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Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral
routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses,
which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis
of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic
gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to
cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the
characteristic is, which will immunologically explain H. pylori gastritis.

1. Introduction

Helicobacter pylori (H. pylori) has coevolved with its human
host for no less than 30,000 years. It can safely colonize
around the epithelium of gastric gland via their specific
microstructure and self-synthesizing proteins such as che-
moreceptors [1], flagella [2], and urease [3]. Chemotaxis
assists H. pylori to find nutrients (urea and arginine) and
avoid toxic substances like reactive oxygen species (ROS).
H. pylori obtains nutrients from blood [4] and even extract
nutrients from the host cells such as lipid, cobalt, iron, and
nickel [5, 6]. Arginine is required for H. pylori growth and
is sensed by TlpA [7]. Urea and gastric mucus pH gradient
are sensed by TlpB for self-protection and chemotactic ori-
entation [8, 9]. Additionally, H. pylori uses TlpB to sense
injured sites and preferentially colonizes injured sites in the
mouse stomach, independent on urea [10], which may indi-
cate the inflammatory condition benefits the growth of H.

pylori. Spiral shape is necessary to fast move and penetrate in
the mucus layer via corkscrew-like movement [11]. Two fla-
gellins (FlaA and FlaB) are indispensable for bacteria motil-
ity [12, 13]. FlaA mutants show a greater decline of motility
than that of FlaB mutants [14]. H. pylori lacking MotB is
nonmotile and retains only a nonfunctioning flagellar struc-
ture [13]. Urease is a nickel-dependent metalloenzyme [15].
Both insufficient cytoplasmic nickel availability or excessive
nickel entry impair the activation of urease and the survival
of H. pylori [16, 17]. Urea hydrolyzed by urease finally pro-
duces ammonia and CO2 to participate in lowering pH and
the regulation of mucus viscoelasticity [18]. H. pylori enters
the mucus layer after a short duration within the lumen and
persistently distributes within approximately 25-30μm of
mucosal epithelial cells where the pH ranges from 4.5 to
6.5, or directly on the epithelium or deep inside the glands
[3, 19, 20]. After BabA/SabA-mediated adhesion [21], H.
pylori, gastric epithelial cells, and leukocytes interact with
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each other to achieve the balance. During H. pylori infection,
immune cells infiltrate to the lamina propria and submu-
cosa, aiming to clear H. pylori [22]. H. pylori skews host
immune response to avoid clearance and achieve persis-
tence, such as cholesterol glycosylation, escaping the Toll-
like receptor (TLR) recognition, tolerating dendritic cells
(DCs), blocking T cell proliferation, inducing Treg skewing,
and upregulating PD-L1 [23–26].

Inflammation is triggered when innate immune cells
detect infection or tissue injury [27]. Although H. pylori
manipulates the host immune system, inadequate immune
response and inflammation are still initiated, leading to
chronic active gastritis. Inflammation is an essential and a
complex biological process that protects the body from
potential harm caused by infection or injury [28] and
develops in response to pathogen-associated molecular pat-
terns (PAMPs) from H. pylori and damage-associated
molecular patterns (DAMPs) from damaged epithelial cells
[29]. Pattern recognition receptors (PRRs) are membrane
associated or soluble, which are owned by both immune
and nonimmune cells, and respond to PAMPs and DAMPs,
initiating downstream signaling cascades, including the pro-
duction and secretion of pro- and anti-inflammatory cyto-
kines to further modulate immune response [30].

2. PAMPs Derived from H. pylori Inducing
Inflammation: NF-κB and Type I IFNs

2.1. Antigen-Presenting Cells (APCs). PRRs expressed on
APCs (macrophages, DCs, and B cells) including TLRs,
nucleotide-binding oligomerization- (NOD-) like receptors
(NLRs), and C-type lectin receptors (CLRs) can detect
PAMPs derived from H. pylori [31] such as lipopolysaccha-
ride (LPS), lipoproteins and peptidoglycan (TLR2), dsRNA
and polycytidylic acid (TLR3), LPS and heat shock proteins
(TLR4), flagellin (TLR5 and 11), and unmethylated CpG
containing ssDNA (TLR9) [32–34]. TLR activation increases
the activity of NF-κB and transcription of type I IFNs [35].
Both TLR2 and TLR4 on DCs and macrophages can recog-
nize LPS and shape the H. pylori-induced pro- and anti-
inflammatory cytokines and chemokine milieu [36, 37].
Receptor complex combining TLR2 with TLR1, 6 or 10,
not TLR4 is also reported [38–40], which further indicates
both pro- and anti-inflammation roles of TLR2. TLR9 is
expressed exclusively in intracellular vesicles and recognizes
unmethylated CpG DNA motifs to induce the transcription
of NF-κB and IRF7 via MyD88 and subsequent increase of
inflammatory cytokines and type I IFNs in APCs [41, 42].
It has also demonstrated that TLR9 is involved in both sup-
pressing and promoting inflammation after recognizing H.
pylori DNA [41]. For example, increasing Th1 cells (IFNγ)
and Th17 cells (Th17) is found in Tlr9−/− mice [43, 44],
and the roles of activating NF-κB, upregulating the expres-
sion of COX-2/prostaglandin E2, and activating neutrophils
are also found after activating TLR9 [45, 46]. CLRs
expressed by DCs are pivotal for both antigen presentation
and Th cell differentiation [47]. CLRs on DCs and macro-
phages can be activated by H. pylori metabolites modified
from host cholesterol (cholesteryl acyl α-glucoside and cho-

lesteryl phosphatidyl α-glucoside), exacerbating gastritis [48,
49]. C-type lectin DC-specific intercellular adhesion
molecule-grabbing nonintegrin (DC-SIGN) can recognize
LPS Le antigens [50], which can be misused by distinct
mechanisms that either circumvent antigen processing or
alter TLR-mediated signaling to decrease Th1 cells and
increase Treg cells [51, 52]. For example, H. pylorimodulates
the Th1/Th2 balance through the phase-variable interaction
between LPS and DC-SIGN and the variation of O-antigen
decorated by fucose residues binding to DC-SIGN to block
Th1 development [53, 54]. B cells also express TLR and
MyD88. CpG (TLR9), LPS (TLR4), and peptidoglycan
(TLR2) are found to induce B cell-derived IL-6, IL-12, and
IL-10 [55, 56]. TLR signaling in B cells inhibits inflamma-
tory T cell response (both Th1 and Th17 cells), which can
be controlled by TLR agonists [57]. Further B cells produce
IL-10 after being activated by H. pylori and suppress the dif-
ferentiation of DCs activated by H. pylori [58]. And activated
TLR2 by H. pylori on B cells also induces Treg (IL-10) [59].

2.2. Gastric Epithelial Cells. TLR2, TLR4, TLR5, TLR9, and
NOD1 are expressed by epithelial cells and induce NF-κB
activation and IFN production in these cells to defense
against H. pylori, as a central principle of mucosal immunity
[60–63]. Increasing expression of TLR2, TLR4, TLR5, and
TLR9 in gastric epithelia of children’ gastritis [64]; TLR4,
TLR5, and TLR9 in adults’ gastritis [60]; TLR2, TLR4, and
TLR5 in gastric dysplasia [65]; and TLR4, TLR5, and TLR9
in gastric cancer (GC) [61] is found. Expression of TLR2
and TLR4 in chronic gastritis caused by H. pylori remains
increased after eradication therapy in 3 months [66]. TLR2
is the most extensively expressed receptor among all the
TLRs in gastric mucosa infected by H. pylori [67, 68]. In gas-
tric epithelial cells, TLR2 cooperates with TLR4 to
strengthen the innate immune response to LPS and activate
NF-κB and inducible nitric oxide synthase (iNOS) [68]. Sig-
nificantly increasing TLR9 in gastric epithelial cells are dem-
onstrated in patients residing in the region with a high GC
risk, and H. pylori isolated from them can cause increasing
activation of TLR9 [69]. Regarding on CLRs, besides of the
expression on the surface of DCs, DC-SIGN is overexpressed
in gastric epithelial cells, when facing LPS stimulation [70,
71] and induces a Th1 dominating cytokine response [71].
Furthermore, DC-SIGN stimulated by LPS interacts with
TLR4, promotes NLRP3, and regulates the production of
IL-1β and IL-18 in gastric epithelial cells [70]. H. pylori pep-
tidoglycan delivered into host cells by the T4SS is recognized
by epithelial cells via Nod1 [72], leading to NF-κB activation
and the production of β-defensin and type I IFNs from
Nod1-activated gastric epithelial cells [73–75]. H. pylori
can secrete outer membrane vesicles (OMVs) separated
from the bacterial outer membrane [76]. OMVs containing
peptidoglycan enter epithelial cells at cholesterol-rich lipid
rafts and induce NOD1-dependent response [77]. Apart
from PPRs, D-glycero-β-D-manno-heptose 1,7-bispho-
sphate (β-HBP) is a T4SS-dependent effector of NF-κB acti-
vation via alpha-protein kinase 1- (ALPK1-) TRAF-
interacting protein with forkhead-associated domain (TIFA)
in gastric epithelial cells [78]. ADP-glycero-β-D-manno-
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heptose (β-ADP heptose), a derivative of β-HBP, is more
active than β-HBP [79]. β-ADP heptose mediates NF-κB
activation and cytokine expression after directly binding
the N-terminal domain of ALPK1 [80]. Additionally, CagA
also contributes to the NF-κB signaling after TIFA and
NOD1 activation [81].

3. DAMPs from Gastric Epithelium
Inducing Inflammation

Acute and chronic inflammation caused by H. pylori can
damage epithelial cells and induce inflammatory edema,
atrophy, and necrosis/apoptosis. DAMPs are released during
tissue damage and typically derived from intracellular and
extracellular continents, which are recognized by PRRs
(TLRs and NLRs) and by non-PRRs (RAGE, CD44, integ-
rins, and CD91) to recruit neutrophils and monocytes and
activate inflammation and tissue repair [82]. Interleukin-1
(IL-1) and tumor necrosis factor (TNF) are the notable pro-
inflammatory cytokines in this process.

IL-1 (IL-1α and IL-1β) is the proinflammatory cytokine
mainly produced by macrophages and acts through IL-1
receptor (IL-1R), which is important to recruit neutrophils
and monocytes and to induce additional proinflammatory
cytokines [83]. Caspase-1 is responsible to cleave IL-1β into
the biologically active form [84]. Caspase-1 is activated by
inflammasomes composed of a PRR of the NLR family such
as NLRP3, NLRC4, and AIM2 inflammasome [85]. Research
has identified that H. pylori can activate inflammasomes. For
example, caspase-1 activation and production of IL-1β and
IL-18 in mice are the consequence of H. pylori infection, in
which IL-1β is produced for clearance and IL-18 is for per-
sistence [86]. AIM2 inflammasome is demonstrated to rec-
ognize cytoplasmic DNA [87], which is also induced by the
OMVs of gram-negative pathogens [88]. NLRC4 expression
is upregulated by proinflammatory stimuli like TNFα [89].
H. pylori exploits the NLRC4 inflammasome to enhance
neutrophil infiltration and induce IL-18 production in gas-
tric epithelial cells to block β-defensin expression via NF-
κB activation [90]. NLRP3 can recognize nucleic acids, bac-
terial proteins, and metabolites [91]. The proinflammatory
cytokines released upon NLRP3 activation are IL-1β, IL-18,
HMGB1, leukotrienes, and prostaglandins [92]. H. pylori
infection activates the NLRP3 inflammasome and IL-1β
production in neutrophils [93, 94], differentiated macro-
phages [95], and DCs [96]. Furthermore, the activation of
NLRP3 inflammasome by H. pylori via ROS signaling path-
way also leads to the production of IL-1β and IL-18 in
human monocytes [97]. These results suggest a dual role of
the inflammasome in H. pylori infection. Additionally, Treg
cells can be activated by the activation of axis of urease
enzyme of H. pylori/TLR2/NLRP3/caspase-1/IL-18 [98].
Furthermore, the application of exogenous activators
induces NLRP3 inflammasome formation, and the secretion
of high amounts of IL-1β in infected cells, which indicates
cellular injury regardless of causes (e.g., bile, smoking, alco-
hol, drugs, and other gastric microbiota), may have synergis-
tic effect with H. pylori infection to exacerbate damage to
gastric epithelium [99].

TNF has been participated in regulating immunity and
inflammation. It is widely and constitutively expressed by
activated immune cells, as well as by fibroblasts and endo-
thelial and epithelial cells responding to proinflammatory
cytokines including TNF itself [100, 101]. It is cleaved by
TNFα-converting enzyme to release soluble TNFα [102].
TNF mediates inflammatory pathology through binding to
TNFR1 and TNFR2 [103]. TNFR1 interacts strongly with
both membrane and soluble TNFα, whereas TNFR2 binds
to membrane TNFα with much higher affinity. TNFR1 is
expressed by near all cells. TNFR2 expression is limited to
cells of immune and endothelial origin [101]. It means H.
pylori infection can induce TNF production and activate its
signal pathways in many aspects. TNF downstream path-
ways mainly involve NF-κB, MAPKs, caspases, and ROS/
RNS. TNFR1 and 2 induce the activation of MAPK and
NF-κB. TNFR1 can also stimulate apoptosis and necroptosis,
as it harbors a death domain in the cytoplasmic part [101,
104]. As a proinflammatory cytokine, TNFα causes vasodila-
tation and edema, leukocyte adhesion to epithelium, and
oxidative stress in inflammatory sites, mediated by the
induction of NO, prostanoids, and ROS [105, 106]. TNFα
may also regulating the production of ROS and RNS [107].
Macrophages, DCs, and gastric epithelial cells produce
TNF and IL-1β in a dose- and time-dependent manner after
exposure to H. pylori [108–110]. TNFα induces the apopto-
sis of parietal cells in H. pylori infected rat [111]. Increasing
TNFα is found in H. pylori infected chronic atrophic gastritis
(CAG) and associated with chronic inflammation degree
[112]. Soluble TNF receptors (sTNFRs) are shown actively
produced in H. pylori infected gastric mucosa, and anti-
sTNFR monoclonal antibodies increase TNF-induced gastric
epithelial cell apoptosis, which suggests that sTNFR has a
protective effect [113]. In addition, TNFR1 increase is
seemly related to the aggressiveness of gastric lesions [114].
These may indicate severe infection cause increasing TNFα
companied with increasing sTNFRs to avoid more loss of
gastric epithelial cells.

NF-κB activation may prevent cell death because it con-
trols the transcription of a number of genes involved in cell
survival, proliferation, and inflammation [107]. Oxidative
stress has a crosstalk with both TNF [107] and NF-κB
[115] via bidirectional effects, as they have complex interac-
tion with each other during production process. Briefly, it
means oxidative stress can both activate and inhibit NF-κB
pathway, and NF-κB pathway has anti- and prooxidant role
in oxidative stress [116]. TNF promotes the production of
ROS and NF-κB. TNF-induced ROS inhibits NF-κB activa-
tion, reduces NF-κB-mediated survival signaling, and
explains the cell death associated with high ROS levels
[116]. Mitochondrial ROS can facilitate TNF-mediated NF-
κB activation [115]. Furthermore, these effects are further
complicated by TNF-induced NO production. TNF-
induced NF-κB promotes the transcription of the gene that
encodes iNOS for producing NO with anti- and prooxidant
roles [117]. There may be also a subtle NO/ROS/RNS bal-
ance in TNF signaling [118]. H. pylori increases ROS and
RNS mainly from immune cells such as neutrophils and gas-
tric epithelial cells, correlating with the severity of mucosal
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inflammatory damage and genetic instability [119, 120]. In
addition, iNOS expression is highly induced in the epithe-
lium of atrophic gastritis, as well as metaplasia and dysplasia
[121]. NF-κB can stimulate iNOS in gastric epithelial cells
maybe further to prevent cell death [68], which depends
on DNA damage caused by ROS/RNS in gastric epithelial
cells [122, 123]. Furthermore, the long-lasting state with
inflammation, oxidative stress, and DNA damage may also
lead in GC [124].

4. Neutrophil Recruitment and Inflammation

Neutrophils are the first leukocytes recruited to the inflam-
matory site during acute inflammation, aiming at eliminat-
ing pathogens by phagocytosis, deregulation, and
neutrophil extracellular traps. Neutrophils and macrophages
produce ROS, proteases, and growth factors, leading to tis-
sue destruction, fibroblast proliferation, abnormal accumu-
lation of collagen, and fibrosis [125]. For example, ROS
produced by neutrophils and NO produced by macrophages
fail killing H. pylori, but do damage on gastric epithelial cells
(e.g., nuclear DNA and mitochondria, even cell death or gas-
tric carcinogenesis) [119, 124, 126]. Neutrophil recruitment
is started by changes on endothelial surface induced by
inflammatory cytokines released from tissue-resident senti-
nel leukocytes exposed to pathogens [127]. Macrophages
and mast cells reside in tissues are sentinel cells to initiate
neutrophil recruitment via increasing the permeability of
local blood vessels and chemokine secretion after the activa-
tion of PRRs such as TLRs, NLRs, and CLRs [128, 129]. For
instance, TNFα produced from activated macrophages and
mast cells acts as a crucial role to recruit neutrophils [130].
H. pylori infection is characterized by rapid and continuous
recruitment of neutrophils followed by T and B cells, plasma
cells, and macrophages [131]. Apart from the activation of
PPRs causing neutrophil recruitment (e.g., both TNFα and
IL-1β can induce neutrophil recruitment), H. pylori
neutrophil-activating protein (HP-NAP) can induce trans-
endothelial migration of neutrophils and activate neutro-
phils such as the release of myeloperoxidase and production
of ROS/RNS, IL-8, and CCL4 [132–135], which is attenuated
when lacking SabA [136] or ablating hepatoma-derived
growth factor [137]. HP-NAP is shown to determine the
host risk of dyspepsia by ROS exposure and chronic inflam-
mation [138]. Additionally, HP-NAP has immune modulat-
ing roles and induces cytokines from other immune cells
[139]. After entering into the inflammatory tissue site, neu-
trophils express many cell surface receptors [140] and recog-
nize PAMPs and DAMPs by neutrophil PRRs [141],
opsonins by opsonic receptors and bacterial products
[142], and endogenous molecules released during inflamma-
tion by G protein coupled receptors [143]. Neutrophils are
involved in the complex bilateral interactions with afore-
mentioned immune cells [144, 145]. HP-NAP can regulate
immunity, which may be attributed to the regulation from
neutrophil itself, which means immunity is actually regu-
lated by neutrophils, and HP-NAP is just responsible to
recruit neutrophils.

5. Adaptive Immune and Inflammation

Adaptive immunity is responsible for the production of anti-
bodies and the activation of cytotoxic lymphocytes after rec-
ognizing antigen peptides presented by APCs [146]. Naïve
CD4+ T cells are induced to differentiate towards Th1 (IL-
2 and IFNγ), Th2 (IL-4, IL-5, IL-3, and IL-13), Th17 (IL-
17 and IL-22), and Treg (IL-10 and TGF-β) phenotypes
according to the local cytokine milieu [147, 148]. H. pylori
infection can induce these cells differentiation with different
proportions and a balanced cytokine network. As a patho-
gen, innate and subsequent adaptive immune responses are
evoked to eliminate H. pylori. Th1 and Th17 and their corre-
sponding cytokines are required for infection control [149,
150]. As a persistent colonizer coevolving with human, it
can skew adaptive immune response. For example, both
VacA and γ-glutamyltransferase (GGT) possess pro- and
anti-inflammatory effects. They block the proliferation of T
cells via blocking the cell cycle [151, 152] and induce cell
death and proinflammatory cytokine production (TNF-α
and IL-1β induced by VacA, and cyclooxygenase-2, prosta-
glandin E2, NF-κB, and IL-8 induced by GGT) [153–157].
H. pylori can induce the Treg cell differentiation and
increase IL-10 and TGF-β1 in infected patients, in particular
in children [158–160]. Treg cell differentiation requires the
direct interaction between naïve T cells and tolerogenic
DCs exposed to H. pylori [161, 162]. GGT and VacA con-
tribute to H. pylori’s tolerance-promoting effects on DCs
[163]. The cytokine network is concluded in detail.

IL-12 cytokine family contains IL-12, IL-23, IL-27, and
IL-35, which serve as a vital bridge between innate and adap-
tive response [164]. IL-12 expression regulates innate
response and controls the differentiation of Th cell type.
IL-12 is produced by DCs, monocytes/macrophages, and
neutrophils and triggers the differentiation of Th1 cells (IL-
2 and IFNγ) [165]. IL-12 can also activate NK cells, other
T cells, and DCs/macrophages to produce IFNγ [166, 167].
IFNγ stimulates the bactericidal activity of phagocytic cells
to boost innate immune response, which is modulated by
IL-4, IL-10, and IL-18 [168]. IL-23 is produced by myeloid
cells, especially DCs and monocyte/macrophage lineage cells
[169]. IL-23 induces IL-1β and TNFα produced by myeloid
cells and NK and T cells and drives IL-12 and IFNγ produc-
tion [168]. IL-23 combined with TGF-β and IL-6 determines
the differentiation of Th17, in which TGF-β plus IL-6
(mainly produced by monocytes/macrophages) act as the
differentiation factor and IL-23 acts as the growth and stabi-
lization factor [170]. Rapid IL-23/IL-17 immune response
can promote chronic inflammation with cytokines such as
IL-17, IL-6, IL-8, and TNF [171]. For example, activated
sentinel DCs and macrophages produce IL-23 to trigger
the release of IL-17 from tissue-resident T cells and NK cells.
IL-17 increases the secretion of IL-1, IL-6, IL-8, CXC ligand
1, and TNF in stromal, epithelial, and endothelial cells and
monocyte subpopulations and further recruits neutrophils
[172]. IL-27 produced by the myeloid lineage (mainly
monocytes and DCs) [173] limits the production of IL-2
and GM-CSF; reverses the IL-23 mediated lineage commit-
ment of Th17 cells; induces IL-10 produced from Th1,
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Th2, Th17, and Treg cells; and promotes Treg cells special-
ized to limit Th1 cells [174]. Further, both IFNγ and IL-27
promote a population of Treg cells, which restrict Th1 cell-
mediated pathology [175].

IL-35 is produced by Treg cells, CD8+ Treg cells, DCs,
and B cells. It inhibits Th17 cell differentiation and promotes
both Treg cell proliferation and corresponding functions
[176, 177]. IL-10 is produced by APCs, mast cells, eosino-
phils, neutrophils, NK cells, and T cells [178]. IL-10 has pro-
found anti-inflammatory functions. IL-10 inhibits the
release of proinflammatory cytokines (e.g., TNFα, IL-1β,
IL-6, IL-8, and GM-CSF) and chemokines (e.g., MCP1, IL-
8, and IP-10) from DCs and monocytes/macrophages. IL-
10 suppresses both IL-12 and IL-23 to limit CD4+ T cell dif-
ferentiation and proliferation. IL-10 attenuates neutrophil
recruitment by decreasing inflammatory cytokines [179].
TGF-β1 is widely expressed in leukocytes and stromal cells
and responsible for wound healing, immune tolerance, and
the modulation of cell growth and differentiation [180].
TGF-β1 combined with IL-2 is critical for the differentiation
of Treg cells from naïve T cells [181]. TGF-β1 produced by
Treg cells is required to inhibit Th1 cell differentiation and
promote immune tolerance [182, 183].

Type I IFNs (IFNα and IFNβ) and type II IFN (IFNγ)
orchestrate innate and adaptive immunity via multiple
mechanisms. Type I IFNs are produced by almost every cell
type with DCs, macrophages, and epithelial cells mainly
through TLR-dependent pathways [184, 185]. Type I IFNs
activate NK cells, macrophages, and DCs to boost innate
immunity [186] and enhance adaptive immunity through
promoting the differentiation of T and B cells and their acti-
vation. Type I IFNs can also inhibit Th17 cells and induce
IL-10 and PD-1 ligand expression by immune cells like
DCs and macrophages in chronic infection [187, 188]. IFNγ
is the sole type II IFN, exclusively produced by Th1 cells,
CD8+ cytotoxic T lymphocytes (CTLs), NK cells, innate
lymphoid cells (ILCs), and DCs [189]. An early production
of IFNγ is from ILCs, and abundant and sustained IFNγ
are produced by Th1 cells or CTLs after recognizing micro-
bial peptides from APCs [190]. IFNγ is positively regulated
by IL-12 and IL-18 and negatively regulated by IL-4, IL-10,
TGF-β, and glucocorticoids [189]. The effects of IFNγ on
adaptive immunity have been reviewed on facilitating Th1
cell differentiation, inhibiting Th2 and Th17 cells, activating
Treg cells, and promoting B cell class switching [191]. IFNγ
can also strongly promote innate immune. IFNγ-polarized
macrophages are highly responsive to a variety of inflamma-
tory stimuli such as TNF, type I IFNs, microbial products,
and ligands for TLRs [192]. IFNγ orchestrates the differenti-
ation of monocytes into DCs and macrophages, which is the
primary sources of IL-12 at the infection site [193].

6. Conclusions

H. pylori gastritis is ultimately attributed to the activation of
PRRs on APCs, gastric epithelial cells, and neutrophils. And
complex multilateral crosstalk between gastric epithelium,
innate immune response, and adaptive immune response
permit H. pylori persistent colonization. From the aforemen-

tioned immune response and cytokines, there is a dynamic
balance between inflammation and immunity, which pro-
cesses to a newer and severer balance gradually, as the per-
sistence of H. pylori provides sustained stimuli. The
balance is achieved by pro- and anti-inflammatory cytokine
network from these leukocytes. It further indicates that
relieving or aggravating the inflammation by increasing/
decreasing one specific cytokine to break this balance may
facilitate the eradication of H. pylori, which also explains
the reason why addition of vitamin C (an antioxidant and
-inflammation role to break the balance) to H. pylori eradi-
cation treatment may increase the eradication rate. Further
research is needed.
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