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abstract

 

Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator ex-
pression in the airways, and they make a significant contribution to the volume, composition, and consistency of
the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to
investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete  by a
Cl

 

2

 

-independent, serosal Na

 

1

 

-dependent, serosal bumetanide-insensitive, and serosal 4,4

 

9

 

-dinitrostilben-2,2

 

9

 

-disul-
fonic acid (DNDS)–sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and

 

the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells

 

with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca

 

2

 

1

 

-activated K

 

1

 

 channels, re-
duced  secretion and caused the secretion of Cl

 

2

 

 by a bumetanide-sensitive, electrogenic mechanism. Nysta-
tin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole-
inhibited basolateral membrane K

 

1

 

 current. Patch-clamp studies confirmed the presence of an intermediate con-
ductance inwardly rectified K

 

1

 

 channel with this pharmacological profile. We propose that hyperpolarization of
the basolateral membrane voltage elicits a switch from  secretion to Cl

 

2

 

 secretion because the uptake of
 across the basolateral membrane is mediated by a 4,4

 

9

 

-dinitrostilben-2,2

 

9

 

-disulfonic acid (DNDS)–sensitive
Na

 

1

 

:  cotransporter. Since the stoichiometry reported for Na

 

1

 

:  cotransport is 1:2 or 1:3, hyperpolar-
ization of the basolateral membrane potential by 1-EBIO would inhibit  entry and favor the secretion of
Cl

 

2

 

. Therefore, differential regulation of the basolateral membrane K

 

1

 

 conductance by secretory agonists could
provide a means of stimulating  and Cl

 

2

 

 

 

secretion. In this context, cystic fibrosis transmembrane conduc-
tance regulator could serve as both a  and a Cl

 

2

 

 channel, mediating the apical membrane exit of either an-
ion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these re-
sults with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then

 secretion in the human airways warrants greater attention.

 

key words:

 

 submucosal glands • cystic fibrosis • cystic fibrosis transmembrane conductance regulator • so-
dium bicarbonate cotransporter • serous cells

HCO2
3

HCO2
3

HCO2
3

HCO2
3

HCO2
3 HCO2

3
HCO2

3

HCO2
3
HCO2

3

HCO2
3

 

i n t r o d u c t i o n

 

The inherited disease cystic fibrosis (CF)

 

1

 

 is character-
ized by secretion of a thick viscous mucus that plugs the
submucosal glands and small airways. This leads to
chronic airway infections and is caused by mutations in
the cystic fibrosis transmembrane conductance regula-
tor (CFTR)

 

 

 

(Boat et al., 1989). The predominant site of
CFTR expression in the human lung is the serous cells
of the submucosal glands (Jacquot et al., 1993; Engel-
hardt et al., 1994). Serous cells account for 60% of the

cellular volume of the submucosal gland in human air-
ways (Basbaum et al., 1990). Stimulation of an isotonic
fluid secretion from the serous cells contributes to the
hydration of the secretions from the mucous cells,
thereby forming the low viscosity mucus that lines the
conducting airways. Serous cells are also a major source
of antimicrobial enzymes and peptides that help main-
tain an aseptic environment in the lungs (Basbaum et
al., 1990). Salt concentration can influence the activity
of these antimicrobial agents and it was recently sug-
gested that altered salt concentration in the airway sur-
face fluid may contribute to chronic airway infection in
CF (Smith et al., 1996). Thus, the serous cells make a
significant contribution to the volume, composition,
and consistency of the submucosal gland secretions
and represent a potentially important target in CF ther-
apy. These considerations indicate the importance in
understanding the mechanisms of fluid and electrolyte
transport by serous cells.

Shen et al. (1994) screened 12 cell lines derived from
lung adenocarcinomas in an attempt to identify a cell
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line that displayed electrophysiological properties con-
sistent with human airway serous cells. They identified
the Calu-3 cell line as being serous cell in nature, form-
ing a monolayer with a transepithelial resistance of

 

z

 

100 

 

V ? 

 

cm

 

2

 

, expressing high levels of CFTR and re-
sponding to both cAMP- and Ca

 

2

 

1

 

-mediated agonists
with changes in net transepithelial ion transport as
measured by short circuit current (I

 

sc

 

) (Finkbeiner et
al., 1993; Shen et al., 1994). Several studies have pro-
duced variable results in the basal and stimulated trans-
port properties of the Calu-3 cells and the ionic basis of
the responses to secretory agonists remains unsettled
(Shen et al., 1994; Illek et al., 1997; Moon et al., 1997;
Singh et al., 1997; Lee et al., 1998). In this report, we
present studies with Calu-3 cells that displayed a low
basal I

 

sc

 

 (13 

 

m

 

A cm

 

2

 

2

 

) and robust sustained responses
to secretory agonists enabling the measurement of iso-
topic fluxes. The results demonstrate that Calu-3 cells,
when stimulated by forskolin, secrete  by a Cl

 

2

 

-
independent, Na

 

1

 

-dependent, 4,4

 

9

 

-dinitrostilben-2,2

 

9

 

-
disulfonic acid (DNDS)–sensitive, electrogenic mecha-
nism. Secondly, when stimulated by 1-ethyl-2 benzimi-
dazolinone (1-EBIO), an activator of the basolateral
membrane Ca

 

2

 

1

 

-activated K

 

1

 

 channels (K

 

Ca

 

) (Devor et al.,
1996),  secretion is reduced and the Calu-3 cells
secrete predominately Cl

 

2

 

 by a bumetanide-sensitive,
electrogenic mechanism.

 

m e t h o d s

 

Cell Culture

 

Calu-3 cells were grown in Dulbecco’s modified Eagle’s medium
and Ham’s F-12 (1:1) supplemented with 15% fetal bovine serum
and 2 mM glutamine. The cells were incubated in a humidified
atmosphere containing 5% CO

 

2

 

 at 37

 

8

 

C. For measurements of
short-circuit current (I

 

sc

 

), Calu-3 cells were seeded onto Costar
Transwell cell culture inserts (0.33 cm

 

2

 

) or Snapwell inserts (1.1
cm

 

2

 

). Both the Transwell and Snapwell inserts were collagen-
coated overnight with 0.01% human placenta collagen type VI
(Sigma Chemical Co.). On day one, the medium bathing the api-
cal surface was removed to establish an air interface. Apical me-
dium was removed and the cells fed every 48 h. After 

 

z

 

7–14 d,
the cells formed a confluent monolayer that held back fluid, thus
maintaining an apical air interface. Short circuit current mea-
surements were performed after an additional 14–28 d in cul-
ture. Patch-clamp experiments were performed on single cells
plated onto glass cover slips 18–48 h before use.

 

Solutions

 

For measurements of I

 

sc

 

, the bath solution contained (mM): 120
NaCl, 25 NaHCO

 

3

 

, 3.3 KH

 

2

 

PO

 

4

 

, 0.8 K

 

2

 

HPO

 

4

 

, 1.2 MgCl

 

2

 

, 1.2
CaCl

 

2

 

, and 10 glucose. Mannitol was substituted for glucose in
the mucosal solution to eliminate the contribution of Na

 

1

 

 glu-
cose cotransport to I

 

SC

 

 as previously reported by Singh et al.
(1997). The pH of this solution was 7.4 when gassed with a mix-
ture of 95% O

 

2

 

–5% CO

 

2

 

 at 37

 

8

 

C. For the Cl

 

2

 

-free solution,
equimolar Na-gluconate replaced NaCl, 1 mM Mg-gluconate re-
placed MgCl

 

2

 

, and 4 mM Ca-gluconate replaced CaCl

 

2

 

. Calcium
was increased to 4 mM to compensate for the Ca

 

2

 

1

 

 buffering ca-

HCO2
3

HCO2
3

 

pacity of the gluconate. The -free buffer consisted of
(mM): 145 NaCl, 3.3 KH

 

2

 

PO

 

4

 

, 0.8 K

 

2

 

HPO

 

4

 

 1.2 MgCl

 

2

 

, 1.2 CaCl

 

2

 

,
10 HEPES, pH adjusted with NaOH, 10 glucose or mannitol and
was gassed with air. For the Na

 

1

 

-free Cl

 

2

 

-free solution, equimolar

 

N

 

-methyl-

 

d

 

-glucamine–gluconate replaced NaCl, choline-HCO

 

3

 

replaced NaHCO

 

3

 

, 1 mM Mg-gluconate replaced MgCl

 

2

 

, and 4 mM
Ca-gluconate replaced CaCl

 

2

 

. This solution contained 10 

 

m

 

M at-
ropine to block the cholinergic effect of choline (Muallem et al.,
1988).

The effects of forskolin and 1-EBIO on apical membrane Cl

 

2

 

currents (I

 

Cl

 

) were assessed after permeabilization of the serosal
membrane with nystatin (360 

 

m

 

g/ml), and the establishment of a
mucosa-to-serosa Cl

 

2

 

 concentration gradient. Serosal NaCl was
replaced by equimolar Na-gluconate and Ca

 

2

 

1

 

 was increased to
4 mM with Ca-gluconate. Nystatin was added to the serosal mem-
brane 15–30 min before the addition of drugs. Successful perme-
abilization of the basolateral membrane was based upon the re-
cording of a current consistent with the mucosal-to-serosal flow
of negative charge. The effect of 1-EBIO on basolateral mem-
brane K

 

1

 

 currents (I

 

K

 

) was assessed after permeabilization of the
apical membrane with nystatin (180 

 

m

 

g/ml) for 15–30 min, and
establishment of a mucosa-to-serosa K

 

1

 

 concentration gradient.
For measurements of I

 

K

 

, mucosal NaCl was replaced by equimo-
lar K-gluconate, while serosal NaCl was substituted with equimo-
lar Na-gluconate. Calcium and Mg

 

2

 

1

 

 salts were replaced as above.
During inside-out patch-clamp recordings, the bath contained

(mM): 145 K-gluconate, 5 KCl, 1 MgCl

 

2

 

, 1 EGTA, 0.78 CaCl

 

2

 

,
(free Ca

 

2

 

1

 

 5 

 

400 nM), and 10 HEPES, pH adjusted to 7.2 with
KOH. The pipette solution contained (mM): 140 K-gluconate,
5 KCl, 1 CaCl

 

2

 

, 1 MgCl

 

2

 

, and 10 HEPES, pH adjusted to 7.2 with
KOH. For outside-out recordings, the bath contained 1 mM
CaCl

 

2

 

 in the absence of any added EGTA, while the pipette solu-
tion Ca

 

2

 

1

 

 was buffered to 200 nM with EGTA (0.71 mM Ca

 

2

 

1

 

, 1 mM
EGTA).

 

Short-Circuit Current (I

 

sc

 

) Measurements

 

Transwell inserts were mounted in an Ussing chamber (Jim’s In-
struments). Snapwell inserts were mounted in Ussing chambers
(NaviCyte), and the monolayers were continuously short-cir-
cuited after fluid resistance compensation using automatic volt-
age clamps (558C-5; Iowa Bioengineering). Transepithelial resis-
tance (R

 

T

 

) was measured by open-circuiting the monolayer, or
with a 2-mV bipolar pulse and the resistance calculated by Ohm’s
law. Forskolin, 1-EBIO, clotrimazole, 293B, and acetazolamide
were added to both sides of the monolayers at the indicated con-
centrations. Bumetanide and charybdotoxin (CTX) were added
only to the serosal bathing solution.

 

Unidirectional Ion Fluxes

 

20 min after the Snapwell filters were mounted in Ussing cham-
bers, isotopes (

 

36

 

Cl, 

 

22

 

Na, or 

 

86

 

Rb) were added to the bath solu-
tion on one side of the monolayers. After an additional 20 min,
by which time isotopic fluxes had reached a steady state, two 0.4-
ml samples were taken from the unlabeled side and fresh unla-
beled solution of equal volume was added. This time was consid-
ered time 

 

5 

 

0 (T0), and samples were taken thereafter at 15-min
intervals for the next 75 min. When the effects of forskolin,
1-EBIO, or forskolin plus 1-EBIO were studied, the drugs were
added to the serosal and mucosal sides at T30 and fluxes before
(T0 2 T30) and 15 min after the drug additions (T45 2 T75) were
compared. Isotope activities were determined in a Packard liquid
scintillation counter. All samples were weighed and these vol-
umes were used to correct the chamber volume and to calculate
the unidirectional ion fluxes using standard equations (Bridges
et al., 1983). The net residual ion flux ( ) was calculated from

HCO2
3

JR
net
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the difference in Isc and the net fluxes of Cl2, JClnet; Na1, ;
and Rb2, , where  5 Isc 2 (  1  2 ).

Single Channel Recording

Single channel currents were recorded in the inside-out and out-
side-out patch-clamp recording configuration using a List EPC-7
amplifier (Medical Systems) and recorded on videotape for later
analysis as described previously (Devor and Frizzell, 1993). Pi-
pettes were fabricated from KG-12 glass (Willmad Glass Co.). All
recordings were done at a holding voltage of 2100 mV. The volt-
age is referenced to the extracellular compartment as the stan-
dard method for membrane potentials. Inward currents are de-
fined as the movement of positive charge from the extracellular
compartment to the intracellular compartment, and are pre-
sented as downward deflections from baseline in all recording
configurations.

Single channel analysis was performed on records sampled af-
ter low-pass filtering at 400 Hz. Data records for all experimental
conditions were at least 60-s long. The nPo (the product of the
number of channels, n, and the channel open probability, Po) of
the channels was determined using Biopatch software (3.11; Mo-
lecular Kinetics). nPo was calculated from the mean total current
(I) divided by the single channel current amplitude (i), such that
nPo 5 I/i. i was determined from the amplitude histogram of the
current record.

Chemicals

Nystatin was a generous gift from Dr. S. Lucania (Bristol Meyers-
Squibb). 293B (trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-
3-hydroxy-2,2-dimethyl-chroman) was a generous gift from Dr.
Rainer Greger (Albert-Ludwigs-Universtat, Freiberg, Germany).
1-EBIO was obtained from Aldrich Chemical Co. Acetazolamide,
clotrimazole, and bumetanide were obtained from Sigma Chemi-
cal Co. Forskolin was obtained from Calbiochem. DNDS was
from Pfaltz and Bauer. Charybdotoxin was obtained from Accu-
rate Chemical and Scientific Corp. and made as a 10 mM stock so-
lution in standard bath solution. 1-EBIO, 293B, and clotrimazole
were made as .1,000-fold stock solutions in DMSO. Nystatin was
made as a 180 mg/ml stock solution in DMSO and sonicated for
30 s just before use. Forskolin and bumetanide were made as
1,000-fold stock solutions in ethanol. Cell culture medium was
obtained from GIBCO BRL.

Data Analysis

All data are presented as means 6 SEM, where n indicates the
number of experiments.

r e s u l t s

Effects of Forskolin on Isc

In total, we evaluated 216 filters with standard bath so-
lutions on the mucosal and serosal membrane surfaces.
The basal Isc and RT under these conditions averaged
13 6 0.8 mA ? cm22 (range 2–21 mA ? cm22) and 353 6
14 Vcm2 (range 187–667 Vcm2), respectively. Forskolin
(2–10 mM) induced, in all filters tested (n 5 109), a
damped oscillatory response that became stable and
sustained after 5–10 min at a plateau value of 66 6 4
mA ? cm22 (range 50–103 mA ? cm22). A representative
current trace is shown in Fig. 1 A. The increase in Isc

caused by forskolin was accompanied by a decrease in

JNa
net

JRb
net JR

net JNa
net JRb

net JCl
net

RT to an average of 189 6 7 Vcm22 (range 111–333
Vcm22). Bumetanide (20 mM), an inhibitor of the
NaK2Cl cotransporter, caused only a small inhibition of
the forskolin stimulated Isc (D 24.9 6 1.3 mA ? cm22, n
5 11). The failure of bumetanide to inhibit the forsko-
lin-stimulated increase in Isc suggests that the NaK2Cl
cotransporter does not contribute to the Isc, and this
raised the question whether the Isc was due to Cl2 secre-
tion. Additional experiments were performed to estab-
lish the ionic basis of the forskolin-stimulated Isc.

Effects of Forskolin on Isotopic Fluxes

To help elucidate the ionic basis of the forskolin-
induced increase in Isc, we performed unidirectional
ion flux measurements with 36Cl, 22Na, or 86Rb; the latter
was used as a measure of K1 movements. The Cl2 flux
studies are shown in Fig. 1 B and are summarized to-
gether with Na1 and Rb1 fluxes in Table I. As in the
previous experiments, there was a small basal Isc under
control conditions of z8 mA ? cm22 (i.e., 0.3 mEq ?
cm22 ? h21) that was stimulated 6–10-fold by forskolin
in the subset of 36 filters used for the flux studies. Un-
der control conditions, there was no net movement of
Cl2 or Rb1 and a small net absorption of Na1. Forsko-
lin increased both unidirectional fluxes of Cl2 four- to
fivefold (Fig. 1 B). Both Rb1 fluxes were increased 1.5-
fold, but forskolin had no effect on the fluxes of Na1

(Table I). Because both unidirectional fluxes of Cl2

and Rb1 were increased to a similar extent, there was
no net flux of Cl2 or Rb1 caused by forskolin. The dif-
ference between Isc and the net flux of each ion was
calculated and is given in Table I as . Because there
was no net flux of Cl2 or Rb1 under control or forsko-
lin conditions, neither of these ions account for the
basal or forskolin-stimulated Isc. However, the net ab-
sorption of Na1 fully accounts for the control, basal Isc,
and a small portion (15%) of the Isc in the forskolin-
stimulated cells. When the flux studies for Cl2, Na1,
and Rb1 were combined to calculate the  using the
mean Isc (control 0.31 6 0.053 mEq ? cm22 ? h21; for-
skolin 2.60 6 0.144 mEq ? cm22 ? h21, n 5 36) for the
studies in Table I, the control  was 20.12 6 0.11
mEq ? cm22 ? h21 and the forskolin  was 2.37 6
0.189 mEq ? cm22 ? h21. These results demonstrate that
the forskolin-induced increase in Isc cannot be ac-
counted for by the net transepithelial secretion of Cl2

or the absorption of Na1 or K1. Rather, the increase in
Isc caused by forskolin must be attributed to the net
movement of an unmeasured ion, often referred to as
the net residual ion flux, . Because  is the
only remaining ion of significant concentration,  is
likely to be due to the net secretion of  and addi-
tional experiments were performed to test this hypoth-
esis.

JR
net

JR
net

JR
net

JR
net
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net HCO2
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Ion Substitution Studies

Ion substitution experiments were performed to help
further establish the ionic basis of the forskolin-stimu-
lated Isc. Consistent with the failure of bumetanide to
inhibit the forskolin-stimulated Isc and the  of only
0.09 6 0.257 mEq ? cm22 ? h21, substitution of Cl2 with
gluconate caused only a partial reduction of the re-
sponse to forskolin (Fig. 2 A). Similar to the control re-
sponse, the Isc response to forskolin in Cl2-free solu-
tion was rapid in onset with a transient peak and a sus-
tained plateau of 46 6 1.6 mA ? cm22 (n 5 24) (Fig. 2
A). The subsequent addition of Cl2 (30–60 mM) to the

JCl
net

mucosal or serosal solution did not cause a further in-
crease in Isc (data not shown). As in the Cl2 containing
solution, bumetanide (20 mM serosal) had no effect on
the forskolin-stimulated Isc (D 0.15 6 0.76 mA ? cm22,
n 5 6) (Fig. 3). In contrast, removal of  from the
mucosal and serosal bathing solutions resulted in a
greatly diminished response to forskolin (Fig. 2 B). Af-
ter a transient response, Isc was increased by only 4 6 1
mA ? cm22 (n 5 10) in -free solutions. Substitu-
tion of Na1 with N-methyl-d-glucamine, Cl2 with glu-
conate, and NaHCO3 with choline HCO3 also resulted
in a greatly reduced response to forskolin. Forskolin

HCO2
3

HCO2
3

Figure 1. Effects of forskolin on Calu-3 cell Isc and Cl2 fluxes. (A) Short circuit current trace demonstrating the increase in Isc in re-
sponse to forskolin (2 mM) and the failure of bumetanide (20 mM) to inhibit forskolin-stimulated Isc. Current deflections are the re-
sponse to 62-mV pulses. (B) Unidirectional and net fluxes of Cl2 are shown for time periods before and after the addition of forskolin.
Note the fivefold increase in both the mucosal-to-serosal flux (Jms) and the serosal-to-mucosal flux (Jsm) caused by forskolin and the lack of
a net flux (Jnet) of Cl2. Fluxes are plotted as the absolute values and are also summarized in Table I.

t a b l e  i
Effects of Forskolin on Unidirectional and Net Ion Fluxes Across Calu-3 Cell Monolayers

Jms Jsm Jnet Isc RT

Chloride Fluxes

Control 0.53 6 0.059 0.51 6 0.091 10.02 6 0.108 0.27 6 0.045 339 6 24 0.29 6 0.117

Forskolin 2.53 6 0.151 2.44 6 0.208 10.09 6 0.257 2.55 6 0.109 202 6 14 2.64 6 0.279

Sodium Fluxes

Control 2.27 6 0.154 1.81 6 0.184 10.46 6 0.239 0.37 6 0.074 294 6 21 0.09 6 0.250

Forskolin 2.22 6 0.205 1.89 6 0.211 10.33 6 0.294 2.36 6 0.186 154 6 17 2.03 6 0.347

Rubidium Fluxes

Control 0.03 6 0.005 0.04 6 0.003 20.01 6 0.020 0.29 6 0.03 454 6 27 0.30 6 0.036

Forskolin 0.05 6 0.008 0.06 6 0.005 20.01 6 0.006 2.9 6 0.128 190 6 10 2.91 6 0.129

Flux values and Isc are in meq cm22 h21, and resistance (RT) in Vcm2. Measurements were made before and after the addition of forskolin (2 mM) to the
mucosal (m) and serosal (s) solutions. Values are the mean 6 SEM, n 5 6 for each unidirectional flux and 12 for Jnet, Isc, RT, and . See text for explana-
tion of .

JR net

JR
net

JR
net



747 Devor et al.

caused a transient increase in Isc without a sustained
plateau in the Na1-free, Cl2-free, - containing so-
lution (Fig. 2 C), which resembles the response in

-free media. However, the subsequent addition
of Na1 (30 mM) to the serosal but not the mucosal so-
lution caused a sustained increase in Isc of 24 6 1.0 mA ?
cm22 (n 5 12) in forskolin-stimulated cells (Fig. 4).
Addition of Na1 (30 mM) to the serosal solution be-
fore forskolin caused a small decrease in Isc D 27.6 6
0.2 mA ? cm22 (n 5 12) as expected for the serosal-

HCO2
3

HCO2
3

to-mucosal diffusion of a cation. This decrease in Isc was
reversed and Isc rose to a sustained level of 23 6 0.8 mA
? cm22 (n 5 12) with the subsequent addition of forsko-
lin. Thus, the forskolin-stimulated increase in the Isc

was Cl2 independent but Na1 and dependent.

Pharmacology Studies

The above results are consistent with forskolin-stimu-
lated net secretion of . To further test this hy-

HCO2
3

HCO2
3

Figure 2. Forskolin effects on Calu-3 cell Isc in nominally Cl2-free (A), -free (B), or Na1-free (C) buffers. Note the lack of a sus-
tained forskolin (2 mM)-stimulated increase in Isc in the -free and Na1-free buffers. Current traces are representative of 12–24 ex-
periments with similar results.

HCO2
3

HCO2
3

Figure 3. Effects of bumetanide, DNDS, and acetazolamide on forskolin-stimulated Calu-3 cell Isc in Cl2-free buffers. (A) Bumetanide
(20 mM) and mucosal DNDS (3 mM) failed to inhibit the forskolin-stimulated Isc that was inhibited by serosal DNDS. (B) Acetazolamide
(100 mM) caused a partial inhibition of the forskolin response that was further inhibited by serosal DNDS. Current traces are representa-
tive of 6–12 experiments with similar results.
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pothesis, the pharmacological sensitivity to various in-
hibitors of  transport were evaluated. The car-
bonic anhydrase inhibitor, acetazolamide (1 mM
mucosal and serosal), caused a 27% decrease (a reduc-
tion of 13 6 1 mA cm2, n 5 6) in the forskolin-stimu-
lated Isc in Cl2-free solutions (Fig. 3). DNDS (3 mM),
an inhibitor of Cl2/  exchangers and Na1:
cotransporters, was without effect when added to the
mucosal solution (D 5 0.2 mA ? cm22, n 5 6), but
caused an inhibition of 56% (D 226 6 1 mA ? cm22, n 5
6) when added to the serosal side in Cl2-free solutions.
Similar results were obtained in Cl2-containing solu-
tions (D 22.5 6 1.3 mA ? cm22, n 5 6 mucosal; D 227 6
2 mA ? cm22, n 5 6 serosal). The half maximal inhibi-
tory concentration (Ki) for serosal DNDS was 300 mM.
The inhibitory effects of serosal DNDS and acetazol-
amide were additive, together causing a 75% decrease in
Isc. The Na1-K1-ATPase inhibitor, ouabain (100 mM),
caused an immediate and complete inhibition of the
forskolin-stimulated Isc. Neither CTX (50 nM), a
blocker of Ca21 activated K1 channels (Garcia et al.,
1995), nor 293B (100 mM), a blocker of the cAMP/
PKA activated K1 channel (KvLQT1; Lohrmann et al.,
1995; Loussouarn et al., 1997) inhibited the forskolin-
stimulated Isc. The nonselective K1 channel blocker,
Ba21 (5 mM serosal side), inhibited the forskolin-stimu-
lated Isc by only 10 6 2 mA ? cm22 (n 5 6).

The requirement for serosal Na1, the inhibition by
ouabain, and the partial inhibition by serosal DNDS
suggests some of the secreted  is mediated by the

HCO2
3

HCO2
3 HCO2

3

HCO2
3

uptake of  across the basolateral membrane on a
Na1:  cotransporter.2 The partial inhibition of Isc

by acetazolamide suggests some of the secreted 
originates from a metabolic source. The Cl2 indepen-
dence and the failure of mucosal DNDS to inhibit Isc

suggests the exit of  across the apical membrane
is not mediated by a Cl2/  exchanger.

pH Studies

The above results are consistent with the conclusion
that forskolin stimulation causes the electrogenic secre-
tion of . To further test this hypothesis, we per-
formed experiments to determine whether forskolin
caused an alkalinization of the apical solution. Calu-3
cells were studied under open circuit conditions with a
small volume of fluid (100 ml) on the apical surface
(1.1 cm2) and 5 ml of continuously gassed (95% O2/
5% CO2) NaCl, NaHCO3 buffer, pH 7.4, on the serosal
side. Cells were incubated without or with forskolin
(2 mM) and the apical solution collected after 90 min.
The apical sample was thoroughly gassed before mea-
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Figure 4. Sodium dependence of the forskolin-stimulated Isc in Calu-3 cells. Calu-3 cells were short-circuited in an N-methyl-d-glucamine
gluconate, choline  buffer. Cells were stimulated with forskolin (2 mM) either before (A) or after (B) the addition of 30 mM Na-glu-
conate to the serosal solution. Note that forskolin failed to cause a sustained increase in Isc in the absence of serosal Na. Mucosal Na (30
mM) had no effect on the forskolin-stimulated Isc. Current traces are representative of 6–12 experiments with similar results.
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2 White (1989) has reported a complete inhibition by 1 mM DNDS of
a Na1:  cotransporter in the basolateral membrane of sala-
mander intestine. Newman (1991) has reported a 73% inhibition by
2 mM DNDS of a Na1:  cotransporter in retinal glial cells of the
salamander. Although perhaps not directly comparable, Boron and
Knakal (1989) reported a DNDS Ki of 300 mM of a Na1- and Cl2-
dependent  cotransporter in the squid axon.
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suring its pH with a miniature pH electrode. Studied in
this manner, we found forskolin caused an alkaliniza-
tion of the apical solution to a pH of 7.8 6 0.06 (n 5
6), whereas control untreated filters showed a small
acidification of the apical solution, pH 7.3 6 0.05 (n 5
6). The forskolin-stimulated alkalinization of D0.5 pH
over a 90-min period corresponds to the net movement
of  of 1.7 meq ? cm22 ? h21 or 46 mA ? cm22, a
value in good agreement with the forskolin-stimulated
increase in Isc of 53 mA ? cm22 under short circuit con-
ditions.3 Based on these pH measurements, the ion
flux measurements, the ion substitution studies, and
the pharmacology studies, we conclude that the forsko-
lin-induced Isc response in Calu-3 cells is due to the net
secretion of  by a Cl2-independent Na1-depen-
dent, and DNDS-sensitive electrogenic mechanism.

Effects of 1-EBIO on Calu-3 Cells

We previously demonstrated that the novel benzimida-
zolinone, 1-EBIO, induced a sustained transepithelial
Cl2 secretory response in rat colonic mucosa, human
colonic T84 cells, and murine airway epithelia (Devor et
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al., 1996). CTX and clotrimazole inhibited the 1-EBIO–
stimulated Cl2 secretion consistent with the activation
of basolateral membrane K1 channels that was con-
firmed in permeabilized monolayers (Devor et al.,
1996, 1997). Moreover, patch clamp studies demon-
strated 1-EBIO activates an inwardly rectifying, calcium
activated, CTX, and clotrimazole-sensitive K1 channel
(Devor et al., 1996, 1997). Permeabilized monolayers
revealed 1-EBIO also activates an apical membrane Cl2

conductance (Devor et al., 1996). The studies reported
here were performed to determine if 1-EBIO would
have similar effects on Calu-3 cells.

In 46 experiments, 1-EBIO (1 mM) increased Isc from
a basal value of 8 6 0.8 to 62 6 4 mA ? cm22 with only a
modest decrease in RT (control 397 6 21 Vcm2 vs.
1-EBIO 336 6 20 Vcm2). A current trace of a typical Isc

response to 1-EBIO is shown in Fig. 5 A. The response
was rapid in onset and sustained over a long period.
Dose–response studies revealed the half maximal effec-
tive concentration of 1-EBIO was z500 mM. Consistent
with the activation of the KCa channels, CTX (50 nM)
inhibited 47% of the 1-EBIO–stimulated Isc. The half
maximal effective concentration of CTX was 3.2 nM
(n 5 4). Clotrimazole (10 mM), a nonpeptide inhibitor
of KCa, also inhibited 87.6 6 1.9% (n 5 5) of the re-
sponse to 1-EBIO with a Ki of 1.2 mM (n 5 5). Bumet-
anide (20 mM) inhibited z50% of the 1-EBIO–stimulated
Isc (Table II). DNDS and acetazolamide caused only small
(,10%) decreases in the 1-EBIO–stimulated Isc.

Unidirectional fluxes of 36Cl revealed that 1-EBIO
caused the net secretion of Cl2 (Fig. 5 B and Table II).
As in previous experiments (Fig. 1 B), there was no net

3 The net secretion of  can be calculated from the equation J
(mol ? cm22 ? h21) 5 buffer capacity (bCO2) ? DpH ? h21 ? volume ?
area21, where bCO2 5 2.3 (25 mM ), final volume 5 100 ml, and
area 5 1.1 cm2. Thus, JHCO3 5 57.5 ? 0.33 DpH ? h21  ? 0.1 3 1023 liters
? 1.1 cm22 5 1.7 meq  ? cm22  ? h21. Although the final volume was not
measured, it was consistently greater in the forskolin-stimulated
monolayers compared with the control monolayers. Therefore, the
actual net flux of  would be proportionally higher and be in
even closer agreement with the forskolin-stimulated increase in Isc.
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Figure 5. Effects of 1-EBIO and bumetanide on Calu-3 cells Isc and Cl2 fluxes. (A) short-circuit current trace demonstrating the increase
in Isc in response to 1-EBIO (1 mM) and the inhibition by bumetanide (20 mM). (B) Unidirectional and net ion fluxes of Cl2 are shown for
time periods before and after the addition of 1-EBIO. Note that 1-EBIO caused a sixfold increase in Jsm, no change in Jms, and a net secre-
tion of Cl2 that, as summarized in Table II, was nearly equal to the increase in Isc. The 1-EBIO–stimulated secretion of Cl2 was inhibited by
bumetanide (Table II), as anticipated from the inhibition in Isc. Fluxes are plotted as the absolute values.
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secretion of Cl2 in control monolayers. 1-EBIO caused
a sixfold increase in the serosal-to-mucosal flux of Cl2

without altering the mucosal-to-serosal flux leading to
net Cl2 secretion. Moreover, the net secretion of Cl2

fully accounted for the increase in Isc caused by 1-EBIO,
leaving a small  of only 0.25 6 0.263 mEq ? cm22 ?
h21. Bumetanide inhibited the serosal-to-mucosal flux
of Cl2 and thereby caused a 70% inhibition in  in
1-EBIO–stimulated monolayers.

Effects of Forskolin and 1-EBIO on Isc

The above results demonstrate Calu-3 cells secrete
 when stimulated by forskolin and Cl2 when

stimulated by 1-EBIO. In the next series of experi-
ments, we evaluated the effects of 1-EBIO on forskolin
stimulated monolayers. As in the previous experiments,
forskolin increased Isc from a control value of 6.8 6 0.7
to 67 6 4.3 mA ? cm22 (n 5 12) without causing the net
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net
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net
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secretion of Cl2 and leaving a  nearly equal to the
change in Isc (Fig. 6 and Table III). 1-EBIO further in-
creased Isc to 114 6 5 mA ? cm22 (Fig. 6 and Table III).
Similar results were obtained if the order of the addi-
tion of forskolin and 1-EBIO were reversed. CTX inhib-
ited 79 6 2% (n 5 8) and bumetanide inhibited 80 6
1% (n 5 5) of the forskolin plus 1-EBIO–stimulated Isc.
When added to the forskolin-stimulated cells, 1-EBIO
caused a twofold increase in the serosal-to-mucosal flux
of Cl2 and a  that was nearly equal to the Isc (Fig. 6
and Table III). Thus, 1-EBIO caused a 70% decrease in
the forskolin-stimulated . These results suggest
1-EBIO can switch the forskolin-stimulated Calu-3 cells
from - to Cl2-secreting cells.

One hypothesis to explain the effects of 1-EBIO on
Calu-3 cells is the activation of basolateral membrane
K1 channels that would tend to hyperpolarize the
membrane potential. The inhibition of the 1-EBIO re-
sponse by CTX and clotrimazole support this hypothe-
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t a b l e  i i
Effects of 1-EBIO and Bumetamide on Unidirectional and Net Cl2 Fluxes Across Calu-3 Cell Monolayers

Isc RT

Control 0.64 6 0.07 0.67 6 0.085 20.03 6 0.081 0.40 6 0.061 388 6 21 0.37 6 0.072

1-EBIO 0.72 6 0.068 3.18 6 0.411 22.46 6 0.305 2.71 6 0.213 273 6 14 0.25 6 0.263

Bumetanide 0.59 6 0.150 1.33 6 0.054 20.74 6 0.109 1.25 6 0.058 280 6 17 0.51 6 0.987

Units are as given in Table I. Measurements were made before and after the addition of 1-EBIO (1 mM) to the mucosal (m) and serosal (s) solutions and
bumetanide (20 mM) to the serosal solution. Values are the mean 6 SEM, n 5 6 for each unidirectional flux and 12 for Jnet, Isc, RT, and .

JCl ms JCl sm JCl net JR net
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net

Figure 6. Effects of forskolin and 1-EBIO on Calu-3 cell Isc and Cl2 fluxes. (A) Short-circuit current trace demonstrating the increase in
Isc in response to forskolin (2 mM) and 1-EBIO (1 mM). (B) Unidirectional and net Cl2 fluxes are shown for the forskolin and forskolin
plus 1-EBIO time periods. As in the previous experiments, forskolin increased both unidirectional fluxes without causing a net Cl2 secre-
tion. 1-EBIO further increased Jsm and caused a net secretion that accounted for 83% of the Isc. Fluxes are plotted as the absolute values
and are also summarized in Table III.
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sis. Hyperpolarization of the membrane potential
would increase the driving force for anion exit of both

 and Cl2 across the apical membrane. However,
hyperpolarization of the basolateral membrane poten-
tial would also tend to decrease the driving force for ba-
solateral membrane  entry on the Na1:
cotransporter, whose Na1 to  stoichiometry is re-
ported to be 1:2 or 1:3 in various cell types (Boron and
Boulpaep, 1989). A second hypothesis, and one that is
not mutually exclusive with the former hypothesis, is
that 1-EBIO activates apical membrane anion channels
that were not activated by forskolin and that the 1-EBIO-
activated channels allow for the preferential exit of Cl2

over . To test these hypotheses, we performed
studies on permeabilized monolayers.

The pore forming antibiotic nystatin was used to per-
meabilize the apical membrane and a transepithelial
mucosal-to-serosal K1 gradient was established. After
permeabilization, 1-EBIO increased IK, and this was in-
hibited by both CTX (Fig. 7 A) and clotrimazole (B).
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In 17 experiments, 1-EBIO (1 mM) increased IK an av-
erage of 91 6 9 mA ? cm22 and this was inhibited 66 6
2% by CTX (50 nM, n 5 10) and 95 6 2% by clotrima-
zole (10 mM, n 5 7). Thus, 1-EBIO does activate baso-
lateral membrane K1 channels. In contrast, forskolin
(2 mM) failed to cause an increase in IK. After the estab-
lishment of a mucosal-to-serosal Cl2 gradient, the addi-
tion of nystatin to the serosal membrane elicited an ab-
sorptive ICl of 58 6 9 mA ? cm22 (n 5 24, Fig. 8). Thus,
in contrast to the measurements of IK, treatment of the
monolayers with nystatin appears to uncover or activate
a substantial basal ICl. Similar results were observed in
T84 cells studied under the same experimental condi-
tions (Devor et al., 1996). Therefore, this effect of nys-
tatin is not unique to Calu-3 cells. The mechanisms in-
volved in this nystatin induced increase in ICl are un-
known. The subsequent addition of forskolin (10 mM)
to the nystatin-treated monolayers increased ICl by an
additional 186 6 15 mA ? cm22 (n 5 7) (Fig. 8 A).
1-EBIO failed to cause any further increase in ICl in the

t a b l e  i i i
Effects of Forskolin and 1-EBIO on Unidirectional and Net Cl2 Fluxes Across Calu-3 Cell Monolayers

Isc RT

Forskolin 2.30 6 0.106 2.57 6 0.096 20.27 6 0.105 2.49 6 0.158 180 6 7 2.22 6 0.134

1-EBIO 2.60 6 0.190 6.14 6 0.582 23.54 6 0.452 4.24 6 0.192 173 6 9 0.72 6 0.347

Units are as given in Table I. Measurements were made before and after the addition of 1-EBIO (1 mM) to the mucosal and serosal solutions of forskolin
(2 mM)-treated monolayers. Values are the mean 6 SEM, n 5 6 for each unidirectional flux and 12 for Jnet, Isc, RT, and .
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Figure 7. Effect of 1-EBIO, CTX, and clotrimazole on basolateral membrane K1 currents (IK) after establishment of a mucosa-to-serosa
K1 gradient and permeabilization of the mucosal membrane with nystatin. (A) Effects of 1-EBIO (600 mM) and CTX (50 nM), and (B) ef-
fects of 1-EBIO and clotrimazole (10 mM) on IK. Monolayer illustration indicates the direction of the ion gradient and the dashed line in
the monolayer the permeabilization of the apical membrane with nystatin. Current traces are representative of six experiments with simi-
lar results.
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forskolin treated monolayers. However, 1-EBIO alone
when added to the nystatin-treated monolayers in-
creased ICl by an additional 74 6 11 mA ? cm22 (n 5 6)
and forskolin further increased ICl by an additional 110 6
12 mA ? cm22 (n 5 6; Fig. 8 B).

Thus, both forskolin and 1-EBIO when added alone
can activate an apical membrane Cl2 conductance in
nystatin-treated Calu-3 monolayers. Forskolin caused
a 2.5-fold greater increase in ICl compared with the
1-EBIO response. The lack of specific Cl2 channel
blockers (Schultz et al., 1999) prevents us from deter-
mining whether the same channel or different Cl2

channels are activated by forskolin and 1-EBIO. How-
ever, when forskolin and then 1-EBIO was added, the
effects on ICl were not additive, suggesting that forsko-
lin alone can maximally activate the apical Cl2 conduc-
tance. Therefore, the effect of 1-EBIO in causing the
switch from  secretion to Cl2 secretion appears
to result from the activation of basolateral membrane
K1 channels and decreased driving force for  en-
try across the basolateral membrane. This hypothesis
will be considered further in the discussion.

Excised Patch Single Channel Records

The above results indicate that Calu-3 cells express K1

channels with similar pharmacological characteristics
to the K1 channels we described previously in T84 cells
(Devor and Frizzell, 1993; Devor et al., 1996, 1997) and
that this conductance may be important in altering the
driving force for  entry across the basolateral
membrane that elicits Cl2 secretion in Calu-3 cells.
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Thus, we wished to characterize this K1 channel at the
single channel level. Inward and outward single-chan-
nel currents observed on excision of membrane
patches into a symmetric K1 bath containing 400 nM
free Ca21 are shown in Fig. 9 A. Channel activity
showed no obvious voltage dependence and required
Ca21 in the bath (data not shown). The average cur-
rent–voltage for four such patches is shown in Fig. 9 B
(d). Single channel currents were inwardly rectified
with average chord conductance values of 31 6 2 pS at
2100 mV and 9 6 0.2 pS at 1100 mV. The K1-to-Na1

selectivity of this channel was assessed by replacing 100
mEq pipette K1 with Na1; PK/PNa was calculated from
the Goldman-Hodgkin-Katz relation. Replacing pipette
K1 with Na1 shifted the reversal potential by 220 mV
(n 5 4; Fig. 9 B, s). A shift of 227 mV is predicted for
a perfectly K1 selective electrode. From these data, the
calculated K1-to-Na1 selectivity ratio is 5.5:1. This con-
ductance and K1:Na1 selectivity values are similar to
what has been previously reported for a Ca21-activated
K1 channel in T84 cells (Devor and Frizzell, 1993; Tab-
charani et al., 1994; Roch et al., 1995) as well as pri-
mary cultures of canine tracheal epithelial cells (Welsh
and McCann, 1985; McCann et al., 1990).

Effect of 1-EBIO on KCa

We previously demonstrated that 1-EBIO directly acti-
vated the KCa of T84 cells in excised patch-clamp re-
cordings (Devor et al., 1996). Thus, we determined
whether 1-EBIO would similarly activate KCa in excised,
inside-out single channel patch-clamp recordings from

Figure 8. Effects of forskolin and 1-EBIO on apical membrane Cl2 currents (ICl) after establishment of a mucosa-to-serosa Cl2 gradient
and permeabilization of the basolateral membrane with nystatin. (A) Effects of forskolin (2 mM) and 1-EBIO (1 mM), and (B) effects of
1-EBIO and forskolin on ICl. The monolayer illustration indicates the direction of the ion gradient and the dashed line in the monolayer
indicates the permeabilization of the basolateral membrane with nystatin. Current traces are representative of 24 experiments with similar
results.



753 Devor et al.

Calu-3 cells. The effect of 1-EBIO (200 mM) on one
patch is shown in Fig. 10. Under control conditions
(400 nM free Ca21 in the bath), minimal KCa channel
activity was observed. 1-EBIO produced a large increase
in channel activity that was readily reversible after wash-
out of the 1-EBIO. In 14 inside-out recordings, 1-EBIO
increased nPo from 0.08 6 0.02 to 1.68 6 0.39. These
results indicate that this channel, as in T84 cells, is re-
sponsible for the increase in the basolateral membrane
K1 conductance and Isc during an 1-EBIO–mediated
secretory response.

Effect of K1 Channel Blockers

We demonstrate above that the 1-EBIO–induced baso-
lateral membrane K1 conductance is sensitive to block
by CTX and clotrimazole (Fig. 7). We therefore deter-
mined whether these inhibitors would block the chan-
nel in excised outside-out and inside-out patches. The
effect of CTX (50 nM) on KCa in an outside-out patch is

shown in Fig. 11 A. When holding the patch at 2100 mV,
addition of CTX to the outside of the channel resulted
in a complete inhibition of channel activity. This block
was voltage dependent and was partially relieved by
voltage clamping the patch to 1100 mV. The inhibition
by CTX was completely reversible. Similar results were
obtained in three additional outside-out patches. Clot-
rimazole (10 mM) also completely inhibited KCa activity,
reducing nPo from 1.59 6 0.24 to 0.05 6 0.02 (n 5 6;
Fig. 11B). Thus, results from these K1 channel blocker
experiments further indicate that 1-EBIO is activating
this inwardly rectifying Ca21-activated K1 conductance
in Calu-3 monolayers resulting in the stimulation of Cl2

secretion and the inhibition of  secretion.

d i s c u s s i o n

The results of our studies with Calu-3 cells demonstrate
that forskolin stimulates the net secretion of .
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Figure 9. (A) Single channel recordings of KCa from an excised, inside-out patch. Recordings were made at the indicated voltages (refer-
enced to the inside of the membrane) in symmetric K-gluconate solutions. The bath contained 400 nM free Ca21. The arrows indicate the
closed state of the channel. (B) Average current–voltage relationships for KCa recorded in either symmetric 150 mM K-gluconate (d, n 5
4) or after replacement of 100 mEq K1 with Na1 in the pipette solution (s, n 5 4).
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Forskolin consistently caused an increase in Isc to a
new sustained plateau. Ion flux studies revealed that
this increase in Isc could not be explained by the net
transport of Na1, Rb1, or Cl2, leaving  secretion
as the likely basis for the increase in Isc. Ion substitution
experiments demonstrated , but not Cl2, was re-
quired to elicit a sustained increase in Isc with forskolin.
In addition, Na1 was required in the serosal bath to
elicit a forskolin response. Inhibitor studies revealed
that the forskolin response was sensitive to ouabain, in-
dicating a role for the Na1/K1-ATPase. The forskolin
response was also sensitive to DNDS on the serosal side
but not the mucosal side, indicating a role for a basolat-
eral membrane Na1:  cotransporter or Cl2:

 exchanger. However, because Cl2 was not re-
quired and serosal Na1 was, the effects of DNDS are
likely to result from the inhibition of a basolateral
membrane Na1:  cotransporter. Acetazolamide
caused a partial inhibition of the forskolin response,
consistent with some of the secreted  arising
from metabolic sources. The ion flux studies failed to
show evidence of net secretion of Cl2 in response to
forskolin, and bumetanide did not inhibit the Isc re-
sponse. Thus, forskolin did not cause the net secretion
of Cl2 across Calu-3 cells under short circuit condi-
tions. Rather, we conclude forskolin causes the net se-
cretion of  by a Cl2-independent, Na1-depen-
dent, and DNDS-sensitive electrogenic mechanism in
Calu-3 cells. The forskolin-stimulated alkalinization of
the mucosal bathing solution of Calu-3 cells, studied
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under open circuit conditions, lends further support to
this conclusion.

Although forskolin did not stimulate the net secre-
tion of Cl2, it did cause a fivefold increase in both uni-
directional fluxes of Cl2 (Fig. 1 B and Table I) and it is
of interest to understand the mechanisms that underly
these changes. Our first interpretation was that forsko-
lin increased the transcellular passage of Cl2 in both di-
rections. Thus, the opening of CFTR would allow for
both the exit and entry of Cl2 across the apical mem-
brane. The NaK2Cl cotransporter in the basolateral
membrane would allow the entry of Cl2 leaving one to
explain how Cl2 exits the cell in the serosal-to-mucosal
direction. However, bumetanide did not alter the uni-
directional fluxes, consistent with the lack of change in
the forskolin-stimulated Isc. Thus, the NaK2Cl cotrans-
porter does not appear to mediate the entry of Cl2

across the basolateral membrane in the forskolin-stimu-
lated monolayers. We next entertained the possibility
that Cl2 may move across the basolateral membrane on
a Cl2:  exchanger. However, the increases in both
unidirectional fluxes in response to forskolin were still
observed in -free buffer. Thus, the increased
fluxes do not depend on extracellular . Because
this experiment does not exclude the possibility that a
basolateral membrane anion exchanger is operating in
a Cl2:Cl2 exchange mode, we examined the effects of
serosal DNDS (1 mM) on the Cl2 fluxes. DNDS cause a
70% decrease in both unidirectional fluxes in the for-
skolin-stimulated monolayers. Therefore, the increase
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Figure 10. Reversible activa-
tion of KCa in an excised, inside-
out patch by 1-EBIO (200 mM) in
the presence of 400 nM free
Ca21. Bath and pipette contained
symmetric 150 mM K-gluconate
and the patch was voltage
clamped to 2100 mV (inside
negative). Arrows indicate the
closed state of the channel.
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in Cl2 fluxes caused by forskolin can largely be ac-
counted for by a Cl2:Cl2 exchange across the basolat-
eral membrane and the exit and entry of Cl2 via CFTR
across the apical membrane.

The studies with 1-EBIO demonstrated the Calu-3
cells are not limited to the secretion of , but rather
they can also be stimulated to secrete Cl2. 1-EBIO, like
forskolin, consistently caused a sustained increase in
Isc. 36Cl flux studies showed the 1-EBIO–stimulated in-
crease in Isc could be fully accounted for by the net se-
cretion of Cl2. In addition, both the increase in Isc and
the net secretion of Cl2 were inhibited by bumetanide.
Studies on permeabilized Calu-3 monolayers revealed
1-EBIO activates both a basolateral membrane K1 con-
ductance and an apical membrane Cl2 conductance as
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previously shown in studies on T84 cells (Devor et al.,
1996). CTX and clotrimozole both inhibited the 1-EBIO
Isc response as well as the 1-EBIO–activated K1 current
in permeabilized monolayers. Patch-clamp studies
demonstrated the presence of an intermediate conduc-
tance, inwardly rectified, Ca1-activated K1 channel in
Calu-3 cells that was activated by 1-EBIO and blocked
by CTX and clotrimozole. We and others have also
identified a Ca1-activated K1 channel with identical
biophysical properties and pharmacological profile in
T84 cells (Devor and Frizzell, 1993; Tabcharani et al.,
1994; Roch et al., 1995; Devor et al., 1996). Moreover,
Welsh and McCann (1985) and McCann et al. (1990)
have already shown that this channel is expressed in na-
tive airway epithelial cells and is therefore not just in

Figure 11. Inhibition of KCa by CTX and clotriomazole. (A) Addition of CTX (50 nM) to the extracellular side of KCa in an excised, out-
side-out patch resulted in a complete inhibition of channel activity when the patch was voltage clamped to 2100 mV (inside negative).
Patch pipette contained 400 nM free Ca21. (B) Addition of clotrimazole (3 mM) to the cytoplasmic side of KCa in an excised inside out
patch resulted in a complete inhibition of channel activity at a holding potential of 2100 mV. Other conditions as indicated in Fig. 10, the
arrows indicate the closed state of the channel.
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epithelial cell lines. Recently, three different groups
have cloned the same K1 channel, variously referred to
as hIK-1, hSK4, and hIK (Ishii et al., 1997; Joiner et al.,
1997; Jensen et al., 1998). These channels have identi-
cal biophysical properties and pharmacological profile
to the channel observed in canine tracheocytes, T84
cells, and Calu-3 cells. Northern blot analysis has con-
firmed the presence of the mRNA for hIK-1 in T84 and
Calu-3 cells (Devor, D.C., unpublished results). Thus,
we conclude that one site of action of 1-EBIO is the ac-
tivation of hIK-1 in the basolateral membrane of Calu-3
cells. Permeabilization of monolayers demonstrated
1-EBIO also activates an apical membrane Cl2 channel;
however, the identity of the apical membrane Cl2 chan-
nel that is activated by 1-EBIO is less certain. Haws et al.
(1994) have reported the predominant Cl2 channel ob-
served in Calu-3 cells is a low conductance channel with
properties consistent with those of CFTR. 1-EBIO is a
benzimidazolinone and other benzimidazolinones (e.g.,
NS004 and NS1619) have been reported to activate
CFTR (Gribkoff et al., 1994; Champigny et al., 1995).
Thus, it is possible that the Cl2 channel activated by
1-EBIO in Calu-3 cells is CFTR. However, further studies
will be necessary to confirm this hypothesis.

Calu-3 cells secrete  in response to forskolinHCO2
3

and Cl2 in response to 1-EBIO. However, when the two
agonists are added together, anion secretion is domi-
nated by Cl2 secretion and there is a decrease in the
net secretion of . Studies with primary cultures
of human bronchial epithelial cells lead Smith and
Welsh (1992) to suggest that airway epithelia may also
switch between  and Cl2 secretion. Ashton et al.
(1991) have also suggested that pancreatic ductal epi-
thelial cells can be differentially stimulated to secrete

 or Cl2. The mechanisms that underlie the
switch between  and Cl2 secretion are largely un-
known. Our results with Calu-3 cells offer some insight
and suggest a model (Fig. 12) to explain how the same
cell can secrete  when stimulated by forskolin
and Cl2 when stimulated by 1-EBIO or 1-EBIO plus for-
skolin.

The first tenet of the model is the presence of an an-
ion channel in the apical membrane that can conduct
both  and Cl2. Whether there are two separate
channel types, one favoring  and activated by for-
skolin and one favoring Cl2 and activated by 1-EBIO, or
a single channel type that conducts both  and
Cl2

 is not clear at this time. Nonselective anion chan-
nels have been reported but to our knowledge an epi-
thelial anion channel that favors  over Cl2 has
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Figure 12. Model for Calu-3 anion secretion. Stimulation by cAMP causes the activation of an apical membrane anion channel that con-
ducts both  and Cl2. We propose this anion channel is CFTR. Activation of CFTR will tend to bring the apical membrane potential
to ECl (about 235 mV), a value greater than the equilibrium potential for  (EHCO3 5 213 mV) and thereby provides the driving
force for  exit across the apical membrane. Stimulation by cAMP (forskolin) alone leaves the basolateral membrane potential (cbl)
less hyperpolarized than the reversal potential of the DNDS-sensitive Na1:  cotransporter (ErevNaHCO3) and  is secreted. Activa-
tion of KCa by 1-EBIO hyperpolarizes cbl so that cbl . ErevNaHCO3, and this inhibits  uptake by the Na1:  cotransporter but pro-
vides the driving force for Cl2

 secretion. Whether cAMP activates the Na1:  cotransporter is unknown. The stoichiometry, 1:2 or
1:3, of the Calu-3 cell Na1:  cotransporter is also unknown.
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not yet been described in the literature. Because
 secretion is stimulated by forskolin, the anion

channel mediating the secretion of  is likely to
be activated by cAMP and PKA, as is CFTR. CFTR is
highly expressed in Calu-3 cells (Finkbeiner et al., 1993;
Shen et al., 1994) and activated by forskolin when mea-
sured by anion efflux methods and patch clamp analy-
sis (Haws et al., 1994). Preliminary studies using imped-
ance analysis have shown forskolin does activate an
apical membrane anion conductance in Calu-3 cells
(Bridges, R.J., unpublished observations). Patch-clamp
anion selectivity studies have shown CFTR can conduct

, although at a fraction (0.15–0.25) of the Cl2

conductance (Gray et al., 1990; Poulsen et al., 1994;
Linsdell et al., 1997). Heterologous expression of wt-
CFTR but not DF508-CFTR in NIH3T3 fibroblasts and
C127 mammary cells was shown to confer the cells with
a Na1-independent, -dependent, forskolin-regu-
lated intracellular pH recovery mechanism (Poulsen
et al., 1994). Illek et al. (1997) have shown, in a-toxin–
permeabilized monolayers of Calu-3 cells, the activa-
tion of a  current by cAMP with a similar 
to Cl2 selectivity as observed in the patch-clamp stud-
ies. In addition, Smith and Welsh (1992) demonstrated
cAMP-stimulated  secretion across normal but
not CF airway epithelia and they suggested  exit
across the apical membrane is through the Cl2 channel
that is defectively regulated in CF. Thus, we propose
that CFTR mediates the exit of  across the apical
membrane of Calu-3 cells.

The involvement of an anion channel in  se-
cretion is not a new concept. However, previous models
have proposed the anion channel acts as a shunt path-
way mediating the exit of Cl2 from the cell (Stetson
et al., 1985). Luminal Cl2 is then thought to be used by
an apical membrane Cl2:  exchanger that medi-
ates the exit of  from the cell. Thus, this model
for  secretion necessitates the presence of lumi-
nal Cl2 for the apical membrane exit of . The
studies with Calu-3 cells demonstrate Cl2 is not re-
quired for the secretion of . Ishiguro et al.
(1996) have recently reported results on  secre-
tion in interlobular ducts from guinea pig pancreas
that demonstrate agonist-stimulated  efflux at
low (7 mM) luminal Cl2 concentrations. These authors
suggest their results are not easily reconciled with

 transport across the luminal membrane being
mediated by a Cl2:  exchanger in parallel with a
Cl2 conductance. Rather, they too argue for a conduc-
tive, channel mediated, exit of  across the apical
membrane (Ishiguro et al., 1996). Our findings are
consistent with this hypothesis, and they suggest the
Calu-3 cells will be a useful cell line to help further test
this hypothesis as well as to determine the role of CFTR
in apical  exit.
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The second tenet of the model (Fig. 12) is the pres-
ence of an electrogenic Na1:  cotransporter
(NBC) in the basolateral membrane that mediates the
entry of  into the cell. Boron and Boulpaep
(1983) were the first to describe an electrogenic NBC
with Na1:  stoichiometry of 1:3 that mediates the
exit of  across the basolateral membrane in the
proximal tubule of the tiger salamander Ambystoma ti-
grinum. Romero et al. (1997) using mRNA from the ti-
ger salamander kidney have recently expression cloned
this NBC. The cloning of a human homologue of the
renal NBC has also recently been reported (Burnham
et al., 1997), as has a unique human pancreatic isoform
(Abuladze et al., 1998). The stoichiometries of the
cloned NBCs have not yet been established but Xenopus
oocyte expression studies have shown the renal NBC is
electrogenic, Na1- and -dependent, Cl2-inde-
pendent, and disulfonic stilbene–sensitive (Romero et al.,
1997). These characteristics are shared by NBCs stud-
ied in kidney, glial, liver, pancreas, and colon (Boron
and Boulpaep, 1989). Our studies with Calu-3 cells
demonstrate that forskolin-stimulated  secretion
also shares these characteristics, consistent with the
presence of a NBC in the basolateral membrane. Pre-
liminary reverse transcription–PCR and sequencing
studies have shown Calu-3 cells express a NBC (Gango-
padhyay and Bridges, unpublished observations) lend-
ing further support to this notion. Studies in progress
are focused on ascertaining which of the NBC isoforms
is expressed in Calu-3 cells as well as the membrane lo-
calization, apical versus basolateral, of the cotrans-
porter. According to Fig. 12, we predict a basolateral
membrane NBC with a Na1:  stoichiometry that
favors the entry of  when Calu-3 cells are stimu-
lated by forskolin. Both the pancreatic and renal iso-
forms of the NBCs have consensus phosphorylation
sites for protein kinase A and therefore may be regu-
lated by cAMP-mediated agonists (Romero et al., 1997;
Abuladze et al., 1998). Thus, in addition to the activa-
tion of an apical membrane anion channel (CFTR?),
forskolin may also activate  entry on the NBC.

Whether a NBC mediates entry or exit of  de-
pends on the stoichiometry of the transporter, the
membrane potential, and the concentrations of Na1

and  inside and outside the cell. Sodium:
stoichiometries of 1:2 and 1:3 have been reported (Bo-
ron and Boulpaep, 1989), indicating that turnover of
the NBC may result in the transfer of one or two nega-
tive charges across the membrane at usual membrane
voltages. The 1:2 stoichiometry is associated with NBC-
mediated  entry, whereas a 1:3 stoichiometry is
consistent with  exit. If one assumes typical ion
concentrations of 145 mM Na1, 25 mM  outside,
and 15 mM Na1 and 15 mM  inside, then 
will enter a cell on the NBC at membrane potentials
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less hyperpolarized than 285 mV when the Na1:
stoichiometry is 1:2 and 249 mV when it is 1:3. Mem-
brane potentials more hyperpolarized than these valves
will lead to  exit from the cells. Thus, the activa-
tion of basolateral membrane K1 channels by 1-EBIO is
expected to hyperpolarize the membrane potential,
and this will inhibit the entry of  on the NBC. If
the hyperpolarization is of sufficient magnitude, this
change in driving force may drive  out of the cell
across the basolateral membrane. Hyperpolarization
will also tend to drive anions (  and Cl2) out of
the cell across the apical membrane. However, because
basolateral membrane entry of  becomes inhib-
ited, this apical membrane hyperpolarization will favor
Cl2 secretion. Therefore, we propose that the switch
between  secretion and Cl2 secretion is deter-
mined by the basolateral membrane potential. Differ-
ential regulation of the basolateral membrane potential
by secretory agonists would provide a means of stimu-
lating  or Cl2 secretion. As shown in Fig. 12,
CFTR could serve as both a  and a Cl2 channel
mediating the apical membrane exit of either anion de-
pending on the nature of the anion provided by the ba-
solateral membrane cotransporter mechanisms.

Why does forskolin fail to stimulate Cl2 secretion in
Calu-3 monolayers? Cyclic AMP–stimulated Cl2 secre-
tion is known to require the activation of both an apical
membrane Cl2 conductance and a basolateral mem-
brane K1 conductance; the former depolarizes and the
latter repolarizes the membrane voltage to maintain a
driving force for Cl2 exit (Halm and Frizzell, 1990).
Permeabilization studies demonstrated forskolin does
activate an apical membrane Cl2 conductance (Fig. 8),
but that it fails to activate a basolateral membrane K1

conductance (Fig. 7). Thus, unless the basal K1 con-
ductance can maintain the apical voltage above the Cl2

equilibrium potential (ECl , 235 mV, assuming intra-
cellular Cl2 5 30 mM), Cl2 can not be secreted. Indeed,
the expected high Cl2 conductance of the apical mem-
brane of forskolin-stimulated Calu-3 cells would set the
apical membrane voltage at ECl and this would provide
the driving force for  exit since EHCO3 is –13 mV
(assuming intracellular  5 15 mM and extracel-
lular 5 25 mM).4 This electrical coupling may explain
the apparent Cl2 dependence of  secretion in
some epithelia and further emphasizes the importance
of CFTR in Cl2 and  secretion.
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If the results we have obtained with Calu-3 cells accu-
rately reflect the transport properties of native submu-
cosal gland serous cells, then  secretion in the
human airways warrants greater attention. Calu-3 cell

 secretion in response to cAMP-mediated ago-
nists is quite similar to that observed in pancreatic duct
cells where mutations in CFTR have profound patho-
logical effects. Pancreatic function in CF patients is
characterized by impaired fluid, , and Cl2 secre-
tion by the ductal epithelial cells, the site of CFTR ex-
pression (Durie and Forstner, 1989; Marino et al.,
1991). Impaired secretion ultimately leads to destruc-
tion of the pancreas by digestive enzymes in the ob-
structed ducts. The principle secreted ion by the ductal
cells is , which drives Na1 and water into the lu-
men by electrical and osmotic coupling. The secreted
alkaline fluid serves to regulate the activities of the di-
gestive enzymes and to flush them into the duodenal
lumen. Secreted  is also thought to have an os-
motic advantage (Hogan et al., 1994). With the aid of
carbonic anhydrase,  can quickly combine with
protons to make CO2 and H2O, and thereby tend to
make the fluid hypoosmotic. If the airway submucosal
glands and surface epithelium function in an analo-
gous manner, potential roles for  in the airways
may include the processing, regulation, and clearance
of submucosal gland–derived enzymes, mucus, and an-
timicrobial agents. Early studies have suggested mucus
undergoes a transition from gel to sol at alkaline pH
(Forstner et al., 1977) and  secretion could there-
fore aid in the clearance of mucus from the submucosal
glands, a process that is impaired in CF. Airway serous
cells also express abundant amounts of carbonic anhy-
drase (Basbaum et al., 1990), some of which may be of
the type IV membrane-associated isoform that could
convert the secreted  to CO2 and H2O in the lu-
men of the gland or in the airway surface fluid. The
rapid loss of CO2 during ventilation of the airways would
favor a shift in the enyzmatic equilibrium toward the
conversion of  to H2O. The volatility of the

/CO2 buffer system, especially at an air–liquid in-
terface, while having potential physiological significance,
will also make the investigation of  secretion in the
airways a formidable challenge to the experimentalist.
Studies with Calu-3 cells will provide a means to further
investigate the mechanisms involved in serous cell 
secretion, and perhaps with this knowledge how to better
study  secretion in the intact airways.
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4Together with the measured net secretion of  of z60 mA ?

cm22, one can use the values for EHCO3 (213 mV) and ECl (235 mV)
to obtain an estimate of the apical membrane  conductance
(gHCO3), where gHCO3 5 (ECl 2 EHCO3)/IHCO3 5 2.7 mS ? cm22. This es-
timation assumes the apical membrane is at ECl. Results from imped-
ance analysis on Calu-3 cells indicate forskolin increases the apical
membrane conductance (gapical) to z20 mS ? cm22 (Bridges, R.J., un-
published observations). This remarkably high conductance would
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ensure the apical membrane potential is at or near ECl, but also yields
a  to Cl2 conductance ratio of z0.15 (where gCl 5 gapical 2

gHCO3 5 20 2 2.7 5 17.3 mS ? cm22 so that gHCO3/gCl 5 2.7/17.3 5
0.15), a value in good agreement with the patch clamp estimates of
0.15–0.25 for CFTR. Moreover, an apical membrane gCl of 17.3 mS ?
cm22 means a driving force of only 3.5 mV is required to achieve a
net Cl2 secretion of 60 mA ? cm22.
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