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Abstract: Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice.
Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics
to meet the challenge of resistance. The most prevalent source of clinically relevant resistance
against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore,
a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the
antibiotics and solvent is of paramount importance in order to facilitate the design of more effective
and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to
modifying enzymes.
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1. Introduction

The continuous appearance of bacterial strains resistant to most antibiotics already known, along
with the scarce perspective of new bactericidal agents coming out in the near future, have placed
bacterial multi-drug resistance (MDR) among the most pressing issues for worldwide health [1–3].
Furthermore, the increasing number of hospital MDR infections has boosted the interest for new
aminoglycoside antibiotics for clinical use, and consequently research on this topic has drawn renewed
attention. Aminoglycosides are a group of natural antibiotics from Streptomyces that have been
used in clinical practice for more than 50 years [4]. Their potent bactericidal activity relies upon
binding specifically to the 16S rRNA of the 30S ribosomal subunit, thus interfering with protein
synthesis [5,6]. However, the first resistant bacterial strains began to appear in the 1960s due to
a high rate of dissemination via R-plasmids, transposons, and integrons [7,8]. In an attempt to
overcome this emerging resistance to natural antibiotics, the first semi-synthetic aminoglycosides,
such as amikacin, dibekacin, isepamicin, and netilmicin, were introduced during the 1970s [9,10].
The discovery of gentamicins, a newer family of aminoglycosides isolated from Micromonospora,
contributed to a come-back of this class of bactericidal agents in clinical practice [11]. These antibiotics
were very active against Pseudomonas aeruginosa, a tougher micro-organism less susceptible to the
original aminoglycosides, which unfortunately soon after developed resistance through the ANT(2′′)
enzyme [12,13]. Butirosine, another aminoglycoside discovered later, was able to avoid inactivation by
APH(3′) and ANT(2′′) enzymes [14]. There is a large number of aminoglycoside antibiotics, but the
resistance mechanisms developed by micro-organisms increase with the frequency of their use.
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2. Understanding the Modifying Enzymes

Tolerance towards antibiotics can be achieved through different mechanisms. However, the most
prevalent in the clinic is that due to enzymatic modification that renders aminoglycosides of
decreased affinity for their natural primary target, 16S rRNA [15–17]. There are three families
of aminoglycoside-modifying enzymes (AMEs): N-acetyltransferases (AACs) that acetylate an
amino group using acetyl-Coenzyme A; O-nucleotidyltransferases (ANTs) that transfer an adenyl
group from ATP to a hydroxyl group of the antibiotic; and O-phosphotransferases (APHs), which
phosphorylate a hydroxyl group also employing ATP (Figure 1). The emergence of bifunctional
enzymes (i.e., APH(2′′)-AAC(6′)) that are able to modify almost all aminoglycoside antibiotics presents
a huge challenge that new aminoglycosides will have to overcome [18] (Figure 1).
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AACs are found both in Gram-positive and Gram-negative bacteria and are able to reduce the
affinity of the antibiotic for the receptor 16S rRNA by 4 orders of magnitude (Table 1). This family
of enzymes is the largest within the AMEs, with 48 sequences identified so far, and they all weigh
around 20–25 kDa and comprise a wide range of positions susceptible to modification (6′, 2′, N-1,
and N-3). Mutagenesis studies have shown that just the mutation of a single amino acid of the AAC
can modulate the specificity for the antibiotic. For example, AAC(6′)-I and AAC(6′)-II share the
capacity to modify kanamycin but they differ in their propensity to acetylate amikacin or gentamicin
C. The structural gene of the AAC(3) and AAC(6′) is generally found on transposable elements [19].
AAC(3) enzymes were the first to be described to confer resistance to gentamicin (G), kanamycin (K),
fortimicin (F), and tobramycin (T) [20] and can acetylate either N/O groups of the aminoglycoside.
Five AAC(2′) enzymes are encoded in Mycobacteria and one has been crystalized from Mycobacterium
tuberculosis. AAC(2′) from M. tuberculosis catalytically and enthalpically favors those aminoglycosides
with amine/hydroxyl groups at the 2′ position and shows an increase in affinity for all antibiotics
when CoA is present. This AME exhibits a high tolerance towards the antibiotic molecule (4,5-
and 4,6-substitution), and it is thought to be modulated by water molecules that mediate between
aminoglycoside and side chain carboxylate groups of the receptor. Moreover, side chain reorientation
relative to the apo-enzyme upon binding of the substrates also contributes to the plasticity of this
enzyme [21]. AAC(6′) enzymes are the most prevalent in clinical strains, conferring resistance to
amikacin (A), gentamicin (G), kanamycin (K), neomycin (N), dibekacin (D), sisomicin (S), isepamicin
(I), and tobramycin (T) and has an ordered kinetic mechanism. Three-dimensional (3D) structures of
AAC(6′), AAC(3), and AAC(2′) have been described with a remarkable conservation of the overall
structure, albeit with low amino acid sequence identity [22,23].

APHs are the second-most abundant family of AMEs and confer resistance to aminoglycosides
in Enterococcus and Staphylococcus strains (Table 2). There are seven types of APHs with 30 kDa mass
and high sequence homology (20–40%) in their C-terminal end [24]. APH(3′)-IIIa is usually used
as a resistance marker and its 3D structure has been described several times [25,26]. APH(3′)-IIIa
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promiscuity seems to be governed by disordered elements that adopt well-defined conformations
when the aminoglycoside is bound [27]. APH(3′)-IIa from Enterococcus faecalis is able to phosphorylate
the 3′ and 5′-OH groups, giving rise to di-phosphorylated aminoglycosides [28] through an ordered
sequential mechanism in which the binding of ATP is followed by the antibiotic [29]. An interesting
property of this enzyme is that it is competitively inhibited by tobramycin, which one would expect
not to be a substrate because it lacks a free 3′-hydroxylgroup. APH(2′′) is a very promiscuous enzyme
based on the range of susceptible positions in the antibiotic skeleton (2′′, 3′, 3′′, and 5′′); it represents an
important resistance element in Gram-positive bacteria, and this enzyme uses Guanosine Triphosphate
(GTP) as the most efficient donor substrate over ATP. Oddly enough, many other APHs have been
identified, such as APH(6), APH(3′′), APH(9), APH(4), and APH(7), but their occurrence is strikingly
uncommon in the clinic. APH(9)-Ia exhibits a similar folding to that of the APH(3′) and APH(2′′)
enzymes, but it differs significantly in its substrate binding area and in the fact that it undergoes a
conformational change upon ligand binding.

Table 1. N-acetyltransferase (AAC)-modifying enzymes.

Enzyme Resistance Profile Bacterial Source Pdb Number

AAC(6′)

I (a–d,e,f–z) T, A, N, D, S, K, I Salmonella enterica 1S60, 2VBQ, 1S3Z, 1S5K, 2QIR
II T, G, N, D, S, K Enterococcus faecium 2A4N, 5E96

Acinetobacter haemolyticus 4F0Y, 4EVY, 4F0Y
Acinetobacter baumannii 4E80

Escherichia coli 6BFF, 6BFH, 1V0C, 2BUE, 2VQY
Staphylococcus warneri 4QC6

AAC(3)

I (a–b) G, S, F Serratia marcesans 1B04
II (a–c) T, G, N, D, S Pseudomonas aeruginosa 4YFJ
III (a–c) T, G, D, S, K, N, P, L Klebsiella pneumoniae,

IV T, S, N, D, S, A Campylobacter jejuni
VII G Actinomycetes

AAC(2′)
I (a–c) T, S, N, D, Ne Providencia stuartii 5US1

Mycobacterium tuberculosis 1M44, 1M4D, 1M4G, 1M41

AAC(1)
Ia P, L, R, AP E. coli

Campylobacter spp.

Abbreviations: A, amikacin; AP, apramycin; D, dibekacin; F, fortimicn; H, hygromycin; I, isepamicin; G, gentamicin;
K, kanamycin; L, lividomycin; N, netilmicin; Ne, neomycin; P, paromomycin; R, ribostamycin; S, sisomicin;
T, tobramycin.

Table 2. O-phosphotransferase (APH)-modifying enzymes.

Enzyme Resistance Profile Bacterial Source Pdb

APH(3′)

I (a–d) K, Ne, R, L, P Acinetobacter baumannii 4FEV

II K, Ne, B, P, R Stenotrophomonas maltophilia

III (a–b) K, Ne, P, B, L, R, B, A, I

IV K, Ne, B, P, R

V Ne, P, R

VI K, Ne, P, R, B, A, I Bacillus circulans

APH(2”)

I-a K, G, T, S, D

I-(b,d) K, G, T, N, D Escherichia coli 4DCA

II-(a–b) K, G, T Enterococcus faecium 3HAM, 3HAV

IVa G, K, S Enterococcus cassaliflavus 5C4K, 5C4L, 4N57, 4DT8, 4DT9,
4DTA, 4DTB, 3SG8, 3SG9

APH(3”)
I (a–b) St Acinetobacter baumannii 4EJ7, 4FEU, 4FEV, 4FEX, 4FEW

III a St Enterococcus faecalis 2BKK

APH(7) I a H Streptomyces hygroscopicus

APH(4) I-(a–b) H Escherichia coli 3W0O, 3TYK, 3W0M, 3W0N

APH(6) I-(a–d) St Streptomyces griseus

APH(9) I-(a–b) Sp Legionella pneumophila 3I0O, 3I0Q, 3I1A, 3Q2M

Abbreviations: A, amikacin; D, dibekacin; H, hygromycin; I, isepamicin; G, gentamicin; K, kanamycin; L,
lividomycin; N, netilmicin; Ne, neomycin; P, paromomycin; R, ribostamycin; S, sisomicin; T, tobramycin; Sp,
spectinomycin; St, streptomycin.
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ANTs are the smallest family of AMEs, with four crystalized structures, ANT(2′′), ANT(3′′),
ANT(4′), and ANT(6′), as can be seen in the following table (Table 3) [30–35].

Table 3. O-nucleotidyltransferase (ANT)-modifying enzymes.

Enzyme Resistance Profile Bacterial Host Pdb Number

ANT(2′′) K, T, G, D, S Pseudomonas aeruginosa 4XJE, 5CFT, 5CFS, 5CFU
Klebsiella pneumoniae 4WQK, 4WQL, 5KQJ

ANT(3′′) St, Sp Salmonella enterica 4CS6, 5G4A

ANT(4′) K, Ne, T, A, D, I Pseudomonas aeruginosa 4EBJ, 4EBK
Staphylococcus aureus 1KNY

ANT(6) St Bacillus subtilis 2PBE, 1B87
ANT(9) Sp Enterococcus avium

Abbreviations: A, amikacin; D, dibekacin; I, isepamicin; G, gentamicin; K, kanamycin; Ne, neomycin; S, sisomicin; T,
tobramycin; Sp, spectinomycin; St, streptomycin.

Genes coding for ANT enzymes are found in plasmids, transposons, and chromosomes. ANT(2′′)-
Ia is able to modify gentamicin, tobramycin, dibekacin, sisomicin, and kanamycin [30], while
ANT(4′)-Ia is active against almost all aminoglycosides and other aminoglycosides with 4′/4′′-OH
groups [33]; ANT(3′′) inactivates streptomicyn and spectinomycin [32], while ANT(6) and ANT(9)
can modify only streptomycin and spectomycin, respectively [35,36]. ANT(2”)-Ia and ANT(4′)-Ia
are clinically relevant proteins and only share 27% amino acid homology. ANT(4′)-Ia is a dimeric
enzyme with two active sites, and recognizes all nucleotides triphosphate and almost all 4,5 or
4,6-aminoglycosides except those from the streptomycin family [37,38]. The 3D structure of ANT(4′)-Ia
was the first one to be described, and its complex with kanamycin revealed that several active site
residues interact via hydrogen bonds with the glucosamine and 2-deoxystreptamine moiety, but
relatively fewer residues interact with the 3′-aminoglucose sugar, this being important knowledge for
the design of antibiotics or inhibitors. The antibiotic binding pocket is covered by negatively charged
residues, where Glutamic 145 acts as a general base for the activation of the 4′-OH group of kanamycin,
thus preparing the antibiotic for the attack of the Mg-ATP stabilized by lysine 149, which facilitates
the nucleophilic attack. Overall, the dominant role of electrostatics in aminoglycoside recognition,
in combination with the enzyme anionic regions, confers to the protein/antibiotic complex a highly
dynamic character. The kinetic mechanism is an ordered process, where the antibiotic binds first to
the active site and later on to the Mg-ATP. Determination of the order of product release revealed
that PPi is discharged first, followed by the AMP-aminoglycoside, all in agreement with an ordered
Bi-Bi mechanism [39]. ANT(2′′)-Ia from Klebsiella pneumoniae has an ordered sequential mechanism,
where the presence of the two substrates at the same time is essential (Mg-ATP binds before the
aminoglycoside) [40–43]. The observed promiscuity of ANT(2′′)-Ia from Pseudomonas aeruginosa is
not only due to binding cleft size, but also it can be controlled by ligand modulation on dynamic,
disordered, and thermodynamic properties of ANT under cellular conditions [44]. ANT(6′), a 37 kDa
protein, transfers an adenyl group from ATP to the 6′-hydroxy function on the aminoglycoside,
thus leading to a sharp decrease in the drug affinity for its target RNA. The conformational behavior
of streptomycin, both in the free and the protein-bound states, was studied by NMR experiments
given that the 3D structure is in a free form [45,46]. The streptomycin is characterized by a high
degree of flexibility in solution, but this equilibrium is clearly altered upon binding to the enzyme.
ANT(6′) showed a clear specificity for nucleotides that incorporate a purine ring, and regarding the
aminoglycoside counterpart, it is very specific: it only recognizes streptomycin. In contrast, the 3D
structure and the kinetic mechanism of ANT(9) has not been resolved so far.

It was in 1986 when the first bifunctional enzyme was described, AAC(6′)-Ie-APH(2′′)-Ia from
Enterococcus faecalis [47]; a structure-function analysis with various aminoglycosidic substrates revealed
an enzyme with a broad specificity in both enzymatic activities catalyzing N- and O-acetylation.
The AAC(6′)-APH(2”) from Staphylococcus aureus enzyme confers resistance to gentamicin, kanamycin,
tobramycin, and, when overexpressed, to amikacin, presenting a dramatic negative impact on clinical
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therapy [48]. Later on, other bifunctional enzymes were also described: ANT(3′′)-Ii-AAC(6′)-IId from
Serratia marcescens [49] and AAC(3)-Ib-AAC(6′)-Ib from Pseudomonas aeruginosa [50] (Table 4).

Table 4. Bifunctional modifying enzymes.

Enzyme Resistance Profile Bacterial Source Pdb Number

Enterococcus faecalis
AAC(6′)-Ie-APH(2′′)-IVa G, K, T, A Staphylococcus aureus 4ORQ

APH(2′′)-Id-APH(2′′)-IVa K, G, T, S, D Enterococcus casseliflavus 4DBX, 4DE4, 4DFB

APH(2′′)-Ia-APH(6′)-Ie K, G, T, S, D, St Staphylococcus aureus 5IQF
ANT(3)-Ib-AAC(6′)-IId T, A, N, D, S, K, St, Sp Serratia marcescens
AAC(3)-Ib-AAC(6′)-Ib G, S, F, T, A, N, D, K, I Pseudomonas aeruginosa

Abbreviations: A, amikacin; D, dibekacin; F, fortimicn; I, isepamicin; G, gentamicin; K, kanamycin; N, netilmicin; S,
sisomicin; T, tobramycin; Sp, spectinomycin; St, streptomycin.

The adenyltransferase domain of ANT(3′′)-Ii-AAC(6′)-IId appears to be highly specific for the
aminoglycoside, while the acetyltransferase domain shows a broad substrate tolerance [51]. Kinetic
analysis of the mechanism of ANT(3′′)-Ii points towards a Theorell–Chance type of reaction, with ATP
binding to the active site before the aminoglycoside, and once the reaction has occurred, the product
is the last to be released. However, the AAC(6′)-IId domain follows an ordered Bi-Bi mechanism in
which the antibiotic is the first to bind in the active site, and CoA is released prior to the modified
aminoglycoside. Also, structural studies have revealed that this enzyme contains dynamic segments
that modulate before and after aminoglycoside binding. In the case of AAC(3)-Ib-AAC(6′)-Ib,
both domains follow a sequential ordered kinetic mechanism in which the acetyl-CoA binds first to
the active site, followed by the aminoglycoside, and the CoA is the last product to be released [52].
Despite this interesting behavior, to date only the crystal structure of some APH(2”) domains have
been described.

3. Semi-Synthetic Aminoglycoside Derivatives

The emergence of resistance towards the first generation of aminoglycosides led to increased
efforts to identify similar antibiotics that were not susceptible to resistance [53–58]. From a conceptual
point of view, one of the most simple and straightforward strategies to generate new derivatives
that are not susceptible to enzymatic inactivation relies on the modification or elimination of those
functional groups (OH/NH2) that can be altered by the enzyme. However, this should only be
taken into consideration when such functional groups are not involved in key contacts with the
receptor (16S rRNA) so that their biological activity is maintained. Tobramycin (3′-deoxy-kanamycin
B) showed high activity against strains expressing APH(3′), and it is a good competitive inhibitor
of this enzyme [59]. Dibekacin (3′,4′-dideoxy-kanamycin B) was the first rationally designed
semi-synthetic aminoglycoside based on the 3′ phosphorylation of kanamycin B, being effective against
Staphylococcus and Pseudomonas, but unfortunately still susceptible to ANT(2′′) [60] and the bifunctional
enzyme AAC(6′)-APH(2′′) [61]. In contrast, fewer examples of deoxygenation on neomycin-related
antibiotics have been reported [62]. The number and positions of amino groups play a significant
role in the aminoglycoside activity. Methylation of the N-6′ and N-3′′ positions in kanamycin B
yielded a compound (6′,3′′-di-N-methyl-kanamycin B) that displayed activity against resistant strains,
but showed a weaker bactericidal activity than its natural antibiotic [63] (Figure 2).

The observation that butirosin, a N-1 derivative of the 2-deoxystreptamine moiety, is poorly
modified by APH(3’), prompted the synthesis of several kanamycin and neomycin derivatives bearing
an N-1 modification. Kanamycin derivatization at this position with a (S)-4-amino-2-hydroxybutyryl
(AHB) group gave rise to amikacin, which has proven to be a very effective aminoglycoside antibiotic
in clinic [64] (Figure 3). This compound was able to arrest the cell growth of strains expressing the
AAC(1), APH(3′)-Ia, and ANT(2′) enzymes [65]. The N-1 modification of dibekacin with an AHB group
provided arbekacin, which was used in clinic against Pseudomonas and Staphylococcus [66] (Figure 3).
Arbekacin is a substrate of the bifunctional enzyme AAC(6′)-APH(2”), but cannot be modified by the
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APH(3′) or ANT(4′) present in some Methicillin-resistant Staphylococcus aureus (MRSA) strains [67,68].
The trend of antibacterial activity of these aminoglycoside derivatives with an N-1 AHB group is
similar to a 3′-deoxygenation in the antibiotic skeleton. Some other functionalities at the N-1 position
were also studied, but were much less active against P. aeruginosa.
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Modification of the N-6′, N-2′, N-3, and N-1 positions through the synthesis of deaminated
aminoglycosides (neamine or kanamycin B) has shown a dramatic loss of enzymatic susceptibility
towards APH(3′)-Ia/IIa while still retaining the antibacterial activity, probably due to a decreased
overall positive charge on the antibiotic. AMEs do not show activity against pyranmycins, which are a
group of semisynthetic derivatives of aminoglycosides that differ from regular aminoglycosides in that
they contain a pyranose in place of a furanose at the O-5 position of neamine, giving rise to a derivative
with low cytotoxicity (TC005 derivative) [76] (Figure 5). In order to improve the derivatives, Chang’s
group prepared some 3′,4′-dideoxygenated pyranmycin and kanamycin derivatives giving resistance
to AME (RR501) [77,78] (Figure 5). These simplified skeletons proved highly effective against several
pathogenic bacterial strains, such as P. aeruginosa and S. aureus.
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Selective modification of the N-3′′ amino of kanamycin A into a guanidine group gave N-3′′-
guanidino kanamycin A (Figure 6), which presented protection against inactivation performed by
ANT(4′), APH(3′), and AAC(6′), while maintaining its antibiotic activity [79]. The protecting effect
of the guanidine group at the 3′′-position was rationalized in terms of a binding hindrance with the
respective inactivating enzymes, which presumably does not take place within the A-site.
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Plazomicin (PLZ, formerly ACHN-490) represents another example of amino modification, where
the N-6′, N-1, and N-3′′ positions have been substituted with different ramifications (Figure 6).
This aminoglycoside is not affected by any known AME except for AAC(2′), making it one of the
few examples that is currently in clinical use, retaining activity against most of the clinical isolates
(Minimum Inhibitory Concentration, MIC 4 µg/mL) [80–82]. These new aminoglycosides constitute
our most promising defense alternative for the treatment of resistant MRSA strains. PLZ is currently
in Phase 3 clinical trials for patients with bloodstream infections or nosocomial pneumonia and it is an
important new weapon in the pipeline to fight antibiotic resistance.

The aminosugar ring in aminoglycosides provides these molecules with high affinity for the
prokaryotic A-site, since it penetrates deeply into the major groove, thus displacing A1492 of 16S rRNA,
giving the ribosome a continuous “on” state during the translation process. Structural studies of the
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interactions between aminoglycosides and the RNA or AMEs involved in their enzymatic inactivation
have been performed to identify the molecular nature of these recognition processes. The 4,5 or
4,6-disubstituted aminoglycosides specifically bind to the A-site with several conserved contacts,
the majority of them corresponding to the pseudo-disaccharide neamine [83–85]. The synthesis
of hybrid (4,5/4,6-) aminoglycosides, based on the superimposition of crystallographic structures,
originated a new family of 4,5,6-aminoglycoside derivatives with a better prognosis against AMEs
than the corresponding natural antibiotics [86] (Figure 7). Another approach based on structural data
showed that the antibiotic scaffold presents different conformations when bound to the A-site or to the
AME. This realization translated into the design of a conformationally locked aminoglycoside that
retained the antibiotic activity but was not susceptible to enzymatic modification [87,88] (Figure 7).
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In order to increase the receptor binding affinity, aminoglycoside dimers were conceived and
synthesized. Crystallographic studies indicated that neither the 6”-OH group in kanamycin nor the
5-OH group in neamine were essential for RNA binding; thus, they were selected as anchoring points
for the synthesis of various dimers equipped with different linkers [89] (Figure 8). Kanamycin dimers
(Figure 8) exhibited the same activity than the parent compound, but were also inactivated by the
same AMEs (ANT(4′), APH(3′), and AAC(6′)). In the case of the neamine dimers [90] (Figure 8),
these presented the same biological activity (lower than neomycin or kanamycin), but as well were
inactivated by the AMEs. However, these compounds are interesting probes for strains not expressing
AMEs, since they exhibit higher affinity for the receptor RNA.
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The molecular recognition of aminoglycosides with their receptors, in most cases, is stabilized by
a significant number of salt-bridges and polar contacts, but it seems to be promoted by CH/π stacking
interactions involving aromatic residues of the protein/RNA with the antibiotic. So, the role played
by CH/π stacking interactions in the molecular recognition of aminoglycosides by its receptors has
been evaluated and proven to be significant [91]. The modification of natural aminoglycosides is a
promising direction to search for novel aminoglycosides with potency against resistant strains.

Recently, Crich et al. prepared a semisynthetic paromomycin derivative that displays similar
antibacterial activity to the parent compound against clinical strains of E. coli and MRSA (ANT(4′,4′′),
APH-(3′,5′′), and AAC(6′)). The enhanced activity on the ribosome has been demonstrated to depend on
the equatorial hydroxyl group at the 6′-position, thereby providing support for the crystallographically
derived models of aminoglycoside–ribosome interactions [92] (Figure 9).
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Another way to evade aminoglycoside resistance by AMEs is through the use of specific inhibitors
of these enzymes. Some attempts have been made to produce inhibitors of one or more of the
AMEs [93–95]. Bi-substrate analogs have been synthesized as inhibitors of AAC and ANT/APH
enzymes based on the proposed kinetic mechanism. For instance, the crystallographic structure of
AAC(6′)-Ii in complex with kanamycin B-CoA provided a new insight into chemical optimization [96]
(Figure 10). This adduct is a good inhibitor of the AAC family, but unfortunately does not have any
bacterial activity due to a poor permeability of the cell wall [97].
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Using the same approach, a nucleotide–aminoglycoside complex for the inhibition of APHs/ANTs
has been described (Figure 11). Such a tethered bi-substrate design contains a neamine core with the
3′-OH linked to adenosine via a non-hydrolyzable linker in place of the triphosphate group [98].
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Regarding the modification of discrete functional groups targeted by enzymatic resistance,
different aminoglycoside analogs have been synthesized, which turn into suicide inactivators upon
enzymatic phosphorylation. Such is the case of 2-nitro-2′-deaminokanamycin, a good inhibitor of
APH(3′)-Ia and APH(3′)-IIa [99] (Figure 12), which generates in situ a nitro-alkene intermediate
susceptible to Michael addition by close nucleophilic residues, thus rendering a covalent intermediate
that blocks the active site and abolishes the activity (Figure 12). Another interesting example is the
synthesis of 3′-ketokanamycin, where the keto group is known to exist in equilibrium with its ketal
form, so that the phosphorylated ketal can be transformed back into a keto form by eliminating a
dibasic phosphate, and then it can further re-regenerate the ketal. Interestingly, both 3′-ketal- and
2′-nitro-kanamycin derivatives can inactivate the APH(3′) in an irreversible manner. Most probably,
these compounds are inhibitors of other kinases too.
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Figure 12. Structure and mode of action of the 2’-nitro-2’deaminokanamycin B.

Allen et al. reported that α-hydroxytropolone plus the appropriate aminoglycoside substrates
were active against resistant bacteria possessing the adenylyltransferase phenotype [100]. Recently,
α-hydroxytropolone derivatives have also been described as good competitive inhibitors of ATP in the
binding site of ANT(2′′)-Ia [101] (Figure 13).
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Figure 13. Structure of hydroxytropolone derivatives.

Garneau-Tsodikova et al. have reported a sulfonamide scaffold that served as a pharmacophore to
generate inhibitors of AAC(2′′) from Mycobacterium tuberculosis, whose upregulation causes resistance
to the aminoglycosides [102] (Figure 14).
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Given that AMEs share common binding features and that many of them also bind peptides and
proteins, cationic peptides could serve as lead molecules in the development of new inhibitors of
these enzymes. Therefore, cationic peptides have been tested as inhibitors of APH(3′)-IIIa, AAC(6′)-Ii,
and AAC(6′)-APH(2′′), and the results showed that the indolicidin moiety and its analogs have an
inhibitory effect against both ACC and APH enzymes, albeit by different mechanisms. These peptides
constitute the first example of broad-spectrum inhibitors of AMEs, but unfortunately none of them
showed any inhibitory effect in vivo. Known inhibitors of eukaryotic protein kinases have been studied
too to determine whether they were active against APH(3′)-IIIa and AAC(6′)-APH(2′′) because of the
structural relation found between these enzymes [95].

Some aminoglycoside dimers have also been used as inhibitors of the AMEs. Neamine dimers
were investigated for their antibacterial activity and their capability to inhibit the action of bifunctional
AAC(6′)-APH(2′′), and were proven to be active against clinically isolated strains of P. aeruginosa.
However, the synthesis of one universal inhibitor for all AMEs seems still unreachable, since good
inhibition relies on many mechanistic and kinetic factors that can vary between families (AAC, ANT,
and APH) and between types too (i.e., APH(3′)-I, II).

4. Combination Therapy

The use of a combination therapy can help in solving the problem of resistance by AMEs.
This approach relies on the rescue of original aminoglycosides (gentamicin, amikacin, or etimicin)
through the co-administration of the corresponding inhibitors for each enzyme. Ideally, the adjuvant
compound (inhibitor) would be targeted preferentially by the resistance enzymes, thus freeing the
antibiotic to bind the target A-site. An all-purpose inhibitor would be a compound that mimics the
charge and shape of an aminoglycoside (common for the three families of AMEs), having in mind that
all AMEs have a highly negatively charged surface in their binding sites such that a must-have feature
should be an overall positive charge. A proof-of-concept for this strategy is that the use of streptidine
along with streptomycin in the cell culture restores the activity of the streptomycin against ANT(6),
because streptidine competes for the binding site with the streptomycin, acting as a “decoy acceptor”
of the enzyme [103] (Figure 15). Thus, streptidine could be a good starting compound for the design of
more efficient “decoy acceptors” of AMEs targeting streptomycin, or 2-deoxystreptamine for those
targeting 4,5- or 4,6-aminoglycosides (Figure 15).

Hybrid antibiotics have also been developed to battle bacterial resistance [104–107]. The ability to
slow down the emergence of resistance is probably one of the most important advantages of hybrid
drugs [108,109]. This strategy connects two antibiotics that have different modes of action into a single
molecule. The main difficulty so far has been to find the correct linker that connects the two drugs
to provide better inhibition on both targets. The synthesis of the Cipro-NeoB/Cipro-KanA, which
was active against a wide range of strains, is one of the most successful examples of this approach
(Figure 16). The MIC values of these hybrids were the same against resistant and non-resistant strains
(AAC(6′), APH(3′), and AAC(6′)/APH(2′′) [110,111]. This kind of aminoglycoside derivative, based
on a hybrid structure, provides a promising drug with an unusual dual mechanism of action, a potent
profile against AMEs, and reduced potential for generating bacterial resistance.
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5. Conclusions

In this review, we have aimed to cover the most relevant semi-synthetic aminoglycosides,
inhibitors, and decoy acceptors of the AMEs. By far, the most successful chemical approach to
modify the natural aminoglycosides has been the modification of the N-1/N-3′′ amino groups with the
AHB group or a guanidino substituent that has retained the parent antibiotic activity. Alkylation at the
N-6′ position of the antibiotic resulted in a decrease of affinity for resistant enzymes, but a concomitant
decrease in bacterial activity has been observed as well. Chemical deoxygenation of the 3′/3′,4′-OH
groups of aminoglycosides resulted in compounds with high affinity for the RNA and resistance
against MRSA. Comparatively, fewer inhibitors or decoy acceptors of the AMEs have been described.

On the other hand, ANT(4′)-Ia, ANT(2′′)-Ia, ANT(3′′)(9), AAC(3)-IIIb, and APH(3′)-IIIa have been
described as highly dynamic enzymes and display properties of intrinsically disordered proteins in
the absence of the aminoglycosides [112]. The degree of promiscuity by AMEs is governed by the
dynamics of the protein, which is strongly influenced by the ligand and the cofactor, as well as its
interaction with the solvent, and it should be taken into consideration in the design of new drugs.

Structural knowledge of both the RNA- and AME-aminoglycoside complexes has helped in the
design of new antibiotics that can escape the action of the enzymatic modification [113]. In order
to avoid or inhibit the activity of AMEs, obtaining structural and mechanistic information is of
paramount importance.
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