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Abstract

In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by
chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones
emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric
insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone
component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown
that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths.
However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers
initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone
receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of
the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol
receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent
manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in
response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on
their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient
to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the
silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also
as an all-or-nothing initiator of a complex species-specific behavioral sequence.
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Introduction

In insects and other animals, intraspecific communication

between individuals of opposite sex is mediated in part by chemical

signals called sex pheromones. In most moth species, male moths

heavily rely on species-specific sex pheromones emitted by female

moths to identify and orient towards an appropriate mating partner

among a large number of sympatric insect species [1–3]. The

characterization of the genes responsible for behavioral preference

in male moths provides a molecular tool for deciphering the genetic

mechanisms underlying pheromone-mediated mate recognition.

Sex pheromone signals are detected by male-specific antennal

olfactory receptor neurons (ORNs) narrowly tuned to conspecific

pheromones and processed by the central nervous system. Using

rare males of the European corn borer Ostrinia nubilalis or the

cabbage looper moth Trichoplusia ni that have different pheromone

preference from normal males, previous studies reported a

correlation between the responsiveness of ORNs and the behavioral

preference [4,5]. Furthermore, using O.nubilalis males of two strains

that have behavioral preferences for opposite ratios of two

pheromone components (Z)-11- and (E)-11-tetradecenyl acetate,

Kárpáti et al. reported that in both strains, ORNs tuned to the

major component, regardless its chemical identity, targeted the

same morphologically identified region in the brain, concluding that

differences in pheromone preference are determined at the level of

the ORNs [6].

So far, extensive research has elucidated the molecular mechanisms

of pheromone reception that involve several molecular components,

such as pheromone binding proteins (PBPs), sensory neuron

membrane proteins, Or83b family proteins, and sex pheromone

receptor proteins [7,8]. The selectivity of pheromone receptor neurons

is likely to be determined by sex pheromone receptors, because

heterologous expression of sex pheromone receptors from several moth

species with an Or83b family protein in Xenopus oocytes confers specific

responsiveness that resembles the specificity of the corresponding

pheromone receptor neurons [9–12]. In addition, ectopically expressed
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BmOR1 sex pheromone receptors from Bombyx mori or HR13 from

Heliothis virescens in Drosophila melanogaster ORNs also induced responses

to their corresponding pheromones, confirming that sex pheromone

receptors contain a binding site for pheromones [13,14]. These

observations suggest that sex pheromone receptor genes are strong

candidates for determining behavioral preference in male moths.

Indeed, using quantitative locus trait analysis, a recent study has

reported that male pheromone preference is correlated with a single

locus containing at least four sex pheromone receptors in heliothine

moths [15]. However, direct evidence that relates the molecular

function of sex pheromone receptors in moths to behavioral preference

has not been provided so far.

The silkmoth, Bombyx mori, is a lepidopteran model insect

amenable to genetic manipulation and transgenesis, and is a useful

model for characterizing the genes responsible for pheromone

preference because this species possesses the simplest possible

pheromone system, in which a single pheromone component,

(E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full

sexual behavior that includes pheromone orientation behavior and

copulation attempts by male silkmoths [16–18]. Female silkmoths

also emit (E, Z)-10,12-hexadecadienal (bombykal), which cannot

initiate but only negatively modulates components of sexual

behavior [19]. Bombykol is detected by the sex pheromone

receptor BmOR1, which is tuned specifically to bombykol and is

expressed in specialized ORNs in the long sensilla trichodea on the

antennae of male silkmoths [9,20]. Because the tuning of BmOR1

corresponds to a behavioral phenotype, we hypothesized that the

ligand specificity of the sex pheromone receptor would determine

the behavioral preference, dictating which pheromone chemicals

male silkmoths respond to.

In this study, in order to test our hypothesis, we generated

transgenic silkmoths expressing the pheromone receptor gene

from another moth species in bombykol receptor neurons. Ectopic

expression of PxOR1, a sex pheromone receptor from the

diamondback moth Plutella xylostella, conferred both physiological

and behavioral responses to its specific ligand (Z)-11-hexadecenal.

Further, we revealed that projection patterns of transformed

bombykol receptor neurons were identical to those of control

animals. These results provide evidence that activation of

bombykol receptor neurons alone is sufficient to trigger full sexual

behavior. Consequently, the ligand specificity of the pheromone

receptor in bombykol receptor neurons is responsible for the

initiation of sexual behavior in the silkmoth.

Results/Discussion

If pheromone preference and initiation of sexual behavior is

indeed solely determined by the sex pheromone receptor gene and

resulting ORN activation, introducing another receptor gene

should confer modified preference. To examine this, we used the

PxOR1 sex pheromone receptor from the diamondback moth, P.

xylostella [10]. Female P. xylostella produce a blend of sex

pheromones with (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-11-

hexadecenyl acetate (Z11-16:Ac) as major components, and (Z)-

11-hexadecenol (Z11-16:OH) as a minor component [21,22].

PxOR1 was identified as a receptor for Z11-16:Ald, based on its

ability to specifically confer electrophysiological responsiveness to

Z11-16:Ald in Xenopus oocytes when coexpressed with PxOR83

[10], the P. xylostella orthologue of the Or83b co-receptor [23,24].

Coexpression of PxOR1 with BmOR2 [9,20], the B. mori Or83b

orthologue, induced dose-dependent responses to Z11-16:Ald in

oocytes, although the sensitivity was somewhat reduced compared

to oocytes coexpressing PxOR1 and PxOR83 (Figure S1). This

confirms, however, that PxOR1 forms a functional heteromeric

OR complex with BmOR2 and contains the specific binding site

for Z11-16:Ald.

To express PxOR1 in bombykol receptor neurons, we

generated a driver line expressing GAL4 under a putative BmOR1

promoter sequence (BmOR1-GAL4) and an effector line expressing

PxOR1 under UAS (UAS-PxOR1) (Figure S2). Crosses of BmOR1-

GAL4 with UAS-EGFP moths [25] revealed that BmOR1-GAL4

induced enhanced green fluorescent protein (EGFP) expression in

ORNs innervating the pheromone-sensitive long sensilla trichodea

(Figure 1A). RT-PCR with PxOR1-sequence-specific primers

revealed that PxOR1 transcripts were expressed only in the

antennae of male moths carrying both BmOR1-GAL4 and UAS-

PxOR1 transgenes (Figure 1B). Quantitative RT-PCR showed that

the copy numbers of PxOR1 transcripts were about 10 times lower

than those of BmOR1 (Figure 1C). In two-color fluorescent in situ

hybridization analyses of antennal sections of PxOR1-expressing

moths, all cells labeled with PxOR1 cRNA probes were also stained

with the BmOR1 cRNA probes (Figure 1D), indicating that PxOR1

expression driven by the BmOR1-GAL4 driver line faithfully

recapitulated endogenous BmOR1 expression.

To examine the effects of ectopically expressed PxOR1 on the

electrophysiological properties of bombykol receptor neurons, we

carried out single sensillum recording of long sensilla trichodea of

male antennae under an airstream containing bombykol, Z11-

16:Ald, Z11-16:Ac, or Z11-16:OH (Figure 2A). In addition to a

bombykol receptor neuron, each male long sensillum trichodeum

comprises one ORN that expresses the receptor for bombykal,

named BmOR3 [9], and is sensitive to bombykal [19]. Spikes from

these two ORNs are sorted by their amplitudes; the bombykol

receptor neuron produces large amplitude spikes, while the bombykal

receptor neuron produces small amplitude spikes [19] (Figure 2B).

Bombykol receptor neurons expressing PxOR1 responded to Z11-

16:Ald and bombykol, but not to Z11-16:Ac or Z11-16:OH

(Figure 2B and 2C). Bombykol receptor neurons in males carrying

either BmOR1-GAL4 or UAS-PxOR1 alone did not respond to any of

Author Summary

Like many animal species, moths use chemical signals
called sex pheromones to communicate with conspecific
individuals of the opposite sex in the context of
reproduction. Typically, male moths depend on sex
pheromones emitted by conspecific females to identify
and locate their mates. Therefore, the behavioral prefer-
ence of male moths to conspecific pheromones is a critical
factor for successful reproduction. Sex pheromone recep-
tor proteins expressed in specialized antennal olfactory
receptor neurons reportedly play a central role in sex
pheromone discrimination. However, the causal relation-
ship between sex pheromone receptor specificity and
behavioral preference remains to be proven. We have
addressed this question in a genetically tractable moth
species, the silkmoth (Bombyx mori), because this species
possesses the simplest possible pheromone system in
which a single pheromone substance, bombykol, elicits full
sexual behavior. Using transgenic silkmoths expressing a
sex pheromone receptor from another moth species, we
revealed that solely the chemical specificity of the odorant
receptors in bombykol receptor neurons determines the
behavioral preference in male silkmoths. Our results show
that the initiation of a complex programmed sexual
behavior can depend on the properties of a single
pheromone receptor gene expressed in a population of
olfactory receptor neurons.

Molecular Determinant of Silkmoths9 Sexual Behavior
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the P. xylostella pheromone components, while robust responses to

bombykol were detected in these moths (Figure 2C).

The neural activity induced by Z11-16:Ald was dose-dependent,

with a threshold amount of approximately 1 mg on filter paper

(Figure 2D and Figure S3). This is about one order of magnitude

larger than the threshold amount for bombykol-induced activity

(Figure 2D). The lower sensitivity for Z11-16:Ald is probably the

result of lower expression of PxOR1 (Figure 1C, see above),

although we cannot exclude an effect of the absence of P. xylostella

PBP [10], which has been reported to enhance sensitivity of ORNs

by efficiently solubilizing odorants in aqueous solution [13,26].

Nonetheless, these results demonstrate that ectopic expression of

PxOR1 confers bombykol receptor neurons the ability to respond

specifically to Z11-16:Ald. So far, ligand specificities of sex

pheromone receptors have been largely examined using heterol-

ogous expression systems. When coexpressed with the Or83b

family protein in Xenopus oocytes, most sex pheromone receptors

respond specifically or predominantly to a single pheromone

component [9–12] of the corresponding species, whereas sex

pheromone receptors expressed in modified HEK293 cells require

the PBP of the corresponding species for specific responses to

pheromones [27–29]. This resulted in the hypothesis that PBPs

contribute not only to sensitivity but also to specificity of ORNs.

Here, we showed that P. xyllostella PBP is not necessary to induce a

specific response of PxOR1 to Z11-16:Ald in bombykol receptor

neurons. The simplest interpretation of this result is that

BmorPBP1, a sole PBP known to be expressed in sensilla trichodea

of male silkmoths [30], bound and transported Z11-16:Ald to the

PxOR1-BmOR2 heteromeric receptor. Indeed, in vitro binding

analyses of BmorPBP1 to silkmoth pheromones or their analogs

have shown that BmorPBP1 possesses the ability to bind a broad

range of chemicals [31,32]. Most importantly, BmorPBP1 has

been reported to bind Z11-16:OH [33] which did not elicit

responses in bombykol receptor neurons expressing PxOR1,

suggesting that the response specificity of pheromone receptor

neurons is determined by the response spectrum of the expressed

receptor protein in the moth pheromone system.

To test whether the artificial activation of bombykol receptor

neurons, mediated by PxOR1, elicits sexual behavior, we

examined the behavioral responses of PxOR1-expressing moths

to Z11-16:Ald. Male BmOR1-GAL4/UAS-PxOR1 moths exhibited

wing flapping behavior, which always accompanies pheromone

orientation behavior in male silkmoths [17,34], upon stimulation

with Z11-16:Ald or bombykol (Figure 3A, Video S1), but not with

the other two pheromone components of P. xylostella (Figure 3A).

On the other hand, males carrying either BmOR1-GAL4 or UAS-

PxOR1 alone did not show behavioral responses to any of the P.

xylostella pheromone components. As a control experiment, we

generated a driver line expressing GAL4 under a putative BmOR3

promoter and expressed PxOR1 in bombykal receptor neurons

(Figures S2 and S4). None of the males expressing PxOR1 in the

bombykal receptor neurons showed behavioral responses to Z11-

16:Ald stimulation (Figure 3A), implying that activation of

bombykol receptor neurons was necessary and sufficient to trigger

pheromone orientation behavior. The dose-response curves of

moths expressing PxOR1 in bombykol receptor neurons showed

Figure 1. Transgenic silkmoths expressing PxOR1 in bombykol receptor neurons. (A) EGFP expression in the antennae of male moths
carrying BmOR1-GAL4 and UAS-EGFP transgenes. Magnified image shows EGFP fluorescence in ORNs innervating pheromone-sensitive long sensilla
trichodea. The white and yellow arrows indicate a dendrite and an axon, respectively. The white arrowhead indicates a long sensillum trichodeum.
EGFP images were acquired by confocal microscopy (LSM510, Carl Zeiss). Scale bar: 20 mm. (B) PxOR1 expression in the antennae of male moths
bearing either BmOR1-GAL4 and UAS-PxOR1 transgenes or BmOR1-GAL4 or UAS-PxOR1 alone. RT-PCR was performed with RNA isolated from the male
antennae of the indicated genotype using PxOR1-specific primers. RT-PCR products were separated by electrophoresis. The minus sign indicates that
RT-PCR was performed without reverse transcriptase. B. mori actin1 [52] was used as a positive control in the experiments. (C) The amounts of PxOR1
and BmOR1 mRNA in BmOR1-GAL4/UAS-PxOR1 male antennae were determined using quantitative PCR. The data were normalized to the copy
numbers of B. mori rp49 mRNA [54]. Data shown are the means 6 SD from three different cDNA pools. (D) Two-color fluorescent in situ hybridization
of BmOR1 (green) and PxOR1 (magenta). Double-labeling was performed on paraffin sections of BmOR1-GAL4/UAS-PxOR1 male antennae using
fluorescein-labeled BmOR1 and DIG-labeled PxOR1 antisense RNA. Scale bar: 20 mm.
doi:10.1371/journal.pgen.1002115.g001
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that the sensitivity of the behavioral responses to Z11-16:Ald was

about 10-fold lower than that to bombykol (Figure 3B), in

agreement with the different sensitivity of PxOR1-expressing

bombykol receptor neurons to these two stimuli.

Tracing the orientation of walking direction angle after single-

puff stimulation with Z11-16:Ald demonstrated that the moths

performed the programmed zigzag behavior typical of pheromone

orientation behavior [34] (Figure 3C). We compared the following

behavioral parameters, number of turns, the length of the track

walked by moths in 30 s after stimulation (total path length), the

direct distance between the start and end points of the track

walked (direct distance), and path straightness (direct distance/

total path length), and detected no significant difference between

stimulation with bombykol and Z11-16:Ald (Table 1), indicating

Z11-16:Ald elicited normal pheromone orientation behavior in

PxOR1-expressing males. Indeed, when exposed to Z11-16:Ald

under unrestrained conditions in a wind tunnel, PxOR1-

expressing males oriented toward and localized a Z11-16:Ald

source as quickly as they localized a source of the same dose of

bombykol (56.966.1 vs. 62.9610.0 s for Z11-16:Ald and

bombykol, respectively. Mean 6 SEM, n = 6, P = 0.62; two tailed

t-test, Figure S5). In addition, we found that the filter paper loaded

with Z11-16:Ald can release full sexual behavior; PxOR1-

expressing males bent their abdomen and attempted to copulate

with it (Video S2). Furthermore, PxOR1-expressing males also

localized and attempted to copulate with P. xylostella females

(Video S3). These results demonstrate that changes in the response

selectivity of bombykol receptor neurons drastically modified the

pheromone preferences in male silkmoths.

Finally, we asked whether the change in the behavioral response

selectivity involves a modification of pheromone processing circuits in

the brain. Male moths have a male-specific pheromone-processing

structure called the macroglomerular complex (MGC) in the

antennal lobe, the first olfactory center in insects [35,36]. The

silkmoth MGC is divided into three subdivisions named toroid,

cumulus, and horseshoe [37,38]. Of these, toroid and cumulus are

Figure 2. Single sensillum responses of PxOR1-expressing bombykol receptor neurons to Z11-16:Ald. (A) Structure of bombykol and P.
xylostella pheromone components. (B) Typical electrophysiological recordings from bombykol receptor neurons of transgenic male moths to 10 mg of
bombykol or pheromone components of P. xylostella. Spikes with large amplitude (L) and small amplitude (S) are from bombykol and bombykal
receptor neurons, respectively. The stimulus was applied for 1 s, as indicated by the solid line under the traces of the recordings. (C) The response for
1 s following stimulation with 10 mg of bombykol or pheromone components of P. xylostella. Error bars represent 6 SEM: BmOR1-GAL4 (n = 14), UAS-
PxOR1 (n = 14), BmOR1-GAL4/UAS-PxOR1 (n = 12). Two asterisks, P,0.01 compared with responses of the corresponding line stimulated with
bombykol; Scheffé’s F test. (D) Dose-dependent increases in the bombykol (red) or Z11-16:Ald (blue)-induced spike frequency of BmOR1-GAL4/UAS-
PxOR1 male moths. Error bars represent 6 SEM (n = 10).
doi:10.1371/journal.pgen.1002115.g002
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specialized to exclusively process bombykol and bombykal informa-

tion, respectively [37]. We first examined the native projection

patterns of pheromone receptor neurons using male moths bearing

EGFP driven by BmOR1 or BmOR3-GAL4 (Figure S4). Axons of

BmOR1-expressing neurons terminated in the toroid, while those of

BmOR3-expressing neurons projected into the cumulus (Figure 4A

and 4B left). PxOR1 expression did not change these projection

patterns: bombykol and bombykal receptor neurons expressing

PxOR1 projected to the toroid and cumulus, respectively (Figure 4A

and 4B right). These results indicate that changes in receptor protein

expression, and consequently changes in the response selectivity of

pheromone receptor neurons, do not modify the input pathway of

olfactory information to the antennal lobe. This is consistent with

findings that insect odorant receptors lack a functional role in axonal

targeting of ORNs [39].

Taken together, Z11-16:Ald information mediated by PxOR1 is

perceived as indicating the presence of a conspecific female in the

brain of the transgenic males, triggering full sexual behavior,

indicating that the behavioral preference of males is determined by

the specificity of bombykol receptor neurons originating in

chemical specificity of sex pheromone receptors. Furthermore,

our results demonstrate that the activation of bombykol receptor

neurons is sufficient to trigger full sexual behavior in male

silkmoths, clearly showing that pheromone information in

silkmoths is coded by a labeled line. Similar observations have

been reported in the pheromone system of D. melanogaster. In this

species, activation of a class of ORNs in sensilla trichodea type 1

mediated by OBP76a and Or67d drives a labeled line involving

(Z)-11-octadecenyl acetate (11-cis vaccenyl acetate) as a phero-

mone that impairs courtship behavior in males and enhances

receptivity to courting males in females [14,40]. However, the

overall contribution of pheromones in the courtship behavior of

flies is unclear because the display of the behavior relies on

multimodal information [41]. In contrast, we show here that a

single molecular determinant can not only function as a modulator

Figure 3. PxOR1-expressing males exhibit pheromone-orientation behavior in response to Z11-16:Ald stimulation. (A) Behaviorally
responding percentages of male moths of the indicated genotype. The moths were exposed to 100 ng of bombykol or the pheromones of P.
xylostella. The display of wing flapping was used as the criterion for a behavioral response to pheromone. The numbers of samples are as follows:
BmOR1-GAL4 (n = 13), UAS-PxOR1 (n = 15), BmOR1-GAL4/UAS-PxOR1 (n = 38), BmOR3-GAL4/UAS-PxOR1 (n = 10). (B) Dose-dependent increase in the
percentages of moths that responded to bombykol or Z11-16:Ald (n = 22–38). The sensitivity of PxOR1-expressing males to Z11-16:Ald was
significantly lower than that to bombykol; GLM, P,0.001. (C) Walking direction orientation in a BmOR1-GAL4/UAS-PxOR1 male moth after a single
pulsed stimulation (500 ms) of 40 ng of bombykol (right) or Z11-16:Ald (left) to antennae. Stimulus onset (at t = 0) is indicated by arrows, an angle of
zero degrees indicates the initial forward direction.
doi:10.1371/journal.pgen.1002115.g003

Table 1. Comparison of the behavioral parameters of PxOR1-
expressing male moths.

Parameter Bombykol Z11-16:Ald N P-value

Number of turns 8.560.65 8.7561.03 4 0.564

Direct distance (mm) 40.1610.5 32.566.8 4 0.465

Total path length (mm) 418.4670.2 433.3664.5 4 0.715

Path straightness 0.09560.014 0.08060.017 4 0.465

Data are shown as the mean 6 SEM. Statistical analysis was performed using
Wilcoxon signed-ranks test.
doi:10.1371/journal.pgen.1002115.t001
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of behavior but also as an all-or-nothing initiator of a complex

species-specific behavioral sequence. Considering the extremely

high behavioral sensitivity of male silkmoths to bombykol [18],

transgenic silkmoths that express a given odorant receptor in

bombykol receptor neurons could be used as highly sensitive

biosensors that can detect and localize a wide variety of odorant

sources.

In previous attempts to manipulate pheromone receptor neuron

input to the antennal lobe, inter-specific transplantation of antennal

imaginal discs between two heliothine moth species has been reported

[42–44]. These studies have shown that the responsiveness of

pheromone receptor neurons and the behavioral preference were

modified to those of the donors in a fraction of the recipient

individuals. However, whole antennae were replaced by donor

antennae. In addition, the transplantation also modified the anatomy

of the recipient MGC to that of the donor MGC [43,44]. Therefore,

molecular factors responsible for the modification of behavioral

preference could not be identified. In contrast, our study introduced a

single sex pheromone receptor gene while other molecular compo-

nents remained unchanged, directly and unequivocally showing that

the chemical response specificity of sexual behavior is determined by

the sex pheromone receptor in the silkmoth.

Our results indicate that mate recognition of male silkmoths

depends on the specificity of the bombykol-BmOR1 interaction.

Previously, BmOR1 has been shown to respond to bombykol and

also very weakly to bombykal in the Xenopus oocyte expression system

[9]. The sensitivity to bombykal of oocytes expressing BmOR1 is at

least 300 times lower than that to bombykol (threshold concentration

of 100 nM for bombykol and 30 mM for bombykal) [9]. Actually,

unnaturally high concentrations of bombykal reportedly induce wing

flapping behavior in male silkmoths [19]. Apart from the silkmoth

pheromones, single sensillum recordings of bombykol receptor

neurons have shown that these neurons can be excited by analogs

of bombykol with a threshold concentration 100–10,000 higher than

for bombykol [45]. High concentrations of these substances may

induce wing flapping behavior in the male silkmoth as well. However,

Figure 4. Ectopic expression of PxOR1 does not modify the axonal projections of pheromone receptor neurons. The axon terminals of
bombykol (A) or bombykal (B) receptor neurons in the absence (left) or presence (right) of PxOR1 expression were visualized with EGFP followed by
anti-GFP immunostaining (green). Background staining was carried out with Alexa Fluor 555 (left) or an anti-synaptotagmin antibody (right) to
visualize neuropil structures (magenta). Representative confocal sections are shown. C: cumulus, T: toroid, D: dorsal, L: lateral. Scale bars: 50 mm.
doi:10.1371/journal.pgen.1002115.g004

Molecular Determinant of Silkmoths9 Sexual Behavior
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considering the much higher concentrations needed to activate

bombykol receptor neurons by other chemicals, we think it is

reasonable to regard BmOR1 as a highly specific receptor that

mediates only bombykol information to elicit sexual behavior at

biologically relevant concentrations.

Our results cannot exclude the possibility that other ORs could

contribute to the detection and processing of bombykol informa-

tion. Besides BmOR1 and BmOR3, there are 3 male-specific or

male-predominant ORs that possess significant sequence homol-

ogy with lepidopteran sex pheromone receptors in the genome of

the silkmoth [9,46]. A previous report, however, has shown that

these 3 ORs do not respond to bombykol or bombykal at all when

expressed in Xenopus oocytes [9]. Therefore BmOR1 is most likely

the sole receptor that mediates bombykol information in the

silkmoth. To conclusively prove this issue, it would be necessary to

generate a BmOR1 knock-out silkmoth, which has so far not been

possible technically and must be deferred to future research efforts.

Unlike silkmoths, many moth species use blends of pheromones,

composed of several components, and the species-specific ratio of

blend components is crucial for male orientation to a female

emitter [3]. In such a system, more complex processing would be

expected in the antennal lobe or higher olfactory processing

centers to extract the blend ratio information [47]. To clarify the

association of sex pheromone receptors and their corresponding

ORNs for initiation of sexual behavior in moths with multi-

component pheromone systems, further work will be necessary.

The identification of sex pheromone receptors as the genes

responsible for pheromone preference shed light on genetic

mechanisms underlying pheromone mediated mate recognition.

In addition, the evolution of the sex pheromone communication

systems in moths is proposed to play an important role in

reproductive isolation and speciation [48]. Comparative analyses

of the function of sex pheromone receptors in various moth species

will provide clues that will help to unravel the evolution of the

molecular mechanism of moth sex pheromone detection, which is

likely to be related to moth speciation by creating mating barriers.

Materials and Methods

Animals and chemicals
The w1-pnd strain, which is non-diapausing, and has non-

pigmented eggs and eyes, was used in this study. Larvae were reared

on an artificial diet (Nihon Nosanko) at 25uC on a 16:8 h (light/dark)

light cycle. Synthetic bombykol was provided by Dr. S. Matsuyama of

University of Tsukuba, and the pheromone components of P. xylostella,

including Z11-16:Ald, Z11-16:Ac, and Z11-16:OH, were provided by

Shin-Etsu Chemical, Tokyo, Japan.

Generation of transgenic moths
For the BmOR1-GAL4 and BmOR3-GAL4 constructs, approxi-

mately 3.7- and 5.8-kb DNA fragments immediately upstream from

the initiation codon of each gene were amplified using the polymerase

chain reaction (PCR) from the w1-pnd silkmoth genome DNA using

LA Taq DNA polymerase (Takara) with the following primer pairs:

BmOR1 forward, 59-AGGCGCGCCAACGCCACCACTCGTC-

CGGC-39, BmOR1 reverse, 59-CGGGATCCCTTGAAGCTCTG-

CGAGGATCG-39, BmOR3 forward, 59-AGGCGCGCCCTGC-

GAGCTAAAGTGCTGAG-39, BmOR3 reverse, 59-TGCTGATC-

ACTACGTAGAGTGTCGGAGCTC-39. The PCR products were

subcloned into the AscI-BamHI site of pBacMCS-GAL4 [25] to create

pBacBmOR1-GAL4 or pBacBmOR3-GAL4 (Figure S2). For UAS-

PxOR1, the entire protein-coding sequence of PxOR1 was subcloned

immediately downstream from the UAS of pBacMCS-UAS [49] to

create pBacUAS-PxOR1 (Figure S2). Transgenic silkmoths were

generated using the piggyBac-mediated germ-line transformation

method, as described previously [50,51].

Reverse-transcription (RT)-PCR
Total RNA was extracted from antennae of male moths 1–5

days after eclosion using TRIzol reagent (Invitrogen), treated with

DNase I, and reprecipitated. RNA was reverse transcribed using

an oligo(dT) adaptor primer (Takara) and AMV reverse

transcriptase (Takara) at 42uC for 35 min. cDNA of PxOR1 and

B. mori actin 1 [52] was amplified using Ex Taq DNA polymerase

(Takara) and the primer pairs for PxOR1 (59-GCTCTCC-

CACTTCTTCACCATG-39 and 59-TGCTGGAACAGGATC-

ACCGTC-39) and B. mori actin 1 (59-ATGTGCAAGGCCGG-

TTTCGC-39 and 59-CGACACGCAGCTCATTGTAG-39) with

thermal cycling at 94uC for 1 min, then 30 cycles at 94uC for 30 s,

60uC for 30 s, and 72uC for 30 s, followed by 72uC for 10 min.

Equal amounts of the PCR products were separated by

electrophoresis on 1.5% agarose gels. No PCR products were

produced when reverse transcriptase was excluded during reverse

transcription, and sequence analysis confirmed the identity of the

cDNA products.

Quantitative real-time PCR
Total RNA was extracted from antennae of male moths 1–3 days

after eclosion, and reverse transcribed as described in the RT-PCR

section. Real-time quantitative PCR was performed as described

previously [53] using a LightCycler 1.5 (Roche) with the appropriate

primer pairs for PxOR1 (59-GCGTGGAAAAACTCGAAGAC-39

and 59-AAGTCCTTCTTCCCCGTGTT-39), BmOR1 (59-CGTA-

TACAGAGGAGGAGTCGAAA-39 and 59-AAATCAGAACAC-

TCCAAGAGCAG-39), and B. mori ribosomal protein 49 (rp49) [54] (59-

CAGGCGGTTCAAGGGTCAATAC-39 and 59-TGCTGGGCT-

CTTTCCACGA-39). The reaction mixtures for quantitative PCR

were prepared using LightCycler FastStart DNA Master SYBR

Green (Roche), and PCR was performed according to the

manufacturer’s instructions. The amounts of each mRNA were

calculated, based on cross pointing analysis, with standard curves

generated from standard cDNAs. Quantitative measurements were

performed in triplicate and the PxOR1 and BmOR1 mRNA copy

numbers were normalized to that of rp49 [54] in the same samples.

In situ hybridization
Digoxigenin (DIG)-labeled PxOR1 and fluorescein-labeled

BmOR1 RNA probes were synthesized from linearized recombi-

nant pGEM-T Easy vectors (Promega) containing the coding

sequence of PxOR1 and BmOR1, respectively, using an SP6/T7

transcription kit (Roche) according to the manufacturer’s instruc-

tions. In situ hybridization was performed as described previously

[20]. Antennae of 2- to 8-day-old male moths were fixed in 4%

paraformaldehyde/PBS overnight at 4uC, dehydrated, embedded

in paraffin, and cut into 12-mm sections. After deparaffinizing, the

tissue sections were incubated for 16 h at 60uC in 100 ml

hybridization buffer containing 500 ng/ml of both DIG-labeled

PxOR1 and fluorescein-labeled BmOR1 antisense RNA probes.

The sections were washed three times for 5 min each in 0.1%

Tween 20/PBS (PBST) at 60uC. The hybridization signal was

amplified using the TSA Plus Fluorescence System (Perkin Elmer),

and according to the manufacturer’s instructions. The DIG-

labeled probes were visualized using anti-DIG-POD (Roche; 1:20)

with Cy3 tyramides as the substrate, while the fluorescein-labeled

probes were visualized using anti-fluorescein-POD (Roche; 1:20)

with fluorescein tyramides as the substrate.
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Immunohistochemistry
Moth brains were stained immunohistochemically as described

previously [55]. Briefly, the brains were dissected from the heads and

fixed in 4% paraformaldehyde/PBS overnight at 4uC. Then, the

brains were washed in PBS containing 0.2% TritonX-100 several

times in PBS (PBTX) and pre-incubated with 5% normal donkey

serum and 5% normal goat serum in PBTX (PBTX-NDS-NGS) for

3 h at room temperature. Subsequently, they were incubated with

rabbit anti-GFP antibody (Molecular probes; 1:200) and mouse anti-

synaptotagmin monoclonal antibody (Developmental Studies Hy-

bridoma Bank; 1:100) in PBTX-NDS-NGS at 4uC for 3 days. Next,

they were washed in PBTX and incubated with Alexa488-conjugated

anti-rabbit IgG (Molecular probes; 1:200) and Cy3-conjugated anti-

mouse IgG antibodies (Jackson Immuno Research Laboratories;

1:200) in PBTX-NDS-NGS at 4uC overnight. Confocal images were

captured using a LSM510 confocal microscope (Carl Zeiss).

Single sensillum recordings
Electrophysiological recordings were performed in a Faraday

cage at 25uC. Moths were fixed on an acrylic plate under an

Olympus BX50 (5006) microscope. The antennae were held and

stabilized by dental wax (GC Corporation, soft plate wax). Action

potentials were recorded by inserting an electrolytically sharpened

tungsten wire electrode (diameter 0.5 mm, tip approximately

1 mm) into the bases of long sensilla trichodea on the antenna. As a

reference electrode, a platinum plate was inserted in the neck of

the moth. Odorant stimulation was prepared in n-hexane at 1 ng

to 1 mg/ml, and 10 ml of the odorant solution were loaded on

161 cm2 filter papers. The filter papers with odorants were placed

inside Pasteur pipettes (Fisher, 13-678-20A). A charcoal-purified

and moistened airstream was passed through the glass pipette

(0.4 l/min) and directed onto the antenna. The pipettes were

placed with the outlet 2 cm from the recording site. The odorants

from the pipettes were delivered by puff stimulation and the air

speed at the recording site was 1.8–2.0 m/s. The puff stimulation

for 1 s was controlled by a solenoid valve (Takasago Electric,

Takasago Clean Valve) and electronic stimulator (Nihon Koden,

SEN-7203). A suction tube 50 mm in diameter was placed near

the animal to remove the odorants after stimulation rapidly and to

avoid uncontrolled stimulation by odorants leaking from the glass

pipette. The response was band-pass-filtered (50 Hz to 3 kHz) and

amplified (Nihon Koden, MEZ-8300). The electrophysiological

data were captured with a Digidata1322 interface (Axon

Instruments) attached to a PC. The responses were quantified

by counting spikes during 1 s following stimulus onset, and

subtracting the number of mean spontaneous spikes/s in a 5 s time

window prior to stimulation.

Behavioral experiments
Male silkmoths were used within 2–8 days after eclosion. The

moths (up to 6 per experiment) were placed in a translucent

cylindrical acrylic closed box (15 cm in diameter and 6.5 cm in

height). An air-puff stimulus was used to spread odorants into the

box through a 2-mm-diameter hole in the middle of the lid with a

Pasteur pipette containing a piece of filter paper with the odorant.

A charcoal-purified airstream (1.4 l/min) was passed through a

Pasteur pipette and directed into the box. Pulsed odorant

stimulation (200 ms duration) was produced by controlling a

three-way solenoid valve with an electronic stimulator (Nihon

Koden, SEN-7203). The odorants were dissolved in n-hexane, and

applied to a piece of filter paper (162 cm). In the qualitative

analysis, the moths were exposed to 100 ng of bombykol, Z11-

16:Ald, Z11-16:Ac, or Z11-16:OH, while in the dose-response

analyses, the moths were exposed to increasing concentrations of

bombykol or Z11-16:Ald (0.03, 0.1, 0.3, 1, 3, 10, 30, 100, and

1000 ng) at 1-min intervals. The air and odorant were removed

through an exhaust tube attached to the side of the box 10 s after

each puff stimulation. Wing flapping within 10 s of the stimulation

and lasting for more than 10 s was counted as a response. The

behavioral response of the moths and the pheromone stimulation

were recorded with a digital video camera for further analysis.

To analyze details of the locomotor patterns in response to

olfactory stimulation, in particular the orientation of the walking

direction, the moths were tethered and placed on a Styrofoam

sphere floating on an air cushion. The movements of the sphere

were recorded using high-speed optical mice connected directly to

a computer running a home-made program for data capture and

stimulus control. For stimulation, 40 ng of bombykol or Z11-

16:Ald in n-hexane was applied to a piece of filter paper

(0.561 cm), which was inserted into a borosilicate glass cartridge

(inner diameter 3 mm). Two cartridges were used, placed in front

of the left and right antennae. A charcoal-purified humidified

airstream was passed through solenoid valves (Takasago Electric,

Takasago Clean Valve) controlling the stimulation through the

cartridges. The odorants were removed by a continuous flow

generated by a suction tube (50 mm diameter) placed behind the

moth resulting in a wind speed of 0.5 m/s in front of the moth’s

head. To prevent stimulant leakage, the air in front of the

cartridges was removed by air streams controlled by a second pair

of solenoid valves with a speed of .2 m/s perpendicular to the

wind direction except when applying stimuli. The moths were

exposed to single puffs of bombykol or Z11-16:Ald with 500 ms

duration. The angle of the walking direction was calculated from

the movements of the sphere by the computer. The initial forward

direction defines zero degrees orientation.

Behavioral experiments in the wind tunnel
A moth was placed in a wind tunnel that had a working section

measuring 180 cm long, 90 cm wide, and 30 cm high. Air flow

was introduced into the tunnel by negative pressure generated by a

voltage-regulated fan. The wind velocity was adjusted to 0.4 m/s.

Then, 100 ng of bombykol or Z11-16:Ald were applied to a piece

of filter paper (162 cm), which was placed in the wind tunnel

1 cm above the floor. To analyze the response to female P.

xylostella, 12 female P. xylostella were placed in a clean acrylic cage

and used as the pheromone source. Individual male silkmoths

were placed 15 cm downwind from the pheromone source. The

response of the male moths was recorded with a digital video

camera and used for analysis.

Statistical analysis
The single sensillum recording responses of different genotypes

were compared using one-way analysis of variance followed by

Scheffé’s F test, using Microsoft Excel 2007 and a commercial

macroprogram (Statcel version 2, Seiun-sya). The behavioral

sensitivity to different pheromone components was analyzed with

the univariate general linear model (GLM), followed by Bonferroni

adjustment for multiple comparisons between groups using R

software (http://www.r-project.org/). The Wilcoxon signed-ranks

test was used to compare the detailed behavioral parameters in

response to different pheromone components with R software.

Supporting Information

Figure S1 Dose-dependent responses of Xenopus oocytes coex-

pressing PxOR1 with PxOR83 or BmOR2 to Z11-16:Ald. Z11-

16:Ald was applied sequentially to the same oocyte. Each point

represents the averaged current value (6 SEM) (n = 10). The
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Z11-16:Ald-induced dose-dependent current increase, with a 50%

effective concentration of 0.42 mM and 1.20 mM in oocytes

coexpressing PxOR1 with PxOR83 and PxOR1 with BmOR2,

respectively. The threshold concentration was approximately

30 nM and 100 nM for oocytes coexpressing PxOR1 with

PxOR83 and PxOR1 with BmOR2, respectively. Expression of

odorant receptors in oocytes and electrophysiological recordings of

the oocytes were carried out as described previously [10].

(TIF)

Figure S2 Schematic diagrams of the piggyBac vectors used to

generate transgenic silkmoths. pBacBmOR1-GAL4 (top), pBacB-

mOR3-GAL4 (middle), and pBacUAS-PxOR1 (bottom) were used to

generate BmOR1-GAL4, BmOR3-GAL4, and UAS-PxOR1, respec-

tively. FibL-EGFP or DsRed indicates a screening marker that

drives EGFP or DsRed expression in silk glands. IVR, inverted

terminal repeats of the piggyBac transposon; SV40, SV40

polyadenylation signal; hsp70, Drosophila hsp70 polyadenylation

signal.

(TIF)

Figure S3 Representative dose-dependent single sensillum

responses to bombykol or Z11-16:Ald in BmOR1-GAL4/UAS-

PxOR1 male moths. Doses are indicated on the left of each trace.

The stimuli were applied for 1 s, as indicated by the solid line

below the records.

(TIF)

Figure S4 EGFP expression in the antennae of male moths

carrying BmOR3-GAL4 and UAS-EGFP transgenes. Magnified

image (right) shows EGFP fluorescence detected in olfactory

receptor neurons. The white and yellow arrows indicate a dendrite

and an axon, respectively. The white arrowhead indicates a long

sensillum trichodeum. Scale bar: 20 mm (left), 10 mm (right).

(TIF)

Figure S5 Comparison of time to localize bombykol or Z11-

16:Ald source in BmOR1-GAL4/UAS-PxOR1 males. The male

moth was placed 15 cm downwind of a 100 ng bombykol or Z11-

16:Ald source in the wind tunnel with wind velocity of 0.4 m/s.

Data are shown as mean 6 SEM, no significant difference was

detected between bombykol and Z11-16:Ald (n = 6, P = 0.62; two

tailed t-test).

(TIF)

Video S1 Pheromone orientation behavior of PxOR1-express-

ing males in response to Z11-16:Ald stimulation. Male silkmoths

bearing both BmOR1-GAL4 and UAS-PxOR1 transgenes (without

marking) displayed wing flapping behavior, a criterion for the

display of pheromone orientation behavior in the silkmoth, upon

stimulation with 100 ng of Z11-16:Ald (first stimulus). Moths

bearing either BmOR1-GAL4 (green) or UAS-PxOR1 (red) alone

showed no behavior to Z11-16:Ald, although bombykol stimula-

tion (100 ng) (second stimulus) elicited robust wing flapping

behavior in all moths. LED lights indicate the timing of

pheromone stimulation. In this movie, moths of GAL4/UAS,

GAL4 driver, and the UAS effector line were placed in the same

box for presentation purposes. This is an exception; they were

normally tested separately for their behavioral responses.

(MOV)

Video S2 Copulation attempts of a PxOR1-expressing male

silkmoth to Z11-16:Ald. A piece of filter paper loaded with 1 mg

Z11-16:Ald was placed inside a Pasteur pipette and used as the

pheromone source. An individual male silkmoth was placed 3 cm

downwind from the pheromone source. After the plastic cup that

prevents the moth from detecting Z11-16:Ald was removed, the

PxOR1-expressing male displayed pheromone orientation behav-

ior and initiated abdominal bending that is the criterion for

copulation attempts in male silkmoths.

(MOV)

Video S3 Orientation of a PxOR1-expressing male to females of

P. xylostella. Male silkmoths bearing both BmOR1-GAL4 and UAS-

PxOR1 (without marking), BmOR1-GAL4 (green), and UAS-PxOR1

(red) were placed in a wind tunnel. Soon after the glass beaker that

blocks the spread of pheromones from the female P. xylostella was

removed, a PxOR1-expressing male initiated pheromone orienta-

tion behavior and succeeded in localizing a female P. xylostella.

Males bearing either BmOR1-GAL4 or UAS-PxOR1 alone displayed

pheromone orientation behavior only after the glass beaker

covering the female silkmoth was removed.

(MOV)
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