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Abstract: Oxidative stress, a result of a disturbance in redox homeostasis, is considered to be one
of the main aggravating events in the pathogenesis of immune disorders. Peroxiredoxins (Prdxs)
are an enzyme family that catalyzes the reduction of peroxides, including hydrogen peroxide, lipid
peroxides, and nitrogen peroxides. Although the maintenance of cellular redox homeostasis through
Prdxs is essential for surviving in adverse environments, Prdxs also participate in the regulation of
cellular signal transduction by modulating the activities of a panel of molecules involved in the signal
transduction process. Although Prdxs were discovered as intracellular anti-oxidative enzymes, recent
research has revealed that Prdxs also play important roles in the extracellular milieu. Indeed, Prdxs
have been shown to have the capacity to activate immune cells through ligation with innate immune
receptors such as toll-like receptors (TLRs). In this review, we will summarize the intracellular as well
as extracellular roles of Prdxs for and against the pathogenesis of inflammatory disorders including
sepsis, hemorrhagic shock, and drug-induced liver injury.
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1. Introduction
1.1. Sepsis

Sepsis is a multi-organ disease, observed mainly in ICU patients, which is associated
with high mortality rates that reach ~25% for cases of sepsis and ~45% for cases of sep-
tic shock [1,2]. A systemic but disordered immune reaction leads not only to fever and
tiredness, but also to the systemic activation of coagulation and subsequent insufficient
oxygenation of multiple organs [3]. Therefore, sepsis is associated with disseminated
intravascular coagulation (DIC), multi-organ failure (MOF), and shock [3]. During infec-
tion by pathogens, host recognition of molecular patterns of invading microorganisms
(pathogen-associated molecular patterns, PAMPs), as well as damage-associated molecular
patterns (DAMPs) derived from endogenous cells, leads to innate and adaptive immune
responses that must abate for the recovery of healthy status, but that persist for sustained
periods during sepsis (Figure 1). The activation of inflammasomes and subsequent py-
roptosis play critical roles in the etiology of sepsis. Another characteristic feature in the
pathophysiology of sepsis is mitochondrial dysfunction [4]. In accordance with the lack of
sufficient oxygenation, mitochondrial dysfunction and subsequent oxidative stress have
been implicated in the etiology of sepsis; mitochondrial dysfunction should be involved
not only in redox imbalance and oxidative stress, but also in the cellular energy deficiency
observed during sepsis [4,5].

The definition of sepsis was formerly determined by the American College of Chest
Physicians and the Society of Critical Care Medicinein 1991, as the presence of both infection
and subsequent systemic inflammatory response syndromes (SIRSs), the latter defined by
the presence of symptoms such as fever, tachycardia, tachypnoea, leukopaenia, or others [6].
However, these symptoms are observed in both septic and non-septic critically ill patients.
Therefore, sepsis has now been re-defined as a dysregulated immune response to infection
associated with life-threating organ failure (Sepsis-3 criteria) [7–10]. The sepsis bundle
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has also been updated; please refer the references [7,11] for detailed information about the
sepsis bundle.
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Figure 1. Pathophysiology of sepsis and septic shock. Sepsis is initiated by microbial infection. Typ-
ically, bacterial endotoxins, which are recognized by inflammatory cells as pathogen-associated mo-
lecular patterns (PAMPs), activate inflammasomes in the cells. Inflammasome activation leads to 
not only the release of cytokines as well as alarmins, but also to cell death through pyroptosis. The 
activation of coagulation is another characteristic of sepsis. Excessive and dysregulated inflamma-
tory responses, as well as excessive coagulation, lead to the occurrence of many symptoms such as hy-
potension and disseminated intravascular coagulation (DIC). The early stage of septic shock (warm 
shock) is associated with low peripheral vascular resistance, while the later stage of septic shock (cold 
shock) is associated with increased systemic vascular resistance. These symptoms finally result in severe 
hypotension and life-threating multiple organ failures (MOF), resulting in the high mortality of this dis-
ease. 
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phages, which are implicated in the innate immune response, are activated, after which 
cytokines and chemokines are produced to further activate the adaptive immune re-
sponses. Inflammasomes play a central role in the activation of the innate immune system 
[12–14]. During infection by pathogens, PAMPs are recognized by their cognate pattern-
recognition receptors (PRRs) [15,16]. For example, lipopolysaccharides (LPS), a cell wall 
component of gram-negative bacteria, are recognized by toll-like receptor 4 (TLR4) [17–
19], while flagellin, the major protein in bacterial flagella, is recognized by TLR5 [20,21]. 
DAMPs, which are molecules released from damaged cells and have molecular patterns 
similar to PAMPs, can also elicit immune responses by ligating PPRs [22–24]. 

One of the most important responses of inflammatory cells during the innate immune 
response is the release of pro-inflammatory cytokines, which is executed through the ac-
tivation of the inflammatory caspases, caspase-1 and -11 (the human equivalents of mu-
rine caspase-11 are caspase-4 and -5) [25,26]. Inflammasomes, multiprotein complexes ac-
tivated in response to the ligation of PRR by PAMPs and DAMPs, are involved in the 
activation of caspase-1 and -11 (Figure 2) [12–14]. Caspase-1 and -11 are required for the 
processing as well as maturation of proinflammatory cytokines such as IL-1β, IL-12, and 
IL-18. Inflammasomes have been shown to play critical roles in the etiology of sepsis [12]. 
There are two pathways that can lead to inflammasome activation, the canonical and non-
canonical pathways [27]. The canonical pathway, which is triggered by pathogen infection 
and the resultant formation of inflammasomes, is responsible for the activation of caspase-
1 [12]. Canonical inflammasome activation comprises two steps. The priming step (also 

Figure 1. Pathophysiology of sepsis and septic shock. Sepsis is initiated by microbial infection.
Typically, bacterial endotoxins, which are recognized by inflammatory cells as pathogen-associated
molecular patterns (PAMPs), activate inflammasomes in the cells. Inflammasome activation leads to
not only the release of cytokines as well as alarmins, but also to cell death through pyroptosis. The
activation of coagulation is another characteristic of sepsis. Excessive and dysregulated inflammatory
responses, as well as excessive coagulation, lead to the occurrence of many symptoms such as
hypotension and disseminated intravascular coagulation (DIC). The early stage of septic shock (warm
shock) is associated with low peripheral vascular resistance, while the later stage of septic shock (cold
shock) is associated with increased systemic vascular resistance. These symptoms finally result in
severe hypotension and life-threating multiple organ failures (MOF), resulting in the high mortality
of this disease.

1.2. Inflammasomes and Pyroptosis

Upon infection by invasive pathogens, inflammatory cells are recruited to the sites of in-
fection. In the early stages of infection, immune cells such as neutrophils and macrophages,
which are implicated in the innate immune response, are activated, after which cytokines
and chemokines are produced to further activate the adaptive immune responses. In-
flammasomes play a central role in the activation of the innate immune system [12–14].
During infection by pathogens, PAMPs are recognized by their cognate pattern-recognition
receptors (PRRs) [15,16]. For example, lipopolysaccharides (LPS), a cell wall component of
gram-negative bacteria, are recognized by toll-like receptor 4 (TLR4) [17–19], while flagellin,
the major protein in bacterial flagella, is recognized by TLR5 [20,21]. DAMPs, which are
molecules released from damaged cells and have molecular patterns similar to PAMPs, can
also elicit immune responses by ligating PPRs [22–24].

One of the most important responses of inflammatory cells during the innate immune
response is the release of pro-inflammatory cytokines, which is executed through the
activation of the inflammatory caspases, caspase-1 and -11 (the human equivalents of
murine caspase-11 are caspase-4 and -5) [25,26]. Inflammasomes, multiprotein complexes
activated in response to the ligation of PRR by PAMPs and DAMPs, are involved in the
activation of caspase-1 and -11 (Figure 2) [12–14]. Caspase-1 and -11 are required for the
processing as well as maturation of proinflammatory cytokines such as IL-1β, IL-12, and
IL-18. Inflammasomes have been shown to play critical roles in the etiology of sepsis [12].
There are two pathways that can lead to inflammasome activation, the canonical and
non-canonical pathways [27]. The canonical pathway, which is triggered by pathogen
infection and the resultant formation of inflammasomes, is responsible for the activation
of caspase-1 [12]. Canonical inflammasome activation comprises two steps. The priming
step (also called signal 1) consists of PRR activation and the subsequent induction of
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the expression of inflammasome component genes, which is mediated by transcription
factors including NF-κB. The activation step (signal 2) includes inflammasome assembly
as well as the cytosolic efflux of K+ ions, a crucial event required for inflammasome
activation [28,29]. In case of the NLRP3 (NOD-like receptor family pyrin domain-containing
3) inflammasome, inflammasome components, NLRP3, ASC (apoptosis-associated speck-
like protein containing a CARD), and caspase-1 are assembled to activate caspase-1 [12].
In contrast to the canonical pathway, which is dependent on TLR4, the non-canonical
pathway of inflammasome activation is triggered by the direct binding of intracellular
LPS to caspase-11, which leads to the activation of this caspase in a TLR4-independent
manner [30,31].
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caspase-1 and caspase-11 cleave GSDMD at the same site (Arp276 in mouse), liberating 
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Figure 2. Canonical and non-canonical pathways of inflammasome activation and pyroptosis. The
canonical inflammasome activation pathway is ordinally divided into two steps, the priming and
activation steps. The priming step, also referred to as signal 1, involves the ligation of a PRR, such
as TLR4, by PAMPs or DAMPs, such as LPS and HMGB1. PRR activation leads to the transcrip-
tional induction of the genes for inflammatory cytokines (IL-1β and IL-18, etc.) and inflammasome
components (NLRP3, ASC, and caspase-1). NF-κB is the main transcription factor mediating this
induction. The activation step, also referred to as sign 2, consists of the assembly of the inflammasome
and the resultant activation of capsase-1 from its pro-form (pro-caspase-1). Activated caspase-1
further activates IL-1β from its pro-form (pro- IL-1β). Caspase-1 also cleaves GSDMD to generate the
N-terminus fragment of GSDMD. The proteolytic activation of GSDMD results in the oligomerization
of the N-terminus fragment of GSDMD on the plasma membrane. The mature form of IL-1β is
released from the cells through plasma membrane pores, which consist of GSDMD oligomers. The
non-canonical pathway of inflammasome activation is triggered by the direct sensing of intracellular
LPS by caspase-11. The sensing of LPS by caspase-11 leads to the activation of this caspase from its
pro-form (pro-caspase-11). Activated caspase-11 can activate IL-1β as well as GSDMD in the same
manner as the canonical pathway. Both canonical and non-canonical inflammasome activation finally
leads to cell death, called pyroptosis, which is associated with plasma membrane rupture.

The release of IL-1β, IL-18, and other small molecules is mediated by the gasdermin
D (GSDMD)-dependent formation of plasma membrane channels [32–35] (Figure 2). Both
caspase-1 and caspase-11 cleave GSDMD at the same site (Arp276 in mouse), liberating
the N-terminus half of GSDMD, which forms pores in the plasma membrane through
which IL-1β and IL-18 can be secreted into the extracellular milieu. In addition, these pro-
inflammatory molecules can be released when the plasma membrane ruptures, resulting in
necrotic cell death. Pyroptosis is a lytic form of cell death that is morphologically classified
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as necrosis, but which is executed in a strictly regulated manner [26,36–38]. Pyroptosis is
the major mode of cell death in the etiology of sepsis, and is involved in the propagation
of inflammation by releasing pro-inflammatory molecules from the cells [39]. It had been
assumed that water influx from the extracellular environment into the intracellular space
through GSDMD pores was the causative mechanism of plasma membrane rupture during
pyroptosis. However, recent research has identified Ninjurin 1(NINJ1) as a key molecule in
plasma membrane rupture during pyroptosis; loss of NINJ1 suppresses cell rupture [40].
Although the precise mechanism of the membrane rupture caused by NINJ1 has not been
elucidated, necrosis and the subsequent rupture of the plasma membrane might be a much
more highly regulated process than previously assumed [41].

1.3. Ferroptosis

Ferroptosis is another form of necrotic cell death implicated in immune cell death [42–44].
In the same manner as pyroptosis, ferroptosis is a form of regulated necrosis charac-
terized by its dependency on ferrous iron as well as the formation of lipid peroxides
(Figure 3) [43,45]. It has been shown that in healthy cells, lipid peroxides are eliminated
through the action of glutathione peroxidase 4 (Gpx4), the only member of the Gpx protein
family that can reduce lipid peroxides [45,46]. Kang et al. have shown that Gpx4 levels are
specifically increased among the Gpx family members in peritoneal macrophages as well as
peripheral blood mononuclear cells in animal models of sepsis created by the cecal ligation
of puncta (CLP) [47]. Thus, there should be an increased demand for the elimination of lipid
peroxides from these cells in CLP mice. The conditional knock-out of Gpx4 in myeloid cells
results in an acceleration of the lethality of CLP sepsis, proving the pivotal and detrimental
role of lipid peroxidation in CLP mice [47]. Interestingly, the death of myeloid cells in CLP
mice is associated not only with lipid peroxidation, but also with inflammasome activation,
GSDMD cleavage, and increased levels of circulating cytokines, suggesting the occurrence
of pyroptosis [47]. Knock-out of Gpx4 in CLP mice leads to caspase-11/GSDMD-dependent
pyroptosis in myeloid cells, confirming that lipid peroxidation is involved not only in
ferroptosis, but also in pyroptosis [47].
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Figure 3. Lipid peroxidation leads to ferroptosis. The generation of reactive oxygen species (ROS)
and the formation of lipid peroxides take place during ferroptosis. Because the ferrous iron (Fe2+) is
required for ferroptosis, the generation of hydroxy radicals through the Fenton reaction is believed to
be involved in ferroptosis. Usually, lipid peroxidation occurs in unsaturated lipid molecules, because
the electrons in unsaturated lipids are relatively easy to abstract as compared to those in saturated
lipids. Glutathione peroxidase 4 (Gpx4) suppresses ferroptosis by reducing the formation of lipid
peroxides. The mechanism connecting lipid peroxidation and cell death (rupture of the plasma
membrane) remains to be elucidated.
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1.4. Release Mechanism of DAMPs from Cells

PAMPs are derived from outside pathogens that invade the host whereas DAMPs
are self-derived. DAMPs are involved in the pathogenesis of sepsis by forming a positive
feedback loop for the propagation of inflammation; the activation of inflammasomes
through PAMPs also results in the release of DAMPs, which circulate throughout the body
and further propagate inflammation [48]. Even without pathogenic infection, DAMPs
can be released from damaged cells to mediate inflammation. This sterile inflammation
is considered to be involved in the immune reactions that take place during trauma,
ischemia-reperfusion injury, and drug-induced injuries such as DILI (drug-induced liver
injury) [23]. GSDMD pores in the plasma membrane can accommodate molecules smaller
than approximately 20 kDa [35]. Thus, even in the absence of cell death, low molecular
weight DAMPs can be released from cells when inflammasome activation and the resultant
GSDMD pore formation occur (Figure 4). When inflammasome activation reaches the
stage of cell death, essentially all the molecules within the cell can be released into the
extracellular milieu. Cell death such as that caused by pyroptosis and ferroptosis is also
important in inflammation, as intracellular contents including cytokines (e.g., TNFα, IL-1β)
and DAMPs (e.g., HMGB1 ATP) are released into the extracellular milieu through rupture
of the plasma membrane [23].
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plasma membrane, exocytosis is also involved in the release of DAMPs (Figure 4). Exocytosis 
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Figure 4. Mechanisms for the release of DAMPs from cells. DAMPs can be released by inflammasome-
dependent mechanisms. Upon inflammasome activation and GSDMD pore formation in plasma
membranes, DAMPs with relatively small molecular masses can be released through the pores. After
the inflammasome activation proceeds and cell death occurs, all DAMPs can be released from the
cells when the cell membrane ruptures. In addition to these inflammasome-based mechanisms,
DAMPs can be released through exocytosis. The exocytosis of secretory vesicles is the ordinary
process responsible for the secretion of intracellular molecules from cells. Multivesicular bodies are
structures generated by the inward budding of the membrane of endosomes toward their luminal
space. Vesicles generated within endosomes contain intracellular contents within their structures,
and these vesicles can be released into the extracellular space through exocytosis.

There are other mechanisms by which cytokines and DAMPs can be released from
cells [49]. In addition to the release of DAMPs from ruptured cells or through pores formed
in the plasma membrane, exocytosis is also involved in the release of DAMPs (Figure 4).
Exocytosis can take place through a variety of routes [50]. In addition to ordinary exocytosis
during which secretory vesicles are released from cells, the contents of lysosomes can be
released through lysosomal exocytosis [50]. Among the many routes toward exocytosis, the
multivesicular body (MVB)-mediated route should play an important role in the regulation
of sepsis. MVB-mediated exocytosis is involved in the release of exosomes [51,52], and it has
been demonstrated that exosomes are crucially involved in the regulation of sepsis [53–56].
Exosomes have been shown to deliver not only micro RNAs but also DAMPs [57].
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2. Prdxs

Peroxiredoxins (Prdxs) comprise a family of thiol-specific peroxidases that catalyze
the reduction of not only hydrogen peroxide but also alkyl peroxides as well as perox-
ynitrites [54,58,59]. There are six Prdxs found in mammals: Prdx1–6. These six Prdxs
are classified into three groups based on their structures and the mechanism of catalysis
(Figure 5), although all Prdxs form dimers [60]. The 2-Cys Prdxs, Prdxs1–4, contain two
Cys residues that are involved in the reduction of peroxides [60]. In the 2-Cys Prdxs, there
are two distinct types of Cys, peroxidatic and resolving Cys (CP and CR, respectively).
Because the 2-Cys Prdxs form dimers in which two Prdx monomers are arranged in an
antiparallel fashion, the CP in one Prdx is arranged face-to-face with the CR in the other
Prdx [61]. Due to the structural characteristic of the CP being surrounded by basic amino
acids such as His and Arg, peroxides can gain easy access to the CP in Prdxs [61]. The
binding of hydroperoxide to CP in one Prdx molecule results in the formation of an unstable
intermediate, cysteine sulfenic acid (CP-SOH), which subsequently forms an intermolecular
disulfide bond with the CR in the other Prdx. This disulfide-bonded and oxidized dimer
is returned to the non-disulfide-bonded and reduced dimer through the action of thiore-
doxin (Trx). Although Prdx5 contains both CP and CR, its mechanism for the reduction
of peroxides is distinct from that of the 2-Cys Prdxs, and, therefore, Prdx5 is classified as
an atypical 2-Cys Prdx [62]. In contrast to the typical 2-Cys Prdxs, Prdx5 forms dimers in
which the two monomers are not arranged in an anti-parallel manner [63,64]. Prdx5 forms
an intramolecular disulfide bond between the CP and CR, within one Prdx molecule and
is returned to its reduced form though the action of Trx [65]. Prdx6 lacks the CR and is
thus classified as a 1-Cys Prdx [66,67]. In contrast to the dependence of the reduction of
Prdx1–5 on Trx, the disulfide bond in the oxidized form of Prdx6 is reduced by glutathione
S-transferase π isoform (GSTπ) [68].
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Figure 5. Mechanisms for the reduction of peroxides by Prdxs. The 2-Cys Prdxs, comprising Prdx1–4,
are dimers in which the monomers are arranged in an anti-parallel fashion to one another. Each
monomer possesses two distinct Cys residues: a peroxidatic Cys (CP) involved in the reduction
of peroxides and a resolving Cys (CR) involved in the reduction of the oxidized Cp through the
formation of an intermolecular disulfide bond between CP and CR. Atypical 2-Cys Prdx (Prdx5)
is distinct from the typical 2-Cys Prdxs in its manner of disulfide formation between CP and CR;
atypical 2-Cys Prdx forms an intramolecular disulfide bond during the reduction of CP by CR. In
the reduction processes of both typical and atypical 2-Cys Prdxs, Trx is involved in the reduction
of the disulfide bond. The 1-Cys Prdx (Prdx6) has the unique characteristic of having only one Cys
involved in the reduction of peroxides. Prdx6 utilizes GSTπ to reduce oxidized CP.

It should be noted that cysteine sulfenic acid (CP-SOH) is sometimes further oxidized
by peroxides resulting in the formation of CP-SO2H within the Prdxs [69]. Although several
roles for this hyperoxidation of Prdx have been suggested, such as in protecting cells from



Antioxidants 2022, 11, 126 7 of 15

oxidative stress, functioning as a chaperone, and regulating specific signal transductions,
there remains little explanation for the significance of the hyperoxidation of Prdx [70].
Because hyperoxidized Prdx is reduced exclusively by sulfiredoxin (Srx) and Srx seems
to have evolved exclusively for the reduction of hyperoxidized Prdx, there should be sub-
stantial significance to hyperoxidized Prdx and its reduction by Srx in the maintenance of
cellular homeostasis as well as the whole organism under oxidative stress [71,72]. Although
all Prdxs form dimers irrespective of inter- or intra-molecular disulfide bond formation,
typical 2-Cys Prdxs oligomerize further to form decamers or even larger oligomers [73].
Although the functional significance of the dimer–decamer transition remains unknown, it
has been suggested that the transition of Prdx1 from decamers to dimers results in the loss
of its chaperone activity [74].

Recent research has revealed that when Prdxs are released from cells, they can act as
DAMPs [75,76]. Among PRRs, TLRs are the main receptors responsible for the action of
Prdxs as DAMPs [75,76].

2.1. Prdx1

Prdx1 was the first Prdx shown to act as a DAMP when released into the extracellular
space [75] (Figure 6). Riddell et al. reported that Prdx1 when added extracellularly can
stimulate the TLR4-dependent secretion of TNFα as well as IL-6 from macrophages and
dendritic cells [75]. They demonstrated that both recombinant Prdx1 and the supernatant
from Prdx1-secreting tumor cells could cause these cells to secrete TNFα and IL-6 [75].
Supernatant from tumor cells in which Prdx1 was knocked down could not induce this
secretion [75]. This ability of extracellular Prdx1 to elicit TNFα and IL-6 secretion from
immune cells was also observed in vivo; they demonstrated that the injection of recombi-
nant Prdx1 into mice resulted in an elevation of systemic IL-6 levels [75]. This IL-6 increase
could not be replicated in TLR4 knock-out (KO) mice, confirming the essential role of
TLR4 [75]. Interestingly, they observed that the Prdx1C52S mutant, which lacks peroxidase
activity but forms decamers, could increase Il-6 levels to the same extent as wild type
Prdx1, while the Prdx1C83S mutant, which retains intact peroxidase activity but cannot
form decamers, increased IL-6 to a lower level than wild type Prdx1 [75]. Thus, it is not
its enzymatic activity, but its structural characteristics that seem to be important for Prdx1
to act as a DAMP. It should be noted that the authors, taking into consideration a report
demonstrating that HMGB1 binding to TLR9 is mediated by not HMGB1 itself but DNA
associated with HMGB1 [77], suggested the possibility that Prdx1 itself does not interact
with TLR4 directly [75]. The propagation of inflammation by secreted Prdx1 has also been
reported not only in animal models of septic shock [78], but also in drug-induced acute
liver injury (DILI) [79], confirming the role of extracellular Prdx1 as a DAMP.

On the other hand, Prdx1 can bind to caspase-1 to suppress inflammasome activation
within immune cells such as macrophages [80]. Liu et al. conducted a screening of drugs
possessing anti-inflammatory properties, and identified AI-44, a curcumin analogue, as hav-
ing the ability to bind to Prdx1 [80]. The binding of AI-44 to Prdx1 results in the promotion
of the interaction between Prdx1 and caspase-1, which also leads to the dissociation of the
NLRP3–ASC–caspase-1 complex, inactivation of the NLRP3 inflammasome, and negative
regulation of inflammation [80]. Indeed, AI-44 mitigates LPS-induced endotoxemia in mice,
confirming the negative regulation of inflammasomes by Prdx1 [80]. Therefore, the roles
of intracellular and extracellular Prdx1 on inflammasomes seem to be totally different. In
addition, there are discrepancies between the role of Prdx1 in whole body homeostasis dur-
ing sepsis. Although one report demonstrates that Prdx1 deficiency mitigates lethality in
an LPS-induced animal model of septic shock [78], another report indicates an acceleration
of death due to LPS-model sepsis in Prdx1-KO animals [81]. Thus, further study is needed
to elucidate the precise mechanism of Prdx1 in the etiology of sepsis.
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When released from cells into the extracellular space, Prdxs act as DAMPs by binding directly to
TLRs including TLR4 ( 1©). Prdx3, which resides in mitochondria, eliminates the ROS generated
in damaged mitochondria thereby suppressing inflammasome activation ( 2©). Intracellular Prdxs
can be exocytosed from cells as disulfide bonded dimers ( 3©). Prdx4 is released from inflammatory
cells as a component of exosomes, in which functional inflammasomes are retained to activate other
inflammatory cells ( 4©).

2.2. Prdx2

In the same manner as Prdx1, extracellular Prdx2 can act as a DAMP. Prdx2 is the main
Prdx protein in erythrocytes and is released from the cells during hemolysis. Intracerebral
hemorrhage is followed by hemolysis, and all of the three most abundant erythrocyte
proteins, hemoglobin, carbonic anhydolase-1, and Prdx2, are implicated in the development
of brain edema; it has been demonstrated that the injection of these proteins into the brain
can cause edema [82,83]. Bian et al. showed that the intracaudate injection of lysed red
blood cells into rat brain increases Prdx2 levels, suggesting the diffusion of Prdx2 [83]. The
injection of Prdx2 induces several brain disorders including blood brain barrier breakdown,
neutrophil infiltration, and neuronal cell death, all of which are associated with hemorrhagic
brain injury [83]. Brain swelling as well as neutrophil infiltration caused by the injection
of lysed red blood cells can be suppressed by the co-administration of the Prdx2 inhibitor
conoidin A [84], suggesting a role of Prdx2 in these disorders during hemorrhagic brain
injury [83]. Although the precise mechanism for the role of extracellular Prdx2 in the
pathogenesis of brain hemorrhage has not been elucidated, the activation of TLR4 by
extracellular Prdx1 has also been reported to be involved in the neuroinflammation that
occurs during intracerebral hemorrhagic injury [85]. Given the structural similarity between
Prdx1 and Prdx2, it might be reasonable to speculate that, in the same manner as Prdx1,
Prdx2 can also act as a TLR4 ligand in the brain. However, the precise mechanism for the
action of Prdx2 in the disorders that occur during brain hemorrhage needs to be clarified in
the future.

During an attempt to identify proteins that are oxidized through thiol glutathionation
and released from macrophages in response to LPS stimulation, Salzano et al. identified
Prdx2 as a protein that is released from cells after glutathionation and subsequently form
disulfide-linked dimers [86] (Figure 6). Prdx2 release has also been observed in cells other
than macrophages, such as in HEK293 human embryonic kidney cells [86]. The release of
Prdx2 is associated with its substrate Trx1, suggesting that the oxidoreduction of the Prdx2-
Trx1 system might operate even in extracellular spaces [86]. Thus, the authors discussed the
possible role of extracellular Prdx2-Trx1 in the oxidoreduction of membrane receptors to
activate inflammatory cells [86]. Indeed, many membrane receptors can be activated after
disulfide-linked dimerization (oxidation), and Trx can oxidize their substrates depending
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on the redox environment in which they operate [86]. Although the extracellular role of
Prdx2-Trx1 as an oxidoreductase has not been confirmed, this hypothesis suggests another
possibility that Prdx2 acts as a DAMP not only through the ligation of PRRs, but also
through the redox regulation of cytokine receptors. In a subsequent study by the same
group, Mullen et al. observed that both Prdx1 and Prdx2 are released from HEK293 cells
as well as monocytic cells as dimers within exosomes following stimulation by LPS as
well as TNFα [87]. They also observed that the mutation of either the CP or CR in Ptdx1
or Prdx2 prevents their secretion, confirming the pivotal role of cysteine oxidation in the
secretion of Prdx1 and Prdx2 [87]. Thus, not only the structure, but also the redox-regulating
activity of Prdx seems to be important for its secretion as well as pro-inflammatory activity
outside cells.

2.3. Prdx3

Prdx3 is unique among Prdxs in that it localizes mainly to mitochondria. There are
few reports showing the involvement of Prdx3 in the etiology of sepsis, although there is
one report that Prdx3 mRNA can be found among the 84 mRNAs whose levels in exosomes
are higher in patients suffering from sepsis than in healthy controls [56]. Although little is
known about the possible involvement of Prdx3 in sepsis, there are examples of inflamma-
some regulation and inflammatory cell death by Prdx3. Acetaminophen (APAP) is one of
the most commonly used pain relievers and fever reducers, but overdoses of APAP lead to
acute liver injury due to the generation of its toxic metabolite, n-acetyl-p-benzoquinone
imine (NAPQI) [88,89]. The excessive amounts of glutathione needed to eliminate toxic
NAPQI results in oxidative stress in cells, which finally leads to mitochondrial dysfunction,
inflammasome activation, and cell death through apoptosis as well as pyroptosis [89].
Wang, et al. studied animal models of drug-induced acute liver injury caused by the
intraperitoneal administration of APAP or carbon tetrachloride, and found the processing
of GSDMD into its p30 pore forming fragment, procaspase-1 into its p20 active fragment,
and pro-IL-1β into its mature form, suggesting inflammasome-dependent pyroptosis in
APAP-induced acute liver injury [90]. The activation of inflammasome-dependent pyrop-
tosis by APAP was also observed in primary cultures of hepatocytes as well as Kupffer
cells, indicating that both liver parenchymal cells and immune cells contribute to acute
liver injury [90]. They also demonstrated that APAP-induced liver pyroptosis could be
ameliorated and reduced by the siRNAs for NLRP3 and Prdx3, showing that liver injury
by APAP is dependent on NLRP3 inflammasomes and negatively regulated by Prdx3 [90].
The negative regulation of NLRP3 inflammasomes by Prdx3 is cancelled by a scavenger
of mitochondrial ROS (Mito-TEMPO) [90]. Prdx3 knock-out was found to increase mito-
chondrial ROS, indicating that Prdx3 negatively regulates NLRP3 activation through its
antioxidative effects on mitochondria [90] (Figure 6). The amelioration of the pathogenesis
of several inflammatory injuries, such as ischemia reperfusion injury of the intestine [91]
and traumatic brain injuries [92], by Prdx3 has also been reported and demonstrated to be
dependent on its preserving effects on mitochondrial function. Therefore, in contrast to
the direct association and negative regulation of Prdx1 with inflammasome components,
the effects of Prdx3 on inflammatory disorders seems to be mediated through its action
on mitochondria.

2.4. Prdx4

In the same manner as Prdx3, Prdx4 has a unique feature in its localization; it is
located in the ER and has a leader peptide for secretion in its amino acid sequence [93,94].
Indeed, Prdx4 levels in the serum of patients critically ill with sepsis and admitted to the
ICU have been reported to be elevated as compared to control patients, and the levels
of circulating Prdx4 correlate well with the severity of disease [95]. Consistent with this
report, we have also observed that Prdx4 is released from hepatocytes in response to LPS
stimulation, suggesting extracellular roles of Prdx4 in addition to its role as an intracellular
anti-oxidative enzyme [96]. It has recently been reported that Prdx4 is involved in the
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regulation of inflammasomes in extracellular vesicles [97] (Figure 6). In Prdx4-KO mice,
it has been observed that weight loss in response to a challenge with a sublethal dose of
LPS is increased as compared with wild type littermates [97]. This increase in weight loss
is associated with higher levels of cytokines as well as chemokines, such as IL-1β, TNF-α,
and cxcl1, in the plasma, suggesting increased inflammatory responses in Prdx4-KO mice
upon sublethal LPS stimulation [97]. In addition to these observations, the authors also
showed that myeloid cell-specific Prdx4 deficiency in mice leads to the release of IL-1β
from macrophages in response to LPS challenge, although no IL-1β from macrophages
can be observed in wild type mice when LPS alone is administered [97]. In addition to
LPS stimulation, an increase in the release of IL-1β from the macrophages of myeloid-
specific Prdx4 knockout mice was observed in response to the administrations of PAMPs
such as double-stranded DNA, flagellin, or ATP [97]. Thus, Prdx4 should be involved in
the negative regulation of inflammasomes. Indeed, the authors demonstrated that Prdx4
inhibits caspase-1 activation through direct interaction: disulfide bond exchange between
the cysteine 397 in caspase-1 and some cysteine residues in Prdx4 results in the sequestration
of caspase-1 into high molecular weight (HMW) Prdx4 decamers [97]. The cysteine 362
in caspase-1 also seems to be involved in this sequestration into HMW Prdx4 [97]. Thus,
Ptdx4 is secreted within exosomes together with inflammasomes, and is involved in the
negative regulation of inflammasomes.

2.5. Prdx5

Shichida et al. reported that Prdxs are released from necrotic cells during ischemic
brain injury, and are involved in post-ischemic inflammation by activating macrophages [76].
They screened brain lysates for DAMPs that can induce IL-23 in bone marrow-derived
cells (BMDCs), and identified Prdxs as the DAMPs responsible for the induction of IL-23
in BMDCs [76]. This IL-23-inducing ability is mediated, at least in part, by TLR2 and
TLR4 [76]. Among Prdxs, Prdx5 and Prdx6 have the most potent IL-23 inducing activi-
ties [76]. The IL-23 inducing activities of Prdx5 and Prdx6 are stronger than that of HMGB1,
a well-known DAMP [76]. Because the cysteine residues in Prdxs are not required for their
ability to act as DAMPs to induce IL-23 in BMDCs, the role of Prdxs as DAMPs seems to be
independent of their antioxidant activity [76]. Rather, several specified regions (β4 sheet
and α3 helix regions) located on the surface of Prdxs that are conserved among species,
seem to be responsible for their ability to act as DAMPs [76]. A later study by Knoops et al.
has confirmed the direct interaction between Prdx5 and TLR4 using the technique of atomic
force microscopy in living macrophage cells [98].

2.6. Prdx6

It has recently been demonstrated that Prdx6 is involved in the suppression of ferrop-
tosis, another form of inflammatory cell death [99]. Using the lentivirus-mediated inducible
expression of siRNA for Prdx6, Lu et al. demonstrated that Prdx6 knockdown increases
lipid hydroperoxide (LOOH) levels in H1299 human lung cancer cells treated with a fer-
roptosis inducer, erastin [99]. Prdx6 knockdown did not affect the basal levels of LOOH,
suggesting that Prdx6 is not involved in the elimination of LOOH in healthy cells [99]. In
contrast, the increase in LOOH in erastin-treated and Prdx6 knockdown cells was cancelled
by ferrostatin-1, a ferroptosis inhibitor [99], suggesting ferroptosis in Prdx6 knockdown
cells. Prdx6 can reduce LOOH through two mechanisms: as a peroxidase and as a phos-
pholipase A2 (PLA2) [100–102]. Importantly, the increase in LOOH by Prdx6 knockdown
was cancelled by iPLA2 (calcium-independent PLA2) inhibitor MJ-33, suggesting that the
LOOH eliminating role of Prdx6 in ferroptosis is not dependent on its peroxidase activity,
but rather on its iPLA2 activity [99]. Prdx6 has been shown to contribute to LPS-induced
acute lung injury through its iPLA2 activity [103,104]. In contrast, it has also been reported
that Prdx6 KO aggravates CLP-induced acute lung injury [105]. Thus, the true role of Prdx6
in pathogenesis needs to be clarified in the future, although its role seems to be highly
context-dependent.
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3. Conclusions

Sepsis, and other inflammatory disorders such as trauma and DILI, is regulated
by Prdxs both intra- and extra-cellularly. Prdxs are involved in both propagation and
regression of inflammation during sepsis. Based on the literature cited in this review, it
seems possible to conclude that when Prdxs are localized within cells or vesicles, they
generally suppress immune responses by suppressing inflammasome activation as well as
generating mitochondrial ROS. On the other hand, Prdxs promote inflammation by acting
as DAMPs when they are released from cells or vesicles. These unique two-sided features
of Prdxs might make it difficult to determine whether Prdxs are beneficial or detrimental
for the prevention of sepsis. More detailed elucidation of the regulatory mechanisms of the
pathogenesis of sepsis and other inflammatory disorders should pave the way toward the
use of Prdxs as a target of therapy for sepsis.
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Abbreviations

Prdx Peroxiredoxin
TLR Toll-like receptor
SIRS Systemic inflammatory response syndrome
ICU Intensive care unit
DIC Disseminated intravascular coagulation
MOF Multiple organ failure
PAMP Pathogen-associated molecular pattern
PRR Pattern-recognition receptor
LPS Lipopolysaccharide
DAMP Damage-associated molecular pattern
IL Interleukin
NF-κB Nuclear factor-kappaB
NLRP3 NOD-like receptor family pyrin domain-containing 3
ASC Apoptosis-associated speck-like protein containing a CARD
GSDM Gasdermin
NINJ Ninjurin
GPX Glutathione peroxidase
CLP Cecal ligation and puncture
Cys Cysteine
CP Peroxidatic cysteine
Trx Thioredoxin
CR Resolving cysteine
Srx Sulfredoxin
TNF Tumor necrosis factor
HMGB1 High mobility group B1
APAP Acetaminophen
NAPQI N-acetyl-p-benzoquinone imine
ROS Reactive oxygen species
ER Endoplasmic reticulum
KO Knock out
HMW High molecular weight
BMDC Bone marrow-derived dendritic cell
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LOOH Lipid hydroperoxide
iPLA2 Calcium-independent phospholipase A2
Nrf2 Nuclear factor-erythroid 2-related factor 2
HO-1 Heme oxygenase-1
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