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)e rapid development of the Internet has changed our lives. Many people gradually like online video yoga teaching. However,
yoga beginners cannot master the standard yoga poses just by learning through videos, and high yoga poses can bring great
damage or even disability to the body if they are not standard. To address this problem, we propose a yoga action recognition and
grading system based on spatial-temporal graph convolutional neural network. Firstly, we capture yoga movement data using a
depth camera. )en we label the yoga exercise videos frame by frame using long short-term memory network; then we extract the
skeletal joint point features sequentially using graph convolution; then we arrange each video frame from spatial-temporal
dimension and correlate the joint points in each frame and neighboring frames with spatial-temporal information to obtain the
connection between joints. Finally, the identified yoga movements are predicted and graded. Experiment proves that our method
can accurately identify and classify yoga poses; it also can identify whether yoga poses are standard or not and give feedback to
yogis in time to prevent body damage caused by nonstandard poses.

1. Introduction

Yoga has become a very trendy fitness exercise in today’s
life. But yoga is muchmore than just a fitness exercise. Yoga
is a physical and mental discipline that combines art,
science, and philosophy. Yoga can help people regulate
their breathing, keep their bodies healthy, and also calm
their moods. In today’s highly developed Internet,
according to incomplete statistics, yoga has become the
preferred fitness exercise for 300 million people [1]. As a
scientific exercise, yoga encompasses breath control ex-
ercises, body stretching exercises, and mind cleansing [2].
Yoga originally originated in ancient India, then spread to
the West, where it became a mainstream Western fitness
modality, and then eventually spread globally with the
Internet, becoming one of the most popular exercise cul-
tures worldwide [3]. According to a joint UK and US
survey, the demographic profile of the yoga training
population found in the demographics indicates that
women are the main enthusiasts of the sport, accounting
for 85% of the total number of yoga practitioners [4–6].

Numerous studies have proven that yoga exercises are
beneficial to the human body.)ere is also a large amount of
research in rehabilitation on how to make yoga training
work better for patients in their recovery process. )is is one
of the reasons why yoga has become a favorite exercise for
many people [7]. In addition, research has proven that yoga
has a complementary healing effect in the direction of eating
disorders; it can modify the patient’s eating habits and keep
diet [8]. In the interviews of yoga practitioners, it was
learned that yoga gave them a positive and subjective life
experience, making them healthier and living an optimistic
life. )ere were significant improvements in self-care, self-
activity, life comfort, and dwelling senses [9–11]. In fact,
most of the experience that yoga brings to people comes
from the yoga instructor. )e instructor, as the guide of
yoga, influences the yoga student in an invisible way with his
or her philosophy of teaching, teaching environment, out-
look on life, values, and demonstration of yoga effectiveness
[12].

Although some researchers have demonstrated that yoga
can be practiced without differentiating between

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7500525, 9 pages
https://doi.org/10.1155/2022/7500525

mailto:wangshu2012@imun.edu.cn
https://orcid.org/0000-0003-2397-1750
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7500525


“traditional” and “authentic” issues [13], most people cur-
rently prefer modern yoga. Modern yoga is simpler and less
demanding in terms of postural alignment and breathing
exercises [14]. )is is one of the reasons why modern yoga
has turned into a healthy exercise for young and old alike.
However, due to the overall economic development, yoga
has gradually become commercialized. With the commer-
cialization, the expression of yoga has become diversified
andmore andmore people have become attracted to yoga. In
our literature research, we found that yoga is becoming a
synonym for young, beautiful, and hot women [15]. Yoga
can be found in various fashion magazines and shows yoga
poses that have a certain ornamental quality and at the same
time these poses are difficult in the eyes of professionals. For
ordinary people, they are more attracted by the ornamental
poses of yoga, but these poses are risky for them. Commerce
has made yoga idealized in order to facilitate promotion and
thus attract consumers [16]. However, the commercializa-
tion of yoga is also a double-edged sword. Consumers are
likely to cause irreversible damage to their bodies in the
process of blindly imitating yoga poses due to the unknown
nature of the poses, which is a potential risk in yoga training.

Traditionally, yoga is taught face-to-face, with the yoga
instructor instructing in person whether the yoga poses are
standard or not. )is kind of teaching can make yoga
students have a more direct feeling of standard yoga
movements. However, with the advent of the 5G era and the
rapid development of short videos, short video platform
bloggers often adopt online teaching methods to teach yoga
poses in order to attract fans. )is is also the way most
people learn yoga at present. Most people choose to watch
videos while imitating to achieve the purpose of learning
yoga. However, most people do not have professional yoga
equipment and props, and they are not clear enough about
the standard yoga postures. Blindly imitating the yoga
postures in the videos has a great risk of physical injury. To
solve this problem, in our work, we propose to use real-time
posture detection technology to detect posture movements
of yoga students and then use deep learning algorithms to
grade and match yoga movements. A reference movement is
given to the yoga students, and for the nonstandard
movements, the yoga students are prompted in time to
prevent the occurrence of physical injuries. In the specific
experiment, we use the deep camera to capture the training
postures of yoga students and decompose the postures to
understand the yoga movements from the computer level.
)e postures are then compared with a standard database to
verify whether the postures are standardized and to give
feedback to the yoga students. Experiments show that the
method proposed in our research can provide effective
feedback to yoga trainees on the grading of yoga poses. )e
contributions of this paper can be summarized as follows.

)e rest of this paper is organized in the following
manner. Section 2 discusses the work related to deep camera
and action recognition. Section 3 introduces the skeleton
recognition principle of graph convolution, then introduces
the residual unit andmultistream input structure, and finally
introduces the optimization principle of the partial per-
ception framework. Section 4 reports the experimental data

collection, model training details, and analysis of experi-
mental results. Finally, Section 5 concludes our research and
reveals some further research work.

2. Related Work

)e presentation of human motion postures in 3D space
often requires the use of depth cameras. Information such as
joint angles and skeletal space points can be deduced from
the depth camera or the spatial position data of the human
body [17]. Different poses can generate different skeletal
contours, and to solve this problem, some researchers have
proposed the idea of spatial segmentation, which takes an
approximate mapping approach to define the location of
spatial points for each segmented region. Literature [18]
proposed a joint distribution method, which takes a bidi-
rectional derivative approach to the mapping function.
Literature [19] also uses the joint distribution rule, and
unlike the former, the method adopts a Bayesian algorithm
to obtain the image contour conditions. )e final distri-
bution of the image contour conditions will be mapped to
the hybrid framework to obtain the spatial distribution
features. Literature [17] additionally uses learning condi-
tional distributions when learning features in the hybrid
framework to obtain the image contour features more di-
rectly. In [20], to solve the image contour error problem
caused by pose ambiguity, the researcher distributed three
depth cameras into different angles to capture the human
motion contour in all directions and obtained the skeletal
spatial position from a standard dataset. In [21], the re-
searcher used the SVM method to learn different pose
features and perform pose prediction in the acquired 3D
shape data. )is proposed method links contours and 3D
shapes but requires the support of large databases. For
motion capture depth cameras, calibration of the depth
camera is also required to ensure accuracy in 3D recon-
struction work. In [22], the researcher applied the EM al-
gorithm to calibrate the human action pose for multicamera
linkage, and the mapping of 2D contours to 3D skeletal
joints was achieved by training a neural network. Literature
[23] adopts hybrid probabilistic PCA to predict the 3D body
structure captured by the depth camera, which improves the
3D joint point coordinate accuracy.

Human motion recognition techniques originated from
skeletal annotations [24, 25] by video clips [26, 27] to obtain
the motion pose of each frame, which was then obtained by
manual criteria. Previous human action recognition
methods are based on RGB images, but this method is
limited to the influence of nonobjective environments. )e
human skeleton-based action recognition method is less
influenced by the nonobjective environment. )is method
can acquire the spatial-temporal features between joint
points and learn the connection between features in a neural
network to predict the human pose. Current neural network
architectures that can be combined with the human skeleton
approach are recurrent neural networks (RNN) [28, 29],
long short-term memory networks (LSTM) [30, 31], con-
volutional neural networks (CNN) [32], etc. To make the
human skeleton approach more general, [25, 26] proposed
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to use the heat map as a complement to the skeleton in-
formation and to use the human pose image in each video
frame for the encoding process. )e feature communication
between bone joint points is shown in Figure 1.

Literature [33] proposed a method to construct a human
action dataset combining skeleton information with video in
order to improve the pose estimation and action recognition
accuracy of CNN networks. Literature [34] proposed a
multitask parallel learning framework to improve the accu-
racy and stability of body joint detection. Literature [35]
proposed a human intention algorithm aiming at learning
behavioral action features through environmental assistance.
Literature [36] took the approach of attention mechanism,
which divides the human body into different parts and ob-
tains attention from each part separately to recognize actions.
Some researchers have found that the spatial-temporal graph
convolution network (ST-GCN) can utilize the spatial-tem-
poral information of skeletal articulation points effectively. It
performs spatial-temporal convolution on the skeletal graph,
models the graph representation of each skeleton, and uses a
subsequent temporal filer to capture dynamic temporal in-
formation, as shown in Figure 2.

3. Method

3.1. GraphConvolutional Network. Benefiting from [37], the
sequence of each frame t of the human skeleton in space is
expressed as follows:

fout � 􏽘
D

d�0
Wdfin Λ

−1/2
d AdΛ

−1/2
d ⊗Md􏼐 􏼑, (1)

where D represents the maximum distance of the graph, fin

and fout represent the input and output values of the feature
map, ⊗ represents the multiplication function, A and d
mark the d-order adjacency matrix of the joint pair, and the
result of the normalization operation is represented by Ad.
Wd and Md indicate adaptive adjustment parameters. It
plays an important role in the realization of boundary ad-
justment and convolution operations. In order to extract
temporal features, we insert a L × 1 convolutional layer in the
shallow layer to fuse the space information of the joint points
between adjacent frames. In the process of temporal feature
extraction, L represents the length of the time window,
which is a predefined hyperparameter. Each time unit and
space unit are followed by a BatchNormmodule and a ReLU
module to form a whole with this structure.

3.2. Residual Unit. Literature [38] proposed a structure
called bottleneck, which cleverly uses the advantages of
conv1×1 and is placed in the front and back positions of the
common convolution part to reduce the number of feature
channels in the convolution operation. In this paper, we
cleverly used the bottleneck structure, abandoning the
original time and space modules, and found in the exper-
iment that the improved structure is significantly faster in
model training and parameter calculation. For example, the
input and output channels are 256, the channel reduction
rate r� 4, and the time window size L� 9. )en, the total

number of parameters involved in the calculation of the
original structure is 256× 256× 9� 589824. If the bottleneck
structure is adopted, the total number of parameters in-
volved in the calculation is 256 × 64 + 64× 64× 9 + 64 ×

256� 69632. Comparing the two, it can be seen that the
bottleneck structure reduces the number of parameters
calculated by the original structure by 8.5 times. Finally, we
propose a new PartAtt block to enhance the generalization
ability of the model. An example of a bottleneck structure
frame is shown in Figure 3.

Considering that the time module and the space module
in the original structure cannot integrate the features well,
we connect the time and space modules with the residual
structure to construct the ResGCN unit.)e specific residual
connection structure is shown in Figure 4. )e Module
residual module adopts a jump connection mode, the Block
residual module adopts the mode of connecting before and
after, the Dense residual module integrates the connection
mode of the Module residual module and the Block residual
module, making the structure more compact and saving
calculation costs.

3.3. Multistream Input Structure. As we know from the
bottleneck structure framework, each layer of input can be
represented by a set of hyperparameters. In the first layer, we

Figure 1: )e feature communication between bone joint points.

Temporal

Figure 2: )e principle of skeleton spatiotemporal feature
extraction.
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usually use basic operations to process the original input
data. )e second layer starts to design the bottleneck
structure to filter the output data of the previous layer, and
the difference in the design of the bottleneck structure is the
different number of channels between the input and output.
)e third and fourth layers also use the bottleneck structure,
but the only difference is that each layer is followed by a
PartAtt unit. By introducing the PartAtt unit, all the position
information of the extracted feature vector is preserved. In
the decoding process, the encoding can be performed di-
rectly by the PartAtt mechanism, which reduces the inter-
mediate steps of traditional decoding and solves the problem
of feature loss. Secondly, in the PartAtt mechanism, each
step of encoding and decoding directly accesses the source
feature library, which realizes the direct feature tradition of
encoding and decoding and shortens the exchange in feature
transfer. In addition, the time step is set to 2 in the input
stage of the third and fourth layers to further reduce the
complexity of parameter computation and prevent over-
fitting problems.

Furthermore, in high-precision models, input data
generally require a multistream architecture for presen-
tation. For example, the dual-stream input architecture
mentioned in [39] incorporates both joint data and
skeletal data as inputs, and decision selection is made after

multiple streams of inputs. )is approach is adopted by
most researchers because it is effective in improving
model performance. However, the multistream archi-
tecture does not control the computational cost well, and
the large amount is data input, parameter exchange, and
variable calculation in the multistream framework, which
invariably increases the huge computational volume.
)erefore, our action recognition model adopts a mul-
tistream architecture in the pretraining stage, with a total
of three input branches, and each input branch feature is
fused with mainstream features in a pass-through tandem
manner. )is structure not only preserves the skeleton
features to a great extent, but also makes the model more
concise in its vertical structure and easier to converge
when the model is trained.

In the data preprocessing stage, we mainly used the
methods proposed in [29, 40] for reference. In the motion
recognition method based on bone joint points, data
preprocessing is very critical. In our work, preprocessing
mainly revolves around joint positions, motion speeds, and
bone characteristics. Suppose that a video of the action
sequence is collected. According to the action sequence, the
spatial coordinate set is X � x ∈ RC×T×V􏼈 􏼉, where C rep-
resents the coordinates, T represents the frame, and V
represents the joints. You can also get the set of relative
positions of bones in space R � ri|i � 1, 2, ..., V􏼈 􏼉, where
ri � x[:,:, i] − x[:,:, c], x [:,: c] represents human bones and
spinal joints. Combining the sets R and X into one set can
be input into the multistream branching framework as the
joint positions in action recognition. In addition, two sets
of speeds of each joint can be obtained
F � ft|t � 1, 2, ..., T􏼈 􏼉 and S � St|t � 1, 2, ..., T􏼈 􏼉, where ft � x
[:, t + 2,:] −x[:, t,:] and St � x[:, t + 1,:]− x[:, ]. Each motion
feature of each joint can be represented by the two sets of
feature vectors F and S, and this is input into the multi-
stream branch frame as a motion stream. )e basic
characteristics of bones include length
L � Li|i � 1, 2, ..., V􏼈 􏼉 and angle A � Ai|i � 1, 2, ..., V􏼈 􏼉. )e
angle and length of the bone can be calculated through the
bone displacement relationship li � [:,:, i]− x[:,:, iadj ], where
the first joint of iadj represents the adjacent joint. )e
calculation equation for the angle obtained by conversion
of the customs clearance equation is as follows:

ai,w � arccos
li, w

�����������
l
2
i,x + l

2
i,y + l

2
i,z

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (2)

where w ∈ {x, y, z} represents space coordinates.

BatchNorm Basic
6,64

Bottleneck
64,64

Bottleneck
64,32

BatchNorm Basic
6,64

Bottleneck
64,64

Bottleneck
64,32

BatchNorm Basic
6,64

Bottleneck
64,64

Bottleneck
64,32

Bottleneck
96,128,/2

Bottleneck
128,128

Bottleneck
128,128

ParAtt ParAtt ParAtt

Bottleneck
128,256,/2

ParAtt

Bottleneck
256,256

ParAtt

Bottleneck
256,256

ParAtt

FC
256,60

Joints

Velocities

Bones

Output

Figure 3: Yoga action recognition network fused with bottleneck structure.

S-Block T-Block

S-Block T-Block

S-Block T-Block

Block
Residual

Module
Residual

Dense
Residual

S-Block: Spatial Convolution Block
T-Block: Temporal Convolution Block

Figure 4: )ree types of residual structure.

4 Computational Intelligence and Neuroscience



3.4. Partial Perception Framework. Long short-term mem-
ory neural network (LSTM) was proposed by Hochreiter
[41] in 1997.

LSTM is a derivative of Recurrent Neural Network
(RNN). Since 2010, it has been proven that RNN has been
successfully applied to speech recognition [42], language
modeling [43], and text generation [44]. However, the
disappearance of gradients and explosions makes RNN
difficult to apply to long-term dynamics research. As an
improved network of RNN, LSTM can handle this problem
well. LSTM gives the network a lot of freedom, so that the
network memory unit has an adaptive solution to learn and
update information, which greatly improves the perfor-
mance of some perception networks.

Assume that X � (x1, x2, ..., xn) represents an input
sentence composed of word representations of n words. In
every position t, the RNN produces a hidden layer h in the
middle denoted as yt, and the hidden state ht uses a non-
linear activation function to update the previously hidden
layers ht−1 and the input xt, as shown below:

yt � σ Wyht + by􏼐 􏼑,

ht � f ht−1, xt( 􏼁,
(3)

where Wy and by are the parameter matrices and vectors
learned during the training process, and σ represents the
elementwise softmax function.

)e LSTM unit includes an input gate it, a forget gate ft,
an output gate ot, and a memory unit ct to update the hidden
state ht, as shown below:

it � σ Wixt + Viht−1 + bi( 􏼁,

ft � σ Wfxt + Vfht−1 + bf􏼐 􏼑,

ot � σ Woxt + Voht−1 + bo( 􏼁,

ct � ft ⊙ ct−1 + it ⊙ tanh Wcxt + Vcht−1 + bc( 􏼁,

ht � ot ⊙ tanh ct( 􏼁,

(4)

where ⊙ is a kind of function which is similar to the mul-
tiplication operation, V represents a matrix related to
weight, and b represents the learning vector. To increase the
model’s performance, morpheme training was carried out
on two LSTMs. )e first one is a morpheme that begins on
the left and works its way to the right; the next one is a
reverse duplicate of a character. Before passing to the next
layer, the outputs of the forward and reverse passes are
combined in series. Finally, the prediction value is observed
using the activation function.

After understanding the partial perception algorithm
LSTM, it was inspiring, because in the human body rec-
ognition process, the human skeleton will be divided into
multiple parts. Each part is an interconnected joint. )ese
parts composed of joints are made by hand, for the graph
convolution to be able to explore the relationship between
these parts and extract the corresponding spatial features of
the joint points. To obtain the information of a point in
GCN, it is necessary to start from the field of that point.
According to the adjacency matrix in the field, the skeleton

data is automatically segmented, and then all the feedback
information is input to the next joint point to complete the
capture of the feature points of the entire human skeleton.
)rough this operation, the defects of manual design fea-
tures are avoided, and the spatial features on the time series
are obtained. [45].

If an ordinary convolutional neural network is used, all
parts will be merged into a whole for feature extraction of
convolution operations. Partial perception networks can
divide joints into different departments and capture indi-
vidual features for each part. Separately extracting features in
this way helps to explore the connection between parts, that
is, the spatial-temporal relationship between joints. )e
structure of our proposed spatial-temporal graph con-
volutional network-based yoga action recognition is shown
in Figure 5.

4. Experiments

4.1. Data Collection. Before the establishment of the yoga
posture database, we referred to yoga courses and training
materials to find a reasonable grading system to assess the
risk of yoga postures. As mentioned in [46, 47], the re-
searcher compared the physical extensibility and com-
monality of action between the different postures. It was also
approached in terms of breathing rate, posture intensity, and
meditation. Also, we interviewed a yoga instructor who
showed us all the standard yoga poses and broke down each
pose. From his experience’s we learned that currently there
are 6 main yoga poses such as standing, forward bending,
sitting, twisting, back bending, and supine. Each movement
determines a different level of body stretch. In the study of
this paper, the grading mainly revolves around these
movements; our experimental scoring is based on the depth
camera directly in front as the main interface. )e specific
grading is shown in Table 1.

In preparing the yoga dataset, we invited a professional
instructor for standard yoga posture data collection.)enwe
invited participants who had one year of yoga experience
and those who had no previous yoga experience to divide
into two groups and complete each group of movements
under the guidance of the instructor. In the process of data
collection, not only the body posture but also the duration
and number of movements of each yoga posture were
collected. )e yoga duration refers to the total time from
when the breathing is adjusted until after the posture is
completely relaxed. )e number of movements refers to the
sum of all the postures done during the training period,
except for some correction of the postures by the instructor.
)e Azure Kinect DK was used to collect yoga movement
data.)e data is then manually calibrated by us after the data
collection is completed and the data is split. In order to
enhance the validity of the data, we added confidence pa-
rameters in the coding process. )e data collection results
are shown in Table 2.

4.2.Model Training. In the model training process, we used
Pytorch to implement yoga movement recognition and
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grading. First, we used Openpose to extract the skeleton
information from the yoga video dataset, and in each frame
of the video we obtained the spatial coordinate information
of each of the 14 joints. )en we use the heat map as the
basis for pose estimation and perform secondary feature
capture on the human skeleton. )en each frame of data is
arranged in the temporal dimension to correlate the fea-
tures between the joints from the temporal dimension.
Finally, the skeletal joint features are fused using the av-
erage prediction score and the weights are estimated in a
progressive ranking. We set different learning rates at
different epochs. At the beginning of training, the learning
rate is set to 0.05 to adapt to the training speed of the data.
)en the learning rate is set to 0.01 at epoch � 30 to speed
up the learning speed; after that, the learning rate is
gradually reduced at epoch� 50 and epoch � 60 to find the
optimal solution. )e specific parameters in the model
training are shown in Table 3. All the work is done in
Ubuntu 16.04 and the whole training and prediction
process is done with NVIDIA TITAN X GPU support on
Intel Xeon E5-2620 CPU.

4.3. Experimental Result. For the experimental data collec-
tion, we collected 50 experienced yogis and 50 inexperienced
yogis. And the data was split according to the previous
solution. )e sensitivity, specificity, precision, and accuracy
of skeletal features were captured in the data in the split
starting from each frame. )e experimental results are
shown in Table 4. )e standard yoga movements were
decomposed on a larger scale, making it traceable in the
validation set. Based on the above statistical results, higher

Part 1

Part 2

Part n

Te
m

po
ra

l C
on

vo
lu

tio
n 

Bl
oc

k

FC
+B

N
+R

eL
U

Pa
rt

-le
ve

l S
of

tm
ax

Co
nc

at
en

at
io

n

…
…

Sp
at

ia
l C

on
vo

lu
tio

n 
Bl

oc
k

Figure 5: )e overall network structure of yoga action recognition.

Table 1: Yoga action grading details.

Posture Grade Frontal Sagittal
Standing 1 8 5
Sitting 2 6 6
Supine 3 10 9
Twisting 4 6 8
Forward bending 5 7 10
Back bending 6 9 6

Table 2: Yoga action time and frequency.

Posture
Experienced yogis Inexperienced yogis

Ave time (s) Ave frequency Ave time (s) Ave frequency
Standing 15 5 10 5
Sitting 31 6 16 6
Supine 23 8 14 8
Twisting 16 6 9 6
Forward bending 32 4 11 4
Back bending 27 5 12 5

Table 3: Training parameter settings.

Parameter Value
Epoch 20
Dropout rate 0.5
Initial learning rate 0.05
Learning rate (epoch� 30) 0.01
Learning rate (epoch� 50) 0.002
Learning rate (epoch� 60) 0.0004
Weight attenuation coefficient 0.0002
Momentum 0.9
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sensitivity values represent more experience in yoga training
and also predict closer standardization of yoga poses.

From the above experimental results, we can see that the
recognition accuracy of all yoga poses is close to 1. And the
accuracies, as a kind of random error, all keep above 0.86,
which proves that the model performance is still great. )e
gap between experienced yogis and inexperienced yogis is
mainly in sensitivity and specificity. Experienced yogis
scored higher in both metrics, representing the more
standardized yoga poses.)e yogis are captured by the depth
camera while practicing yoga. Real-time skeletal joint
tracking is performed on the captured video. Finally, the
yoga movements are recognized with the training model and
then matched with the database to generate a grading score.
)e specific recognition effect is shown in Figure 6.

In addition, we also made corresponding statistics in the
grading, as shown in Table 5.

Table 5 demonstrates that the average grading accuracy
of experienced yogis in the whole set of yoga poses is higher
than that of inexperienced yogis. )e yoga posture with the

greatest difference was forward bending, followed by back
bending. Because of the difficulty of these two poses, it was
difficult for inexperienced yogis to achieve the standard
poses, so the accuracy of poses grading was lower. )e above
experimental results favorably prove the effectiveness of the
grading system in this paper, which can give yogis feedback
and remind them to change their postures if the yoga
movements are not standard.

5. Conclusion

In this paper, we found that, with the popularity of the
Internet, people’s lifestyles have also changed, and many
people choose to learn yoga by watching videos on the
Internet. For yoga beginners, learning yoga online in this
way without the direct guidance of an instructor, there is a
high chance that the yoga poses will be substandard. Highly
difficult yoga poses are likely to be disabling for beginners.
To address this potential risk, we propose a yoga posture
recognition and grading system based on spatial-temporal

Table 4: Yoga action recognition results.

Posture Sensitivity Specificity Precision Accuracy

Standing Experienced yogis 0.98 0.99 0.95 0.99
Inexperienced yogis 0.71 0.91 0.91 0.98

Sitting Experienced yogis 0.89 0.98 0.93 0.98
Inexperienced yogis 0.66 0.91 0.91 0.98

Supine Experienced yogis 0.94 0.99 0.89 0.99
Inexperienced yogis 0.78 0.93 0.91 0.97

Twisting Experienced yogis 0.96 0.98 0.91 0.99
Inexperienced yogis 0.77 0.94 0.89 0.99

Forward bending Experienced yogis 0.93 0.99 0.87 0.99
Inexperienced yogis 0.69 0.91 0.89 0.98

Back bending Experienced yogis 0.91 0.99 0.92 0.97
Inexperienced yogis 0.72 0.92 0.86 0.97

Figure 6: )e effect of yoga action recognition and grading system.

Table 5: Yoga action grading results.

Posture Grade Experienced yogis (%) Inexperienced yogis (%)
Standing 1 91 80
Sitting 2 93 77
Supine 3 89 75
Twisting 4 93 76
Forward bending 5 93 71
Back bending 6 92 72
Total ave 90 75
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graph convolutional neural network. We first use LSTM
network to label yoga practice videos frame by frame. )en
we extract the skeletal joint point features sequentially with
graph convolution and then obtain the connection between
joints from arranging each video frame in spatial-temporal
dimension and correlating the joint points in each frame
with neighboring frames for spatial-temporal information.
Finally, through experiments, it is proved that our method
can accurately identify yoga poses and grade them ac-
cordingly and can identify whether the yoga poses are
standard or not and at the same time give feedback to yogis
in a timely manner to prevent injuries to the body caused by
nonstandard poses.

For deep learning algorithms, the larger the number of
datasets, the better the accuracy of the model obtained from
training. Since there is no specific dataset for yoga poses at
present, the number of homemade datasets in this paper is
small, which is the shortcoming of the work in this paper.
Making datasets is a tedious and time-consuming task. In
our future work, we will gradually increase the number of
datasets, and at the same time, we will invest more efforts in
the field of data preprocessing.
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