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ABSTRACT

Summary: The Evolutionary Trace Annotation (ETA) Server predicts
enzymatic activity. ETA starts with a structure of unknown function,
such as those from structural genomics, and with no prior knowledge
of its mechanism uses the phylogenetic Evolutionary Trace (ET)
method to extract key functional residues and propose a function-
associated 3D motif, called a 3D template. ETA then searches
previously annotated structures for geometric template matches
that suggest molecular and thus functional mimicry. In order to
maximize the predictive value of these matches, ETA next applies
distinctive specificity filters—evolutionary similarity, function plurality
and match reciprocity. In large scale controls on enzymes, prediction
coverage is 43% but the positive predictive value rises to 92%,
thus minimizing false annotations. Users may modify any search
parameter, including the template. ETA thus expands the ET suite
for protein structure annotation, and can contribute to the annotation
efforts of metaservers.
Availability: The ETA Server is a web application available at
http://mammoth.bcm.tmc.edu/eta/.
Contact: lichtarge@bcm.edu

1 INTRODUCTION
As the number of protein structures mushrooms, in large part due
to structural genomics (SG) efforts, a detailed knowledge of their
biological roles remains elusive (Redfern et al., 2008). Thus most
Protein Data Bank (PDB) (Berman et al., 2000) annotations are
computationally rather than experimentally derived, and still 28%
of the 2191 SG proteins solved last year were labeled ‘unknown’ or
‘hypothetical’ as of September 2008.

Annotation transfer among homologs identified by PSI-BLAST
(Altschul et al., 1997) or similar tools remains the most popular and
useful method. The problem is that homology does not guarantee
functional equivalence, as often divergence yields proteins of
different functions (Gerlt and Babbitt, 2000). Even at 65% sequence
identity, 10% of protein pairs already have different 4-digit Enzyme
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Commission (EC) functions, and at 45% identity 10% differ in the
less specific 3-digit functions (Tian and Skolnick, 2003). This leads
to errors that propagate, dramatically decreasing the effectiveness of
future predictions (Brenner, 1999). Increasing annotation specificity
is therefore paramount.

To this end, an orthogonal approach relies on 3D templates: small
structural motifs built from key amino acid functional determinants
that suggest functional similarity when matched geometrically in
unannotated proteins (Wallace et al., 1997). Two such methods are in
the popular ProFunc metaserver: Enzyme Active Sites and Reverse
Templates (Laskowski et al., 2005). Because 3D templates are local
and narrowly focus on the molecular basis of function, they can
remain accurate even when overall similarity becomes unreliably
low, or when it remains so high as to obscure a key functional site
variation. However, 3D template annotations also have weaknesses:
a lack of known functional determinants from which to build them
on a large scale, and low specificity when derived heuristically
(Kristensen et al., 2006).

To build templates without any prior knowledge of the
catalytic mechanism, the Evolutionary Trace Annotation (ETA)
(Kristensen et al., 2006; 2008) server heuristically selects residues
based on Evolutionary Trace (ET) predictions of functional sites
in protein structures (Lichtarge et al., 1996). These predictions
were extensively validated experimentally (Onrust et al., 1997;
Ribes-Zamora et al., 2007; Sowa et al., 2001) and computationally
(Mihalek et al., 2004; Res et al., 2005; Yao et al., 2003). Moreover,
ETA templates either overlap catalytic residues (78%), or lie in their
immediate vicinity (22%) (Ward et al., 2008).

To raise specificity, ETA filters geometric template matches
(i) by ET rank similarity (Kristensen, et al., 2006); (ii) by match
reciprocity back to the original protein (Ward et al., 2008); and
(iii) by the extent that a plurality of matches point to the same
function (Kristensen et al., 2008). In 1218 SG control enzymes,
ETA made 527 predictions, i.e. 43% prediction coverage, of which
478 were true, for 92% positive predictive value (PPV). ETA’s
performance improves on the Enzyme Active Site and Reverse
Template methods from ProFunc (Ward et al., 2008). ETA also
proved complementary to sequence-based methods (Kristensen
et al., 2008). If needed, prediction coverage can be raised to 77%
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(934/1218) by including non-reciprocal matches, but PPV then
decreases to 82% (769/934) PPV.

2 ETA SERVER OVERVIEW
The ETA Server provides functional annotations of enzyme activity.
A web interface lets users pick a protein. The server then
automatically creates a template, identifies matches to annotated
structures, applies specificity filters, and reports likely functions.
Backtracking is possible, and users can alter the template. In-line
help is available, as well as a manual with a complete walkthrough
example.

2.1 Template creation
Users select a protein by PDB code and chain (e.g. 1yvwA).
The server then either retrieves a cached ET analysis or runs one
anew for this protein (∼5 min). The user may also submit custom
ET data as a zip file from the ET Wizard (Morgan et al., 2006),
allowing full control of the ET analysis, or use of novel structures.

Next, ETA builds a template of Cα atoms from the six best-ranked
residues in a cluster of 10 surface ET residues (Kristensen et al.,
2008). A PyMOL (DeLano, 2002) image of the protein structure
displays the template so the user may see and revise the residue
choices, triggering image updates. A PyMOL session can also be
downloaded to study the template interactively.

For a given template, the server displays the amino acid types
that it can match in another protein, chosen from cognate residues
in homologs. All choices are customizable.

2.2 Geometric search and annotation
The residue numbers and types form a complete template that is
searched against proteins in the 2006 PDB_SELECT_90 (Hobohm
et al., 1992). A support vector machine (Ward et al., 2008) classifies
the most relevant matches, using geometric (least root mean squared
deviation, RMSD) and evolutionary similarity features (difference
in ET score) (Kristensen et al., 2006). Reciprocally, templates from
each protein in the PDB_SELECT_90 are also searched back against
the query structure. Matches are grouped by function and whether
they are reciprocal.

Annotations fall in two classes: those exclusively from reciprocal
matches, which are the most reliable; and those that also rely on
one-way matches, which are more sensitive but less specific. In
both cases, the enzymatic function with a plurality of matches is
listed first, followed by possible alternatives. These functions—
three-digit EC numbers—are linked to their definitions. Matches to
non-enzymes and unannotated proteins are also displayed, as they
may still provide useful information.

Each match that supports a given prediction is listed, with a link to
the relevant PDB structure, a list of matched residues, their RMSD,
and their ET similarity. Images of the template and match can also
be generated to review them visually. All the raw ET and ETA data
can be downloaded.

3 CONCLUSIONS
The ETA server expands the ET suite for protein structure annotation
(Mihalek et al., 2006; Morgan et al., 2006) by predicting enzymatic
functions of protein structures without prior knowledge of functional

sites or mechanisms. In reciprocal mode, it is biased to minimize
misannotations by maximizing PPV (92%) at the expense of
prediction coverage (43%). In all-match mode, prediction coverage
is better (77%), but then PPV is lower (82%). The interface allows
customized searches, displays predicted functions, and provides
supporting evidence and raw data. Eventually, upgrades should
add non-enzymatic function predictions as well. Feedback and
suggestions are welcome at etaserver@bcm.edu.

ACKNOWLEDGEMENTS
We thank Ms. Deepti Karandur for testing the server, and Dr. Cindy
Ly for proof reading the manuscript.

Funding: National Science Foundation (DBI-0547695 to O.L.);
National Institute of Health (R01-GM066099, R01-GM079656);
March of Dimes (1-FY06-371); Keck Center for Interdisciplinary
Bioscience Training (National Library of Medicine grant no.
5T15LM07093, training fellowships to R.M.W., S.E. and D.M.K.).

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28, 235–242.
Brenner,S.E. (1999) Errors in genome annotation. Trends Genet., 15, 132–133.
DeLano,W.L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, Palo

Alto, CA.
Gerlt,J.A. and Babbitt,P.C. (2000) Can sequence determine function? Genome Biol., 1,

REVIEWS0005.
Hobohm,U. et al. (1992) Selection of representative protein data sets. Protein Sci., 1,

409–417.
Kristensen,D.M. et al. (2006) Recurrent use of evolutionary importance for functional

annotation of proteins based on local structural similarity. Protein Sci., 15,
1530–1536.

Kristensen,D.M. et al. (2008) Prediction of enzyme function based on 3D templates of
evolutionarily important amino acids. BMC Bioinformatics, 9, 17.

Laskowski,R.A. et al. (2005) ProFunc: a server for predicting protein function from 3D
structure. Nucleic Acids Res., 33, W89–W93.

Lichtarge,O. et al. (1996) An evolutionary trace method defines binding surfaces
common to protein families. J.Mol. Biol., 257, 342–358.

Mihalek,I. et al. (2004) A family of evolution-entropy hybrid methods for ranking
protein residues by importance. J. Mol. Biol., 336, 1265–1282.

Mihalek,I. et al. (2006) Evolutionary trace report_maker: a new type of service for
comparative analysis of proteins. Bioinformatics, 22, 1656–1657.

Morgan,D.H. et al. (2006) ET viewer: an application for predicting and visualizing
functional sites in protein structures. Bioinformatics, 22, 2049–2050.

Onrust,R. et al. (1997) Receptor and betagamma binding sites in the alpha subunit of
the retinal G protein transducin. Science, 275, 381–384.

Redfern,O.C. et al. (2008) Exploring the structure and function paradigm. Curr. Opin.
Struct. Biol., 18, 394–402.

Res,I. et al. (2005) An evolution based classifier for prediction of protein interfaces
without using protein structures. Bioinformatics, 21, 2496–2501.

Ribes-Zamora,A. et al. (2007) Distinct faces of the Ku heterodimer mediate DNA repair
and telomeric functions. Nat. Struct. Mol. Biol., 14, 301–307.

Sowa,M.E. et al. (2001) Prediction and confirmation of a site critical for effector
regulation of RGS domain activity. Nat. Struct. Biol., 8, 234–237.

Tian,W. and Skolnick,J. (2003) How well is enzyme function conserved as a function
of pairwise sequence identity? J. Mol. Biol., 333, 863–882.

Wallace,A.C. et al. (1997) TESS: a geometric hashing algorithm for deriving 3D
coordinate templates for searching structural databases. Application to enzyme
active sites. Protein Sci., 6, 2308–2323.

Ward,R.M. et al. (2008) De-orphaning the structural proteome through reciprocal
comparison of evolutionarily important structural features. PLoS ONE, 3, e2136.

Yao,H. et al. (2003) An accurate, sensitive, and scalable method to identify functional
sites in protein structures. J. Mol. Biol., 326, 255–261.

1427


