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INTRODUCTION
Breast cancer is the most frequently diagnosed cancer 

among women globally and the leading cause of cancer-related 
death among women (1, 2). Despite having lower breast cancer 
incidence, mortality rates are among the highest across most 
sub-Saharan African nations, compared with other nations 
worldwide. Although poorer survival is typically attributed to 
advanced-stage disease at presentation and limited access to 
treatment options in lower-middle-income countries (LMIC; 
ref.  2), triple-negative breast cancer (TNBC) incidence rates 
across African nations represent approximately 33% of breast 
cancer diagnoses compared with less than 20% in other nations 
(3, 4), with the highest incidence of TNBC in West African 
nations compared with East African nations (3, 5, 6). Glob-
ally, overall breast cancer mortality and TNBC burden appear 
higher across the African diaspora at large, corresponding 

with a higher prevalence of TNBC disease among women 
with African ancestry (6), who reside in nations throughout 
Europe (7, 8), South Africa, and admixed African American 
(AA) populations in the United States (5, 9, 10). We previously 
reported a higher risk of TNBC, compared with other types 
of breast cancer, associated with West African ancestry (5, 6). 
Therefore, we hypothesized that there may be genetic drivers 
associated with West African ancestry that predispose and/or 
lead to aggressive breast cancer, including TNBC.

TNBC continues to have the worst prognosis of breast 
cancer subtypes and the worst survival outcomes due to a lack 
of targeted therapy options for these tumors (11, 12). Given 
TNBC incidence rates across the African diaspora, our efforts 
in oncologic anthropology have shifted to a molecular focus 
to uncover and characterize the influence of African ancestry 
on breast cancer disease etiology and progression (4, 13, 14). 

ABSTRACT Women of sub-Saharan African descent have disproportionately higher incidence 
of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all 

populations. Population studies show racial differences in TNBC biology, including higher prevalence 
of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investiga-
tions relied on self-reported race (SRR) of primarily U.S. populations. Due to heterogeneous genetic 
admixture and biological consequences of social determinants, the true association of African ancestry 
with TNBC biology is unclear. To address this, we conducted RNA sequencing on an international cohort 
of AAs, as well as West and East Africans with TNBC. Using comprehensive genetic ancestry estimation 
in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 
2,000+ associated with regional African ancestry. A subset of African-associated genes also showed 
differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composi-
tion revealed that tumor-associated immunologic profiles are distinct in patients of African descent.

SIGNIFICANCE: Our comprehensive ancestry quantification process revealed that ancestry-associated 
gene expression profiles in TNBC include population-level distinctions in immunologic landscapes. 
These differences may explain some differences in race–group clinical outcomes. This study shows the 
first definitive link between African ancestry and the TNBC immunologic landscape, from an African-
enriched international multiethnic cohort.
See related commentary by Hamilton et al., p. 2496.
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Previous comparative breast cancer studies among patients of 
diverse race groups have focused on comparing tumors from 
AA and European American (EA) self-reported race (SRR) 
groups in the United States. Although there were inherent 
limitations of cohort size and heterogeneity of race, these 
approaches were useful in determining that broad biological 
differences do exist across diverse patient populations (15, 16). 
Some of these discoveries included race–group distinctions in 
genomic differences in frequencies of single-nucleotide vari-
ants (SNV; refs. 6, 17, 18), somatic tumor mutation signatures 
(19, 20), structural copy-number variations (CNV; ref.  21), 
and differences in DNA methylation patterns in both estro-
gen receptor–positive and estrogen receptor–negative tumors 
(22). Our work and that of others have uncovered racial 
differences in gene expression that revealed distinctions in 
immune response signatures, repeatedly across independent 
cohorts, implicating differences in the tumor microenviron-
ment (TME; refs. 16, 23) as a possible cause of outcome dis-
parities. The emerging promise of curative immunotherapies 
in overcoming treatment resistance in TNBC highlights an 
important opportunity to target the immune microenviron-
ment. Given our previous and current findings that uncover 
race–group differences in tumor immune responses, these 
findings have increasing relevance to overcome disparities, 
particularly in regard to the potential of immunotherapies 
to improve treatment response (24, 25). However, there are 
limitations to using SRR in genomic studies, mainly due to 
complexity in genomic backgrounds of admixed groups.

Recently, our work was the first to use quantified genetic 
ancestry in admixed AA women to identify African ancestry–
specific gene expression differences in TNBC tumors com-
pared with EA women, which we also found had some overlap 
with SRR-associated gene networks (26). Of the African ances-
try–associated genes, 48.1% were distinct from the SRR-asso-
ciated genes, indicating the functional influence of the genetic 
ancestry background upon gene expression, apart from SRR 
alone. Similarly, a recent study by our collaborators charac-
terized gene expression of TNBCs from the Bantu tribe from 
Kenya and found Bantu population–specific gene expression 
signatures as compared with TNBCs of AA and EA TNBCs 
(14). However, the implications of ancestry are still untested, 
lacking the inclusion of the contemporary and appropriate 
representative ancestry groups that are specific and relevant 
to the admixed patient groups.

Therefore, our current study utilized an African-enriched 
international cohort from the International Center for the 
Study of Breast Cancer Subtypes (ICSBCS; ref. 27), which will 
help to resolve a more precise understanding of genetic influ-
ences associated with African ancestry in race-associated gene 

signatures. We have measured the influence of African ancestry 
on TNBC tumor biology, derived from gene expression differ-
ences, that includes West African/Ghanaian and East African/
Ethiopian women with TNBC compared with admixed AAs. 
Our rationale was based firmly on prior studies indicating 
that shared African ancestry harbors both the unique genetic 
risk of TNBC tumor etiology and the distinct gene signatures 
of TNBC among women of the African diaspora (6, 18, 26). 
We identified both African ancestry–associated gene expres-
sion signatures and TME cell-type differences from bulk RNA 
sequencing (RNA-seq) data. We demonstrate that the inclu-
sion of native Africans with admixed AA patients, who share 
the same genetic ancestry, can overcome population com-
plexity to help deduce the shared genetic drivers observed in 
race–group differences and discern these from environmental 
or other exogenous drivers of gene expression changes. We 
have identified subpopulation differences in gene expression 
between East versus West African ancestry lineages, which can 
be applied throughout population studies of the African dias-
pora in Europe (7, 8), the United States (5, 9, 10), and abroad 
(i.e., Afro-Latinx and Afro-Caribbean).

RESULTS
Characterization of Ancestry Profiles Reveals 
Complex Admixture in African and AA Cohort

We estimated the global genomic ancestry for each patient 
in our cohort to determine the varying levels of admixture 
based on the 1000 Genomes superpopulation and subpopu-
lations (Supplementary Table S1; ref. 28). Our cross-sectional 
set of 148 TNBC cases includes 66 AAs and 41 European 
American (EA), enriched with 13 West African Ghanaians, 
and 22 East African Ethiopians, with four individuals who 
declined to report SRR (Supplementary Fig.  S1). African 
(AFR) ancestry comparisons indicated significant differences 
in African ancestry across our cohort (ANOVA P  <  0.001), 
with Ghanaian patients having the highest levels of AFR 
ancestry (median 97.3%) and AAs having an average 15% 
less AFR ancestry (median 82.6%). Ethiopian patients had a 
surprisingly lower AFR ancestry (median 43.0%), with nearly 
equal amounts of European (EUR) ancestry (median 43.5%), 
which is consistent with previous anthropologic studies (refs. 
29–31; Fig.  1A; Supplementary Table  S2). Our EA patients 
generally showed exceptionally low levels of AFR ancestry 
(median 2.4%); however, three self-identified EA patients had 
between 30% and 80% AFR ancestry.

For more precise ancestry estimations that reflect regional 
origins, we estimated genetic ancestry for five African sub-
populations, which includes four populations representing 

Figure 1.  Estimated genetic ancestry distribution in an African-enriched TNBC RNA-seq cohort. Genetic ancestry was estimated from genotypes of 
the ancestry-informed markers obtained from our RNA-seq alignments, in which we have superpopulation ancestry estimations, relative to the 1000 
Genomes superpopulation populations (A), and subpopulation ancestry estimations for each individual in our cohort (B). In both A and B, each column 
represents an individual in the cohort, in which estimated ancestry from a given superpopulation or subpopulation is shown on the y-axis, and the x-axis 
is annotated by SRR and location. Superpopulation populations in A are East Asian (EAS, red), South Asian (SAS, blue), European (EUR, green), American 
(AMR, purple), and African (AFR, orange). Subpopulations in B are shown in variations of their corresponding superpopulation population color (i.e., AFR 
populations are in varying shades of orange), and population codes are reported in Supplementary Table S1. Samples are ordered by decreasing AFR 
ancestry [x-axis left to right: African/Ghanaian (Ghana), AA (Alabama, Detroit, New York), African/Ethiopian (Ethiopia), EA (Alabama, Detroit, New York), 
other/declined (New York), and Asian (New York)]. C, Constellation plot showing phylogeny of samples based on ancestry estimations. SRR of samples are 
indicated by the colored dots (Ghanaian = light blue, AA = light green, Ethiopian = dark blue, EA = dark green, Asian = light pink, and other/declined = dark 
pink). Site location of samples is annotated next to the colored dots (A = Alabama, USA; D = Detroit, MI, USA; E = Ethiopia; G = Ghana; and N = New York, 
NY, USA). D, Scatter plot showing inverse correlation of AFR and EUR ancestry in our gene expression cohort.



African Ancestry–Specific TNBC Gene Expression Profiles RESEARCH ARTICLE

 NOVEMBER  2022 CANCER DISCOVERY | 2533 

Gha
na

Det
ro

it

Alab
am

a

New
 Yo

rk

Eth
iop

ia

Det
ro

it

Alab
am

a

New
 Yo

rk

New
 Yo

rk

New
 Yo

rk

CDX
CHB
CHS
JPT
KHV
BEB
GIH
ITU
PJL
STU
CEU
FIN
GBR
IBS
TSI
CLM
PEL
PUR
ESN
GWD
LWK
MSL
YRI

EUR
AMR
AFR

SAS
EAS

SRR: Ghanaian AA EA Asian Other/declinedEthiopian

100%

80%

60%

40%

20%

0%

80%

60%

40%

20%

100%

0%

A
nc

es
tr

y 
pr

op
or

tio
n

A
nc

es
tr

y 
pr

op
or

tio
n

African/
Ghanaian

African/EthiopianAA EA Other/
declined

SRR/site location

D

%
 A

F
R

 a
nc

es
tr

y

100%

80%

60%

40%

20%

0%

Ancestry

0% 20% 40%
% EUR ancestry

60% 80% 100%

C Site location:

D          Detroit, MI, USA

N          New York, NY, USA
G          Ghana
E          Ethiopia

A          Alabama, USA
E

E E E

E
E

E E
E
E
E

E

E

EEEE

EE
E

A

A

A

A

A

AA

A

N

N

D

D

AA
AA

N N

N

A

N

N

GGA

A
AA
DA

DA
A

G

G
G

G

G
G G

AA

A

AA

AA

A
AAA

A

AA A

A

A

A
A

A

A

A
A

A

A

A

A

A A N

A

DD

DD

D D
D

D

DD

D

D

D D
D

D

D

D

DD

A

A

G
G G
G

N A A
A

A
A

A
A

A A

A

D

A

A

A

ANE

AA

NN
NN

EA

A

A

A

A

A

B



Martini et al.RESEARCH ARTICLE

2534 | CANCER DISCOVERY NOVEMBER  2022 AACRJournals.org

West African ancestry, including Esan in Nigeria (ESN), Yor-
uba in Ibadan, Nigeria (YRI), Gambian in Western Divisions 
in the Gambia (GWD), and Mende in Sierra Leone (MSL). 
There was only one population representing East Africa in 
1000 Genomes—Luhya, in Webuye, Kenya (LWK; Fig.  1B; 
Supplementary Table  S1). As anticipated, AA patients pre-
sented with AFR ancestry primarily of West African ori-
gin, which included ESN (median 36.1%) and MSL (median 
19.7%) ancestry, with less than 10% estimated East African 
ancestry (LWK median 7.5%). Interestingly, the heterogeneity 
of African origin within AAs is more extensive and wide-
ranging than the origin of African ancestry in Ghanaians or 
Ethiopians, in whom the amount of specific subpopulation 
ancestry can range from 0% to 90% for a given individual, 
indicating the complex diversity of African admixture in AAs. 
African patients’ subpopulation ancestry is highly concord-
ant with their regions of origin, in which Ghanaian ancestry 
is overwhelmingly enriched with the West African reference 
groups from YRI (median 66.0%), and MSL (median 24.1%) 
and Ethiopian patients have almost exclusively East African 
ancestry, represented as LWK (median 43.0%). Relatedness 
of patients’ estimated genetic ancestry shows separation of 
Ghanaian and AA patients from Ethiopian and EA patients 
(Fig.  1C), and AFR and EUR ancestry were significantly 
inversely correlated among patients (Fig.  1D). Interestingly, 
the EUR ancestry in our Ethiopian patients was primarily 
Italian [Toscani in Italia (TSI), median 41.2%]. Ethiopian 
patients also showed substantial levels of East and South 
Asian ancestry (EAS median 1.9%, SAS median 9.0%), with 
more SAS compared with other SRR groups. All of these 
admixture revelations are consistent with the social histories 
of each SRR group and reflect the diverse complexity of ances-
try across the African diaspora (29–33).

Influence of Ancestry in Gene Expression Profiles 
of TNBC Tumors Results in Ancestry-Associated 
Differential Immune Signatures

To investigate AFR ancestry–specific gene expression pro-
files in our ICSBCS TNBC samples, we isolated our analyses 
to patients with significant (>35%) AFR ancestry. As previ-
ously described (26), we performed gene-by-gene linear regres-
sion, using genetic ancestry as a continuous variable, which 
determined ancestry-associated gene expression. We identi-
fied gene signatures associated with AFR (n = 613) and EUR 
(n = 345) ancestry (P < 0.001), with 293 genes shared between 
these gene signatures (Fig.  2A; Supplementary Table  S3). 
Given the significant inverse correlation of AFR versus EUR 
ancestry in our patient cohort (Fig.  1D), we compared the 
polarity of gene expression levels of the 293 overlapping genes 
and found that genes upregulated in association with AFR 
ancestry are conversely downregulated in association with 
EUR ancestry (Fig.  2B). This may represent genes that have 
expression drivers that are ancestral informative variants, 
which are isolated to certain ancestry groups.

Unsupervised hierarchical clustering of the 613 AFR-asso-
ciated genes separated patients into two distinct clusters cor-
relating with levels of AFR ancestry, which we denote as a low 
AFR cluster, including primarily Ethiopian TNBC patients, 
and a high AFR cluster, including primarily AA and Ghanaian 
patients (Fig. 2C). AFR ancestry is significantly higher among 

the high AFR cluster (median 86.13%, mean 85.87%) com-
pared with the low AFR cluster (median 43.08%, mean 44.55%; 
P < 0.0001; Supplementary Fig. S2). The high AFR subcluster 
includes two subnodes: one representing ESN, MSL, and LWK 
ancestry (6/9 AAs and 1/6 Ghanaians) and a second represent-
ing YRI, GWD, and ESN ancestry (3/9 AAs and 4/6 Ghanaians; 
Fig.  2C, red asterisk; Fig.  2D, red box). The subnodes reflect 
differences in the origin of AFR ancestry composition observed 
among West Africans and AAs in our cohort.

We calculated AFR-associated genes (Fig.  2D) for func-
tional pathway enrichment, using the log2 fold change 
between the distinct high AFR and low AFR clusters to meas-
ure differential expression (Fig. 2E). Top canonical pathways 
included some previously implicated processes in race–group 
comparisons, such as RNA posttranscriptional modification 
through spliceosomal cycle pathway enrichment (P = 0.0002, 
z-score  =  3.804; ref.  34), cell-to-cell and extracellular matrix 
interactions in the integrin signaling pathway (P  =  0.004, 
z-score = 0; ref. 35), and chronic inflammation in atherosclero-
sis signaling (P = 0.006, no z-score predicted; ref. 36). Upregu-
lation of WNT family member genes drives enrichment in 
a colorectal cancer metastasis signaling pathway (P = 0.004, 
z-score  =  −0.302; ref.  37) and HOTAIR regulatory pathway 
(P = 0.006, z-score = −0.707). One of the top enriched func-
tions identified was immune cell trafficking (P value range of 
subterms 0.0119–0.000502; Fig. 2F and G). Specifically, there 
was a predicted upregulation of signals relating to immune 
cell movement and migration, but conversely a predicted 
inhibition of signals relating to immune cell activation. This 
finding was of particular interest, given our previous findings 
related to DARC-regulated immune cell infiltration, which is 
associated with race groups (38).

Our results thus far establish AFR ancestry–associated dif-
ferential gene expression in TNBC tumors; however, this 
differential regulation could be due to a diverse baseline bio-
logical context. Therefore, we investigated the expression of 
our core set of 613 AFR ancestry–associated genes in normal 
mammary tissue data using the Genotype-Tissue Expression 
(GTEx) cohort. Out of the 396 GTEx breast/mammary sam-
ples with ancestry, 47 were of AFR ancestry (Supplementary 
Fig. S3), and only 20 of those were females. We found that 17 
of the 613 genes (2.7%) were significantly associated with AFR 
ancestry (Fig. 2H; Supplementary Table S4). Of these 17 genes, 
seven had a positive expression correlation with AFR ancestry 
in both normal and tumor, whereas the other 10 showed 
relatively opposite correlations of expression levels with AFR 
ancestry. Eight were positively correlated (upregulated) with 
respect to AFR ancestry in normal tissue, but negatively 
correlated in tumor, and two were negatively correlated in 
normal and positively correlated in tumor (Fig.  2H and I). 
Tumor subtype–agnostic survival analysis using The Cancer 
Genome Atlas (TCGA) BRCA cohort revealed lower expres-
sion of AVPR2 and CYBA and higher expression of AGMAT 
and SNORA53 show benefit among AA patients, but not EA 
patients, and this was significant for CYBA in AAs (P = 0.0302; 
Fig. 2I). Pathway enrichment analysis suggests that these 17 
genes were related to the inflammatory response (P = 2.5 E-07) 
and growth of mammary tumor (P  =  7.3 E-07) disease and 
function terms (Fig. 2J). This suggests that already established 
biological mechanisms, which are altered in the course of 
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Figure 2.  AFR ancestry–associated genes show enrichment in the immune response. A, Venn diagram of ancestry-associated genes identified from 
the AFR and EUR genetic ancestry linear regression model, in which ancestry was used as a continuous variable. DEG, differentially expressed gene. 
B, Scatter plot showing log2 fold change of 293 overlapping genes from AFR- and EUR-associated gene signatures. The top left quadrant represents those 
genes upregulated with increasing AFR ancestry (positive log2 fold change on the y-axis) and subsequently downregulated with increasing EUR ancestry 
(negative log2 fold change on the x-axis). C, Unsupervised hierarchical clustering of 613 AFR ancestry–associated genes. Columns represent individuals, 
where SRR, ancestry estimates, and TNBC subtypes are indicated in the colormap at the top of the heat map. Rows represent genes, where lighter yellow 
indicated minimum row expression and darker purple shows maximum row expression. AMR, American; TNHF, Triple-Negative Hetero Fluid. D, Constella-
tion plot representing the nodal structure of individuals from C, where points are colored by SRR (Ghanaian = light blue, Ethiopian = dark blue, AA = light 
green). Node highlighted by red box indicates increased admixture node, which is highlighted in C by the red star. E, Volcano plot of AFR-associated genes, 
showing 613 significant genes in red. (continued on next page)
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Figure 2. (Continued) I, Scatter plots of representative genes by ancestry in both normal (GTEx) and tumor (ICSBCS), and Kaplan–Meier survival plots 
in TCGA BRCA data among AA and EA patients with breast cancer. In the GTEx normal tissue cohort, AFR ancestry is increasing with increasing principal 
component 1 (PC1). The red P value highlights P < 0.05. (continued on next page)

malignancy from normal to tumor, have divergent or more 
inflated regulatory drivers in populations of African descent.

Resolution of Subpopulation AFR Ancestry 
Influence on Gene Expression Signatures

We determined a higher resolution of African subpopu-
lation origins to harness the shared genetic diversity and 

identify subpopulation-associated gene signatures. Specifi-
cally, we utilized the 1000 Genomes African subpopulation 
ancestry (Fig. 1) estimates for West African (YRI, ESN, GWD, 
and MSL) and East African (LWK) populations (Supple-
mentary Table S1). By repeating the gene-by-gene statistical 
model with African subpopulations, we identified a com-
bined 2,567 genes associated with the five African population 
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lated in TNBC tumor tissue, but negatively correlated with AFR ancestry in nondiseased breast tissue).

groups (Fig.  3A). African subpopulation–specific gene asso-
ciations included 338 YRI genes, 643 ESN genes, 201 GWD 
genes, 146 MSL genes, and 1,229 LWK genes (Supplementary 
Table  S5). These gene lists included, but extended beyond, 
the genes identified in the African superpopulation ancestry 
analysis (Fig. 3A). Surprisingly, there were no subpopulation-
specific genes shared among all five populations, suggesting 
that there are unique gene expression drivers from each 
ancestry group. However, a small fraction of each set of indi-
vidual West African subpopulation genes were shared with 
the East African LWK population (total n  =  210). As may 
be anticipated, we found that the largest overlap of African 
subpopulation–associated genes was shared between ancestry 
groups that are geographically adjacent nations (29.0% of YRI 
and 48.8% of GWD shared between these populations). How-
ever, the closest West African groups, YRI and ESN of Nigeria, 
did not share any associated genes.

Therefore, we considered which SRR/nationality groups 
carried the specific subpopulation ancestry and therefore in 
which groups these gene signatures may be found. The East 
African population with the largest set of associated genes 

(n = 1,229), LWK, predominantly represented our Ethiopian 
patients with a small portion of AA ancestry represented by 
LWK (median ∼8%). Pathway analysis predicted a decrease in 
immune response–related function in East African ancestry 
gene sets, including inhibition of CSF1 and various inter-
leukins, CD28 and lymphopoiesis, and the canonical Tec 
kinase signaling pathway (Fig.  3B). This inhibitive effect of 
LWK ancestry on these functions clearly distinguishes the 
differences in tumor biology between west and East Africans 
and suggests important differences in immune cell develop-
ment, response, and activation. MSL ancestry was predomi-
nantly found among AAs and Ghanaians and included genes 
(n = 146) that also involved the function of immune response 
signals that suggest activation of immune-related functions 
(Fig. 3C). Specifically, there was activation of REL and IL21, 
both playing important roles in immune response regulation. 
To validate our findings, we conducted a reanalysis of the 
AA subset of our previously published cohort and identified 
African subpopulation–associated gene signatures enriched 
for pathways that involve immune function (Supplementary 
Fig. S4A–S4H).
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Immune Cell Enrichment Expression Signatures 
Are Associated with AFR Ancestry

We estimated immune cell populations and overall tumor-
associated leukocyte (TAL) abundance with the deconvolu-
tion and cell-type enrichment methods CIBERSORTx (39) 
and xCell (40), respectively. Absolute scores, the sum of all 
estimated immune populations, were significantly higher 
in patients with high AFR ancestry compared with patients 
with low AFR ancestry (Fig.  4A; P  =  0.0076). The immune 
cell types accounting for the bulk of the AFR ancestry–
associated infiltrating cells included naïve B cells, CD8+ T 
cells, helper T cells, regulatory T cells (Treg), and activated 
mast cells (Fig. 4B). Linear association testing showed that 
the increasing proportions of immune cells directly cor-
relate with increasing AFR ancestry (Fig.  4C), suggesting 
a direct genetic dose response. The largest proportion of 
AFR-associated immune cells are naïve B cells, a nonacti-
vated immune cell population. These findings concur with 
the preceding expression pathway analysis, indicating AFR 
ancestry–associated gene expression signatures are enriched 
for stimulated immune cell “migration/movement” (i.e., 
infiltration) and simultaneous repression of “cell-type acti-
vation” (i.e., naïve cells). Conversely, the “activated” cell 
population, such as “activated mast cell,” is more prominent 
in tumors of patients with low AFR ancestry. To verify this 
finding with an independent algorithm, we used the xCell 
cell-type enrichment analysis (36). The results replicated the 
CIBERSORTx findings, showing AFR-associated immune 
cell infiltration, and further discerned that the specific T 

populations associated with AFR ancestry are CD8+ T cells 
and CD8+ T effector memory cells (Supplementary Fig. S5; 
P < 0.05), building on the observation of CD8+ T cells from 
CIBERSORTx (Fig. 4C; P < 0.05).

To investigate immune-suppressive versus immune-stim-
ulating TME marker associations (41) with African ancestry, 
we compared the relative expression of several well-known 
immune-checkpoint genes, including CD274 (PD-L1 marker), 
CTLA4, and PDCD1 (PD-1 marker; Fig.  4D). We found that 
PDCD1 was significantly associated with AFR ancestry and 
SRR (ANOVA P  <  0.01), with both Ghanaian (mean 12.42) 
and AA (mean 13.72) patients’ tumors having 4×  higher 
expression than Ethiopian patients’ tumors (mean 3.68). 
To ensure these immunosuppressive marker gene expres-
sion patterns were derived from the immune cell population 
within the bulk tumor, we tested the correlation of specific 
immune cell estimates from CIBERSORTx with the CTLA4, 
CD3D, and PDCD1 markers. We found each correlated with 
the abundance of relevant T-cell subtypes, indicating these 
cells are the likely source of the RNA expression (Fig. 4E).

To validate the RNA-seq–based immune cell estimations, 
we used two validation cohorts to quantify immune cell 
populations from protein-level data. Our first validation 
set represents clinical-grade IHC marker assays to score the 
infiltration of immune cells in an independent set of ICSBCS 
TNBC patients (n  =  40), distributed across each ethnicity 
group represented in the RNA-seq cohort. We found similar 
immune cell infiltration trends across race/ethnic groups, 
with Ghanaian and AA tumors having higher counts of CD3+ 

Figure 3.  African subpopulation–associated genes are also enriched in the immune response. A, Venn diagram of unique and overlapping gene signa-
tures associated with LWK, ESN, MSL, YRI, and GWD ancestry, respectively. Dots that are bolded are genes that overlap with the 613 AFR-associated 
gene signature. Ingenuity Pathway Analysis of LWK-associated (B) and MSL-associated (C) genes. B, Colors in blue indicate inhibition of regulators, 
disease/function terms, and canonical pathways among individuals with increasing LWK ancestry. C, Colors in orange indicate activation or regulators, 
disease/function terms, and canonical pathways among individuals with increasing MSL ancestry.
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Figure 4.  Immune deconvolution of bulk tumors shows 
enrichment of immune cells among high AFR ancestry 
tumors. A, Box plot of the TAL absolute score among high 
AFR and low AFR samples (Student t test P = 0.0076). 
B, Stacked bar chart of TAL populations significantly dif-
ferent between AFR-high and AFR-low samples. NK, natural 
killer. C, Correlation of AFR ancestry and CIBERSORTx TAL 
populations. Significant correlations are highlighted in 
shades of red. TAL populations with a star represent immu-
nosuppressive cell populations (41). ns, not significant. 
D, Box plot of gene expression of CD3D (light blue), CD3E 
(dark blue), CD3G (light green), CD274 (dark green), CTLA4 
(light pink), FOXP3 (dark red), and PDCD1 (light orange) 
across SRR groups (G = Ghanaian, AA = African American, 
E = Ethiopian) or AFR cluster groups (AFR high, AFR low). 
Significant ANOVA P values and paired Student t tests 
(***, P < 0.001; **, P < 0.01; *, P < 0.05) are reported. E, Cor-
relation of immune marker gene expression (bottom) and 
CIBERSORTx TAL populations (left). Positive correlation 
is shown in red, and negative correlation is shown in green. 
Size of the dot represents the significance of the correla-
tions. (continued on following page)
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and FOXP3+ cells compared with Ethiopian and EA tumors 
(Fig.  4F). CD3+ cells showed significant variation across all 
race/ethnic groups (ANOVA P  =  0.0102; Fig.  4G), with sig-
nificant pair-wise differences between Ghanaians and Ethio-
pians (P  =  0.0457) and between AAs and EAs (P  =  0.0379). 
Our second validation set represents a pilot cohort of mul-
tiplexed imaging data of TNBC patients representing AA 
(n = 2) and EA (n = 2) patients using the GeoMx platform. 
After completed segmentation across ∼5 regions of interest 
(ROI) per patient, stromal and tumor cellular subsets were 
segregated, and immune cell abundances were determined. 
In the stromal compartment, we see significantly higher 
levels of plasma cells (P = 0.0083), CD4+ and CD8+ memory 
T cells (P = 0.0344 and P = 0.0041, respectively), and Tregs 
(P  = 0.0232) among AA patients/ROIs compared with EA 
(Fig. 4H). In the tumor compartment, CD8+ memory T cells 
were also significantly higher among AAs (P = 0.0126), and 
we also observed borderline significantly higher levels of 
Tregs (P = 0.0601; Fig. 4I).

FOXP3 expression in Tregs is correlated with a suppressive 
immune TME, suggesting patients with higher AFR ancestry 
may have a TME that is more suppressive versus stimulating 
compared with patients of EUR ancestry. The RNA-based 
findings in our cohort matched both IHC and multiplexed 

immunofluorescent protein staining among SRR groups in 
independent cohorts (Fig. 4D). We found that the most sig-
nificant differences in immune cell infiltration were found 
when comparing populations by AFR ancestry rather than 
across SRR groups, emphasizing the importance of genetic 
ancestry in immunologic differences. Taken together, this 
further suggests an immune-suppressive tumor environment 
being associated specifically with West African ancestry, as 
opposed to East African or EUR ancestry.

TNBC Subtyping Reveals Ancestry Bias in 
Composition of Mosaic Heterogeneity

Gene expression signatures are used to categorize TNBC 
tumors into subtypes that have been shown to predict clini-
cal outcomes (42, 43). The landmark report of these sub-
types, the well-known Vanderbilt TNBCtype tool, correlated 
gene expression signatures of TNBC tumors to their tumor 
training set, which initially designated tumors into six 
distinct subtypes, including basal-like 1 (BL1), basal-like 2 
(BL2), luminal androgen receptor (LAR), mesenchymal (M), 
mesenchymal stem–like (MSL), and immunomodulary (IM). 
An additional “subtype” category of exclusion harbors any 
tumors with “unsure calls” (UNS), which masked tumors 
with either multiple subtype correlations or no positive 
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Figure 4. (Continued) F, Representative IHC images of CD3 (blue) and FOXP3 (black) staining in AA (top left), Ghanaian (top right), Ethiopian (bottom 
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correlations with any of the established phenotypes from 
the training set. Further consideration of the histologic con-
text of these tumor subtypes determined that the MSL and 
IM subtypes are stromal and tumor-associated immune-
derived rather than distinct phenotypes, which are cur-
rently corrected by the tool to be manually reassigned with 
their secondary correlation call (43). Correlated subtypes 
called from the Vanderbilt TNBC tool found tumors in our 
cohort from Ghanaian and Ethiopian patients were more 
often BL1, and tumors from AA patients were more often 
IM subtype (Fig. 5A, top). Interestingly, all IM tumors were 
from the high AFR ancestry Ghanaian and AA individuals, 
indicating the strong tumor immune signatures in these 
ancestry groups. After the suggested reassignment of the IM 
and MSL subtypes, AAs had a predominance of UNS calls, 
indicating an unresolved heterogeneity that would not allow 
designation of a single subtype (Fig. 5A, middle). Therefore, 
to ascribe a biological phenotype to these tumors, we used 
a previously described median ranking (26), which excludes 
the confounding influence of the immune signature genes 
by only including the gene expression signatures of the BL1, 
BL2, M, and LAR TNBC subtypes. Our results indicate that 
BL1 is the predominant subtype for Ghanaians and that M 
is the predominant subtype for both AAs and Ethiopians 
(Fig. 5A, bottom).

Given the previously reported heterogeneity of TNBC 
tumors among AA patients (26), we used our previously 
established Triple-Negative Hetero Fluid (TNHF) subtyp-
ing method (26). In brief, by utilizing both TNBCtype cor-
relations and our median ranks from  ∼4,000 genes, we 
are able to determine heterogeneous categories of mixed 
TNBC subtypes. This assignment of multiple subtypes in 
a tumor’s composition more appropriately informs us of 
the diverse cell types present in each patient’s tumor. Our 
method also considers the exclusion of certain subtypes 
to establish unique combinations of subtype composition. 
Unsupervised hierarchical clustering of these mixed subtype 
categories resolved into five distinct nodes (Fig. 5B and C). 
Cluster 1 is the largest node, composed of BL1+/M+/BL2−/
LAR− tumors, which happen to be derived from Ghanaians 
and Ethiopians. Cluster 2 is BL2+/M− and is composed exclu-
sively of AFR-high cases. Cluster 3 tumors are BL2+ and M+ 
tumors originating from AA and Ethiopian tumors. Cluster 
4 includes BL1+/BL2− with only AFR-high cases. Lastly, clus-
ter 5 includes LAR+ tumors derived from all of the patient 
groups (Fig.  5C–E). Interestingly, the tumors in clusters 2 
and 4 would also be classified as IM (with one UNS) and 
are exclusively derived from high AFR patients (Fig. 5E). We 
investigated the immune deconvolution CIBERSORTx sig-
natures of the IM/cluster 2 and 4 tumors and found the TAL 
populations show enrichment in specific immune cell popu-
lations that included B cells, CD8+ T cells, M2 macrophages, 
and natural killer (NK) cells (Fig. 5F). Overall, we find that 
the majority of these TNBC tumors in our African-enriched 
cohort are basal-like combined with mesenchymal, show-
ing a distinction of BL1 among Ghanaians and Ethiopians 
(BL1+/M+) and BL2 among Ghanaians and AAs (BL2+ and/
or M+; Fig. 5D). The clusters with high immune cell infiltra-
tion (2 and 4) are exclusively patients with substantial West 
African ancestry (Ghanaian and AA).

Genes Associated with SRR Are Involved in 
Comorbidity Pathways

In the interest of determining any distinct impact of racial 
social constructs on the biological phenotypes of tumors, we 
also investigated the functional pathway enrichment of SRR-
associated genes that were not associated with genetic ancestry. 
We hypothesized that functional pathways of gene signatures 
associated with SRR would differ from our ancestry-associated 
gene signatures, noting that the social construct of race is 
not a comprehensively reliable assessment of factors related 
to the implicit bias and systemic racism correlated with SRR. 
Nevertheless, the SRR-associated comparison model identified 
1,071 gene signatures as differentially expressed across SRR 
groups, and these were compared with our 613 AFR-associated 
genes and 345 EUR-associated genes (Fig. 6A). The overlap of 
ancestry-associated genes (AFR and/or EUR) with SRR genes 
included 320 genes, whereas 751 genes were uniquely associ-
ated with SRR. These distinctions of race- versus ancestry-
associated signatures demonstrate the importance of both 
individual genetic ancestry and SRR on gene expression signa-
tures in the context of tumor gene expression profiles.

Upon investigation of the 1,071 genes associated with 
SRR, unsupervised hierarchical clustering grouped patients 
by ancestry, where Ethiopian cases cluster distinctly from 
Ghanaian and AA cases (Fig.  6B), which is likely due to 
the influence of the overlapping ancestry-associated genes 
included in the analysis. However, unsupervised clustering of 
the 751 genes unique to the SRR analysis drastically changed 
the grouping (Fig.  6C), with AA cases diverging from the 
node containing all African cases. The African cluster also 
separated into two subnodes, but the divergence was largely 
driven by an upregulated gene signature found among AA and 
not seen among our African patients. We hypothesized that 
this signature represents distinct environmental influences 
that are unique to AA patients. Strikingly, signature pathway 
analyses determined that several known canonical pathways 
were enriched in AAs compared with Ghanaians and Ethio-
pians (P  <  0.05), including several related to comorbidities 
that may reflect unknown comorbidity health status in our 
patient cohort. Specifically, comorbidity pathways related 
to cardiac function, adiposity/obesity, diabetes, and insulin 
signaling were found to be activated among AA patients, but 
not activated in Ghanaian and Ethiopian patients (Fig. 6D). 
This supports the premise of social determinants linked to 
racial constructs, which are known to be associated with these 
diseases. These comorbidities potentially influence the race-
specific biological differences of TNBC microenvironments, 
which we detected in our cohort (Supplementary Fig.  S6A 
and S6B). Although these comorbidities are known risk fac-
tors for negative outcomes, they could be addressed with 
interventions that target these pathways in tumors.

DISCUSSION
This study is the first comparative RNA-seq study of TNBC 

that utilized an African-enriched cohort of east and West 
Africans along with AAs to discern the influence of genetic 
ancestry on TNBC tumor biology related to racial disparities. 
Our findings support the emerging concept that the inclusion 
of multiethnic patient groups in genomic research increases 
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Figure 5.  TNBC subtyping reveals the heterogeneity of tumors. A, Pie 
charts showing the distribution of TNBC subtypes across SRR groups for 
the TNBCtype initial call [Vanderbilt call (Vandy call), top row], TNBCtype 
call after removing/reassigning IM and MSL calls (middle row), and the 
calls using our median ranks method (bottom row). B, Heat map of cor-
relations from the Vanderbilt TNBC subtyping tool and our median ranks 
calling for TNBC subtypes. Color map at the top indicates SRR/ethnicity, 
high or low AFR cluster sample, Vanderbilt TNBC subtyping call, Vandy 
call after removal of IM/MSL, and our median ranks call. Samples are 
clustered into five groups, which are color coded and labeled 1 to 5 on the 
dendrogram at the bottom. C, Line plot depicting positive and negative 
correlations with the Vanderbilt tool and the median-ranking subtype 
calls in each of the TNHF clusters. (continued on next page)
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rigor and can have a transformative impact on cancer discov-
eries and overcoming disparities. Previous approaches have 
attempted to uncover the causal variables of disparate mortal-
ity and TNBC incidence but used SRR as a proxy for genetics 
or used global ancestry threshold cutoffs to categorize patient 
groups, which missed the broad range of genetic admixture 
we have detected here (AFR ancestry ranging from 16.64% to 
99.99%) as well as the variability of ancestral origin among AAs 
due to unique social histories across the African diaspora (33). 

Even European admixture among AA patients varies region-
ally, where less European admixture was reported among AA 
individuals in the Southeast United States compared with the 
Northeast or Pacific Northwest (32, 33). The unique composi-
tion of patient ancestry from the African diaspora in our inter-
national ICSBCS cohort gave us a novel power and perspective 
to show that using linear regression models with estimated 
genetic ancestry as a continuous variable can unveil a distinct 
set of African ancestry–associated genes. The high level of 
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Figure 6.  SRR-unique gene signature enriched in comorbid canonical pathways. A, Venn diagram depicting the overlap of AFR-, EUR-, and SRR-associated 
genes. DEG, differentially expressed gene. B, Unsupervised hierarchical clustering of the 1,071 SRR-associated genes. AMR, American. C, Unsupervised 
clustering of 751 genes unique to SRR. In both B and C, columns represent individuals, where SRR and ancestry are shown in the color map at the top, and 
rows represent genes. Node structure of individuals is shown at the bottom of the heat maps, where clustering was the individual node structure signifi-
cantly changed between B and C. D, Comparing gene expression values from the node structure in C, we determined enrichment of genes in known canonical 
pathways that would be associated with environmental exposures and/or potential patient comorbidities. Z-scores indicated predicted activation (positive 
z-score, orange) or inhibition (negative z-score, blue) of the pathway based on the expression of the genes in the pathway in the directionality of AAs. Black 
striped bars indicated pathways where no z-score/predication was indicated due to insufficient evidence in the Ingenuity Pathway Analysis knowledge base. 
The red line indicates a P value cutoff of 0.05 [−log(0.05) = ∼1.3].
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European admixture we detected in our Ethiopian patients, 
nearly equal to AFR ancestry, combined with a significant 
proportion of SAS admixture is a key example of the power of 
our oncologic anthropology approach (13). The non-African 

ancestral origins in Ethiopians were previously reported in 
genetic anthropology studies as a significant proportion of 
mitochondrial DNA haplotypes (29) and Y chromosome hap-
lotypes (30) with up to 50% of non-African ancestry (31). 
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Further, our subcontinental ancestry estimates revealed that 
although the predominant AFR ancestry of AA and Ghana-
ian patients is generally West African, the regional origin of 
African ancestry was distinct between these groups. Specifi-
cally, Ghanaians were primarily represented by YRI ancestry 
with less than 0.01% ESN ancestry, and AAs were primarily 
represented by ESN, with only two of 66 AAs reporting YRI 
ancestry over 30% (AA median YRI 0.00%). This is a relevant 
distinction for genome-wide association studies (GWAS) that 
attempt to identify AA-specific risk alleles utilizing a YRI refer-
ence genome for a genotype imputation template. Our work 
indicates that the YRI genetic background is less appropriate 
for our AA patients, and any genetic risk study that utilizes a 
single inappropriate AFR genome reference could adversely 
affect the relevance and rigor/reproducibility of the findings. 
Interestingly, the shared West African origins between Ghana-
ian and AA patients correspond with MSL ancestry (medi-
ans: 24.1% and 19.7%, respectively), which is rarely cited as a 
genome reference background.

We found that TNBC gene expression signatures associ-
ated with the superpopulation AFR ancestry estimates can 
be distinct from the signatures associated with regional/
national AFR ancestry. Interestingly, no overlapping gene 
signatures were found between YRI and ESN, the predom-
inant African origin of Ghanaians and AAs, respectively. 
Only YRI- and GWD-associated genes overlap among the 
West African population–associated genes. The lack of gene 
overlap suggests that there is a significant population-level 
divergence of genetic drivers that direct gene expression 
signatures even within African nations. This was surprising 
given that the YRI and ESN populations are geographically 
closer and presumably would have more similar genetic back-
grounds that would likely lead to significant gene signature 
overlaps. However, the only source of ESN ancestry in our 
cohort is derived from AA patients. These findings all sug-
gest that AFR subpopulations harbor functional/regulatory 
population-specific genetic drivers of gene expression that are 
relevant to disease pathology. Of note, AA patients also have 
unique environmental influences mediating genetic impact 
on gene signatures (36) compared with African patients, and 
a lack of gene expression signature overlap may represent the 
influence of mediating environmental factors.

The 600+ AFR-associated gene signatures effectively sepa-
rated the node of Ethiopian patients from the Ghanaian and 
AA patients, revealing a broad distinction of tumor biological 
traits. The predominant functions of these genes are mecha-
nisms of immune cell trafficking and activation of migra-
tion signals, and this was validated in independent cohorts 
with classic IHC methods, establishing a higher infiltration 
of tumor-associated leukocytes in the TME of patients with 
West African ancestry. Our findings are in agreement with 
previous studies that indicated higher inflammation and 
immune cell enrichment in race groups of African descent 
(16, 23). In addition, human evolution studies on general 
immunologic responses support our TNBC findings, where 
distinct immune expression signatures have been reported 
in response to pathogens, including differential immune 
cell activity between European and African populations (44, 
45). We hypothesize that our previous observations, related 
to TME inflammation in the context of the African-specific 

Duffy-null blood group status (6, 18), may further account 
for these ancestry-specific clinical consequences. Interest-
ingly, the heightened immune response was specifically 
associated with the MSL subgroup ancestry (Fig. 4C–E and 
Fig.  5B, respectively), implicating a shared MSL ancestral 
origin of our cohort as the likely source of a genetic factor 
that modifies immunologic responses. Further studies are 
needed to untangle the actual alleles that may be MSL-
specific and functionally involved in immune responses.

Although these analyses primarily focused on the proof of 
principle of ancestry conveying an influence on tumor biol-
ogy, cancer is well known to be influenced by the intersection 
of genetic and environmental variables (36, 46). Therefore, we 
also demonstrated the importance of a bimodal approach to 
cancer disparities research (47) that engages both social and 
biological variables. To investigate any social determinant 
effect, we modeled SRR associations with gene expression 
and were able to detect biological differences that were not 
associated with genetic ancestry. Although SRR alone does 
not capture certain social determinants, SRR-associated gene 
signatures involved canonical pathways that are known to 
be influenced by individual and area deprivation, suggest-
ing SRR captures, at least in part, the influence of social 
structure on tumor biology. Our findings emphasize once 
again a need to assess social constructs and quantify the 
related racial discrimination practices, such as issues with 
marginalization and community redlining (48), to establish 
the impact of these practices on the underlying biology that 
determines treatment outcomes. It is equally important to 
note that beyond just characterizing the causal factors of 
disparities, finding novel biological traits presents an oppor-
tunity for therapeutic targets or interventions that incorpo-
rate these signatures in clinical treatment decision-making to 
improve outcomes.

Uncovering AFR-associated gene expression in normal 
breast tissue that overlaps with gene signatures in tumors 
indicates that cancer-related gene networks may have base-
line differences across the diverse population even before 
tumors develop (20, 47). We have shown systemic differ-
ences in inflammation among patients with cancer and 
healthy controls that is associated with African-specific 
alleles (i.e., Duffy-null; ref.  38), which are related to both 
normal and tumor enrichment of inflammatory response 
gene expression. It is imperative to understand the extent 
of population differences in the regulation of gene net-
work baselines that may ultimately sustain tumorigenesis 
pathways. Several of the baseline AFR-ancestry gene expres-
sion changes we detected in normal tissue were switched 
to opposing directions in tumor tissue. This finding pro-
vides preliminary evidence that the ancestry-specific differ-
ences in tumor expression could be initiated in response 
to malignancy as opposed to normal biological variation. 
For example, the AVPR2 gene is negatively correlated with 
AFR ancestry in normal tissue but switches to be positively 
correlated with AFR ancestry in tumors, showing a pop-
ulation-specific pattern of drastic upregulation in TNBC 
tumors. The function of AVPR2 was defined as maintaining 
homeostatic levels of water and electrolytes in renal cells 
but has been detected in multiple cancer types, including 
breast cancer (49), with both pro- and antimalignant actions 
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depending on the tumor type (49–52). The apparent clinical 
associations with survival trends appear to only emerge in 
AAs (Fig. 2I) compared with EA patients and further suggest 
population-private functionality that could be implicated in 
disease prognosis or novel therapeutic opportunities. Simi-
larly, the FNDC3B gene, previously known as the factor for 
adipocyte differentiation, is an RNA binding protein that 
has been shown to be predominantly expressed in white 
adipose tissue and increases expression to play a role in 
early stages of adipocyte differentiation. It has a normal to 
tumor tissue expression transition from positive to negative 
correlation with AFR ancestry, respectively. This effective 
downregulation could represent an important loss of meta-
bolic pathway regulation, as variants of FNDC3B have been 
GWAS hits in hemoglobin A1C measurements, body mass 
index, and waist–hip ratio. Interestingly, there is a higher 
expression of FNDC3B in TNBC (TCGA) compared with 
non-TNBC and persistently lower expression in AA com-
pared with EA patients, with a subtype-agnostic association 
with survival that differs among race groups. Specifically, we 
observe better survival trending with high FNDC3B expres-
sion in EA patients, but low expression is associated with 
better survival in AA patients. Intriguingly, this suggests 
that SRR-associated gene network changes could be derived 
from distinct normal breast biology. However, one key limi-
tation to these observations is the relatively low number of 
diverse patients in publicly available datasets with normal 
tissue expression.

As we continue to uncover the genetic regulation and 
environmental cues that influence TNBC differences across 
patient populations, our findings provide benchmarks for 
gene candidates of effective interventions to reduce mortal-
ity disparities and even cancer prevention. Ultimately, the 
unique tumor traits that hinge upon ancestry-associated gene 
expression signatures described here represent an impor-
tant opportunity to fully characterize functional differences 
in tumor biology and opens a path to novel theragnostic 
options for these highly aggressive tumors.

METHODS
Ancestry Patient Cohort

ICSBCS Patient Cohort. The ICSBCS biorepository represents the 
efforts of an international consortium of breast cancer clinicians 
and researchers with the goal to characterize breast cancer disease 
in diverse populations worldwide. We have prospectively recruited 
patients with breast cancer since 2006, from whom formalin-fixed, 
paraffin-embedded (FFPE) tumor tissue has been collected. Across 
all institutions, written informed consent was obtained from the 
patients, and the work has been conducted in accordance with recog-
nized ethical guidelines. Institutional Review Board (IRB) approval 
for the utilization of biorepository samples was obtained from partic-
ipating sites in the United States (Weill Cornell Medical College, New 
York, NY; Henry Ford Health System, Detroit, MI; and University of 
Michigan, Ann Arbor, MI) and our international African partnering 
institutions (Komfo Anokye Teaching Hospital, Kumasi, Ghana, and 
the Millennium Medical College St. Paul’s Hospital, Addis Ababa, 
Ethiopia). In the present study, TNBC tumor tissue was obtained 
from a total of 45 patients, including nine AAs, three EAs, 12 Ghana-
ians, and 21 Ethiopians (Supplementary Fig.  S1). Confirmation of 
TNBC diagnosis by IHC was completed for Ghanaian and Ethiopian 
cases at our ICSBCS U.S. site locations in Michigan (University of 

Michigan, Henry Ford Health System) and New York (Weill Cornell 
Medical College). Samples collected in this cohort were used in both 
the ancestry (n = 61) and gene expression analyses (n = 26; Supple-
mentary Fig. S1; Supplementary Table S6).

University of Alabama at Birmingham Patient Cohort. The University 
of Alabama at Birmingham (UAB) TNBC cohort has been previously 
described (26) and consists of a convenience cohort of retrospective 
FFPE TNBC tissue collected between 2000 and 2012 at the UAB. Sam-
ples were collected and used under the UAB IRB. In the present study, 
samples were analyzed from 74 patients, including 42 AA and 32 EA 
patients. Samples in the UAB patient cohort were used in ancestry 
comparisons and as a validation cohort for gene expression analyses 
findings (Supplementary Fig. S1).

Englander Institute for Precision Medicine Patient Cohort. All sam-
ples were collected and used under the Weill Cornell Medical College 
IRB. In the present study, we have estimated ancestry from TNBC 
tissue of 13 patients, including one AA, six EA, two Asian, and four 
patients who responded “other” or declined to provide race/ethnicity 
information (Supplementary Fig. S1).

RNA Extraction from Archival FFPE Tissue
RNA was extracted from archival FFPE tissue using a modified 

Qiagen RNeasy FFPE Kit protocol. Briefly, prior to deparaffinization 
of the FFPE tissue, the samples were incubated with 1× acidic anti-
gen retrieval solution at 90°C for 5 minutes. Following incubation, 
samples were cooled to room temperature and any excess paraffin 
was removed from the tube. We then proceeded through the standard 
kit protocol. RNA yield was quantified using the Qubit RNA Broad 
Range kit and Qubit 4.0 fluorometer.

RNA Library Preparation and Sequencing
The quality of each RNA is assessed using RNA High-Sensitivity 

Screen on TapeStation (Agilent Technologies). For RNA sequencing, 
100 ng of total RNA molecules were used to construct libraries using 
Illumina TruSeq RNA Exome Library Prep Kit following the manu-
facturer’s protocols. The final libraries were then quantified using 
Agilent D1000 Screen Tape as well as sequenced on Illumina MiSeq 
V2 Micro Kit to assess insert sizes and integrity before sequencing 
on a high-throughput sequencer. Each library was normalized to 
4  nmol/L and pooled and sequenced on an Illumina NextSeq500 
High Output Kit (Illumina). All sequencing reads were converted to 
industry-standard FASTQ files using BCL2FASTQ (version 1.8.4).

RNA-seq Data Processing and Quality Control of Samples
Raw RNA-seq reads were assessed with Fast QC (version 0.11.8; 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and Trim-
momatic (ref.  53; version 0.36) was utilized for read trimming and 
adapter removal. Reads were aligned using HISAT2 (ref. 54; version 
2.0.4) with the GrCh37 reference genome. Picard tools (version 2.18.3; 
https://broadinstitute.github.io/picard/) were used to pull alignment 
metrics for the samples, in which a number of sequenced reads were 
found to have high levels of read duplication. Duplicate reads were 
removed using Picard, and only samples that had 10M reads after 
deduplication were utilized in subsequent gene expression analyses.

Ancestry Estimation Using Variants Called from  
RNA-seq Alignments

Ancestry proportion is determined by the Admixture v1.3.0 (55) 
software, which uses a maximum likelihood–based method to esti-
mate the proportion of reference population ancestries in a sample. 
We genotyped the reference markers generated from 1,964 unrelated 
1000 Genomes project (28) samples directly on the RNA-seq samples 
using GATK pileup. Individuals from populations MXL (Mexican 
ancestry from Los Angeles in United States), ACB (African Caribbean 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://broadinstitute.github.io/picard/
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in Barbados), and ASW (African ancestry in the Southwest United 
States) were excluded from the reference due to being putatively 
admixed. The reference was further filtered by using only SNP markers 
with a minimum minor allele frequency of 0.01 overall and 0.05 in at 
least one 1000 Genomes superpopulation. Variants were additionally 
linkage disequilibrium–pruned using PLINK v1.9 (56) with a window 
size of 500 kb, a step size of 250 kb, and an r2 threshold of 0.2, resulting 
in 122,377 markers remaining. The analysis results in a proportional 
breakdown of each sample into five superpopulations [AFR, American 
(AMR), EAS, EUR, and SAS] and 23 subpopulations (Supplementary 
Table S1).

Gene Expression Quantification and Differential 
Gene Analysis

Stringtie (ref. 54; version 1.3.3) was used to quantify gene expres-
sion from our deduplicated aligned reads. Quantified genetic ances-
try and SRR groups were used to identify ancestry- or SRR-associated 
genes in our cohort, using linear regression analysis comparing gene 
expression either with the continuous ancestry variable or ANOVA 
analysis to determine associations with the categorical SRR variable. 
Genes with P < 0.01 were included in further analyses. Unsupervised 
hierarchical clustering of our gene lists was completed using JMP Pro 
16 (SAS Institute Inc.).

Network Analyses of Differentially Expressed Genes
Ingenuity Pathway Analysis software (Qiagen, version 01-16) was 

used to determine the involvement of our gene lists in various 
canonical pathways, to determine upstream regulators, and to draw 
de novo networks involving our gene lists. For each analysis and gene 
list, the log fold change was calculated based on the resulting node 
structure of the samples when the gene lists underwent unsupervised 
hierarchical clustering, as our ancestry-associated versus SRR gene 
lists resulted in different clustering patterns of our samples.

Gene Expression Analysis in Nondiseased  
Breast/Mammary Tissue

To explore our AFR-associated gene signatures in normal mammary 
tissue, we obtained ancestry estimations and gene expression values [tran-
scripts per million (TPM)] from the GTEx cohort (https://gtexportal.org/
home/datasets). African ancestry was determined by principal coordi-
nates as described by Gay and colleagues (57), where PC1 was associated 
primarily with AFR ancestry. Using PC1 <−0.04 as a threshold for AFR 
ancestry, we identified 47 individuals of AFR ancestry. Twenty of the 47 
AFR ancestry individuals identified as female, and expressed the female-
specific long noncoding RNA X-inactive–specific transcript and no genes 
from chromosome Y, and were used in subsequent analyses.

Survival Analysis of AFR Ancestry–Associated Genes in 
TNBC Tumors and Nondiseased Breast/Mammary Tissues

The TCGA BRCA cohort was used to determine if there was 
any prognostic benefit associated with our AFR ancestry–associated 
genes found in both TNBC and normal breast tissue (GTEx). Survival 
data (58) were obtained from https://gdc.cancer.gov/about-data/ 
publications/pancanatlas. We used an upper quartile cutoff to sepa-
rate patients into high- and low-expression categories, in which dif-
ferences in survival outcomes were visualized by fitting Kaplan–Meier 
curves. P values from log-rank tests were reported where significant 
differences were found.

Tumor-Associated Immune Cell Abundance in Tumors Using 
RNA-seq Deconvolution and Enrichment Methods

To determine estimated abundance of tumor-associated immune 
cell populations, we used the online CIBERSORTx (39) platform 
(https://cibersortx.stanford.edu/) with our gene expression values 

as input. The LM22 signature matrix file was used as a reference, 
and the estimation was completed with quantile normalization disa-
bled (as recommended for RNA-seq data) with 500 permutations. 
Only CIBERSORTx output that was determined to be significant 
(P < 0.05) was included in our analyses.

We have additionally used xCell for deconvolution of immune and 
other cell populations from our bulk RNA-seq data (40). Normalized 
TPM expression was used as input for the xCell algorithm.

IHC of CD3 and FOXP3
FFPE tumor blocks were obtained from the ICSBCS biorepository. 

Slide preparations were conducted through the Henry Ford Health 
System Histology Core using standard operating protocols. From the 
FFPE blocks, 4-μm sections were obtained. Multiplex staining was 
done using FOXP3 at a 1:100 dilution (BioLegend, cat. no. 320101) 
with CD3 predilute (Agilent, IR503) as the antibody diluent. Clinical 
attributes of the IHC cohort are reported in Supplementary Table S7.

Tumor-Infiltrating Leukocyte Analysis from IHC
Tumor-infiltrating leukocyte markers from multiplex IHC stain-

ing were analyzed using HALO software (V3, Indica Labs). Stained 
slides were electronically scanned using the Leica Aperio scanner and 
transferred into the HALO program. Positively stained tumor cells 
were annotated from hematoxylin and eosin staining and matched to 
a serial section with FOXP3 and CD3 multiplex staining. A custom 
algorithm optimized to detect color differences between the two 
markers was used to determine the number of positively stained cells 
for each marker. Positive tumor cells for each marker were divided 
by the total number of tumor cells and converted to a percent for 
subsequent data analysis.

Protein-Level Immune Cell Deconvolution of TNBC Cases
The NanoString GeoMx Digital Spatial Profiler was used to ana-

lyze immune profiles of four TNBC cases representing two AA and 
two EA patients. Patients were consented at Tuskegee University 
under IRB approval. FFPE tissue was sectioned and stained with 
fluorescently labeled antibodies specific for the epithelial cell marker 
PanCK, pan-leukocyte marker CD45, and macrophage marker CD68. 
Data from four to five ROIs were captured per patient, in which 
segmentation was performed on each ROI to distinguish the stromal 
and tumor compartments. Immune cell quantifications for each 
segmented stromal and tumor ROI were determined with the R/
Bioconductor package spatialdecon (59).

TNBC Subtyping
To determine TNBC subtypes of our samples, we input gene 

expression values into the Vanderbilt TNBCtype online tool (https://
cbc.app.vumc.org/tnbc/; ref.  42). The TNBC subtypes IM and MSL 
have been determined to primarily represent infiltrating immune 
cells and tumor-associated stroma, respectively, and therefore these 
calls are reassigned to their second most correlated call and signifi-
cant call (43). UNS are where multiple correlations are significantly 
associated with a tumor gene expression profile, and in our cohort, 
these were able to be resolved after disregarding IM and MSL calls.

As a supplementary validation method to the gene expression 
correlation-based Vanderbilt TNBC classification tool, a summarized 
ranks measure was computed using the original TNBC subtypes 
signatures for all samples using normalized RNA-seq expression 
data. TNBC subtype signatures were obtained from Lehmann and 
colleagues (42). Across all samples, all genes expressed were ranked 
from low to high expression using the rank function in R statistical 
software, with a minimum rank method used to resolve duplicate 
expression ties. For each sample, ranks for each gene in the given 
subtype signature were extracted and a representative median of 
ranks for the gene signature was calculated to estimate the overall 

https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://cibersortx.stanford.edu/
https://cbc.app.vumc.org/tnbc/
https://cbc.app.vumc.org/tnbc/
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regulation of the signature with respect to the total expression. The 
TNBC subtype signature with max median signature rank per sample 
was the assigned TNBC subtype for the sample.

Data Availability Statement
Sequencing data from our gene expression cohort can be accessed 

in the Gene Expression Omnibus (GSE211167).
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