the manipulation 
of Drosophila LRRK2 dLRRK together with Rab5 and Rab11 
improves the VPS35 synaptic phenotypes (46). All the studies 
are convergent to implicate an important emerging role for 
defects in trafficking pathways. The accumulation of altered 
proteins including α-Syn and damaged mitochondria ultimately 
might overwhelm the disposal mechanisms, in turn cause DA 
neurodegeneration.

CONCLUDiNG ReMARKS

While the rodent models generally attack more attention and 
efforts on studying human disorders because of their high con-
servation of basal ganglia circuit with human, modeling PD in 
rodents using genetics has been viewed as difficult (23, 140). The 
rodent models of PD could not fulfill all the key features of PD 
(140). The reason that the rodents are “imperfect” for modeling 
PD might be compensatory mechanisms in the rodents, and/
or incomplete penetrance of some PD gene mutations such as 
LRRK2 disease causing mutations in human, and/or the com-
bination effects of non-cell-autonomous and cell-autonomous 
processes (23, 140).

To this caveat, Drosophila models have provided significant 
contributions to our understanding of the mechanisms of PD 
pathogenesis in a comparatively short time frame and cost 
effective mode. Overexpression of PD dominant traits (LRRK2 
and α-Syn) or knockout of dominant-negative genes (GBA and 
VPS35) in fly has been consistently demonstrated to mimic the 
essential PD signs such as DA neurodegeneration and beha-
vioral deficits. Based on these fly models, genetic modifiers 
and small molecular compounds have been rapidly identified. 
Moreover, the combination roles of the genetic and environ-
mental factors such as oxidative stress have been explored 
in PD. The important functions of LRRK2 in trafficking and 
protein translation, the critical contribution of α-Syn aggrega-
tion and phosphorylation, were initially discovered in fly. The 
Drosophila models so far are one of the major model systems 
to study GBA function in PD. Thus, the use of Drosophila 
models opened tremendous opportunities to explore the basic 
function of disease causing genes and to model the disease 
pathogenesis.

However, Drosophila is a relatively simple model organism, far 
less complex brain circuit than humans. For example, Drosophila 
does not have α-Syn homolog and a true human LRRK2 homolog. 
α-Syn neuropathology in the form of LBs is the hallmark of PD 
pathogenesis. Whether α-Syn is required for developing PD mod-
els has been raised. In addition, Drosophila has limited cell death 
effectors. Some aspects of human diseases may not be evident in 
fly. Thus, validation of findings from Drosophila to mammalian 
systems, including rodent models, human postmortem tissue, 
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