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Background: The mechanism of Interleukin-17 (IL-17) induced ventricular arrhythmia

(VA) remains unclear. This study aimed to investigate the effect of intracellular calcium

(Cai) handling and VA susceptibility by IL-17.

Methods: The electrophysiological properties of isolated perfused rabbit hearts under

IL-17 (20 ng/ml, N = 6) and the IL-17 with neutralizer (0.4µg/ml, N = 6) were evaluated

using an optical mapping system. The action potential duration (APD) and Cai transient

duration (CaiTD) were examined, and semiquantitative reverse transcriptase-polymerase

chain reaction analysis of ion channels was performed.

Results: There were longer APD80, CaiTD80 and increased thresholds of APD and

CaiTD alternans, the maximum slope of APD restitution and induction of VA threshold

in IL-17 group compared with those in IL-17 neutralizer and baseline groups. During

ventricular fibrillation, the number of phase singularities and dominant frequency were

both significantly greater in IL-17 group than in baseline group. The mRNA expressions

of the Na+/Ca2+ exchanger, phospholamban, and ryanodine receptor Ca2+ release

channel were upregulated, and the subunit of L-type Ca2+ current and sarcoplasmic

reticulum Ca2+-ATPase 2a were significantly reduced in IL-17 group compared to

baseline and IL-17 neutralizer group.

Conclusions: IL-17 enhanced CaiTD and APD alternans through disturbances in

calcium handling, which may increase VA susceptibility.
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INTRODUCTION

Ischemic ventricular arrhythmia (VA) is strongly associated with
increased inflammatory activities (1). Although interleukin (IL)-
17, the pro-inflammatory cytokine of the newly described T
helper 17 (TH 17) cell subset, has a major function in shielding
the host anti extracellular pathogens, it promotes inflammation
in autoimmune diseases and mediator of tissue inflammation
(2, 3). Former studies have demonstrated that downregulated IL-
17 expression inhibits the inflammatory response and improves
heart function (4). On the other hand, an important role for IL-
17 in post-myocarditis cardiac remodeling and the development
to dilated cardiomyopathy was described (5). Our previous study
showed that IL-17 treatment lead to fibrosis, collagen production,
and apoptosis in the left ventricular (LV) tissue. Moreover, the
study showed that increased IL-17 activates mitogen-activated
protein kinase (MAPK) and thereby increases the expression
of downstream target genes, including IL-6, tumor necrosis
factor (TNF), C-C motif chemokine ligand 20 (CCL20), and
C-X-C motif chemokine ligand 1 (CXCL1) (4). VA can be
triggered through multiple electrophysiological mechanisms,
including prolonged ventricular action potential duration
(APD), slowed conduction, increased electrical restitution, and
perturbed intracellular calcium (Cai) signaling (6, 7). Therefore,
inflammation and Cai handling are involved in VA. However,
the function of IL-17 with regard to Cai alternans and VA
susceptibility are yet unclear. Therefore, this study aimed
to investigate the influence of IL-17 on Cai handling and
VA susceptibility.

MATERIALS AND METHODS

Surgical Preparation
The study protocol was reviewed and approved by the
Institutional Animal Care and Use Committee of Taipei Veterans
General Hospital. New Zealand white male rabbits (N = 30),
weighing 2.5–3.5 kg, were used for optical mapping (N =

12) and extraction of RNA (N = 18). Rabbits were deeply
anesthetized using intramuscular injection of a mixture of Zoletil
50 (10 mg/kg) and Xylazine (5 mg/kg). The subcutaneously
at the incision site, we injected 2% Xylocaine (3mL). An
intravenous bolus of heparin (2,500 units) was administered to
the rabbits to avoid intracardiac clot formation. The hearts of
the experimental rabbits were exposed by median thoracotomy
and pericardiotomy, and the rabbits were quickly sacrificed
by manual excision of the beating hearts, which were directly
submerged in cold with oxygenated Tyrode’s solution of the
following composition (mmol/L): Na+, 156.5; K+, 4.7; Ca2+,
1.5; H2PO

−
4 , 0.5; Cl

−, 137; HCO−
3 , 28; glucose, 20 with a pH of

7.40 (4).

Langendorff Preparation and Optical
Mapping
The hearts were suspended on the cannula with silk tied through
the ascending aorta. Deep insertion of the aorta into the perfusion
cannula must be avoided because it can cause the compression
of the coronary arteries. Continuous circulation and heart
perfusion were preserved using a roller pump. The perfusion

oxygenated Tyrode’s solution flowed through the coronary
arteries and returned through the coronary sinus was collected
in a reservoir (thermostatically maintained at 37◦C), from which
the perfusion solution returned to the circulation system. The
system was regulated to keep a constant perfusion pressure (30–
60 mmHg under controlled conditions). Myocardial pseudo-
electrocardiogram (pseudo-ECG) signals were monitored using
3 pseudo-ECG pins that were inserted into the ventricles. A
mapping catheter was inserted and secured inside the right
ventricular (RV) apex through pulmonary vein and RV. Using
a camera optical mapping system, the epicardial activation
patterns were studied during ventricular pacing (4, 6). The
hearts were stained with RH237 (10 µmol/L, 0.4 µmol in
40ml Tyrode’s solution, from Invitrogen, Grand Island, NY)
for membrane potential (Vm) mapping and with Rhod-2 AM
(1.2 µmol/L, 0.18 µmol in Tyrode’s solution, from Invitrogen,
Grand Island, NY) for Cai mapping. Blebbistatin (15–20µmol/L,
from Tocris Bioscience, Minneapolis, MN) was used to inhibit
cardiac contraction. We used cytochalasin-D (5 µmol/L), an
excitation-contraction uncoupler to minimize motion artifacts.
The hearts were excited using 2 light-emitting diode modules at a
wavelength of 532 nm. The signals were recorded simultaneously
using 2 MiCAM02 cameras (BrainVision, Tokyo, Japan). Optical
signals were gathered at 2 ms/frame temporal resolution,
acquired from 128 × 128 sites simultaneously over a 30 ×

30 mm2 area in each aspect of those hearts. For each optical
recording, data were acquired continuously for 2 s. Optical
signals were processed with both spatial (3 × 3 pixels Gaussian
filter) and temporal (3 frames moving average) filtering (7, 8).

The Rationale for IL-17 and IL-17
Neutralizer Dosage
In our previous studies, IL-17 concentration (200 pg/ml) was
measured from heart failure (HF) rabbit serum (4). To mimic the
inflammatory process of HF, we used the dosage of IL-17 ranged
from 20 ng/ml in Langendorff perfusion which is similar to the
level of IL-17 in whole rabbit. Neutralizing antibody 0.4 µg/ml
was used for block of IL-17 receptor before IL-17 reperfusion
(4). In addition, previous studies showed that IL-17 produced
rapid phosphorylation of protein kinase B and ERKwithin 5min,
and it rapidly enhanced excitability (9). Therefore, IL-17 with
dosage of 20 ng/ml would be adequate to study the influences
of IL-17 on VA in Langendorff perfusion study, and dosage
of 0.4µg/ml in neutralizing antibody would be adequate to be
an antidote. IL-17 neutralizer is a recombinant, high affinity,
fully human IgG1/κ monoclonal antibody that selectively binds
to and neutralizes IL-17. Binding of IL-17 by IL-17 neutralizer
inhibits its interaction with the IL-17 receptor, thereby inhibiting
the release of other proinflammatory cytokines, chemokines and
mediators of tissue damage and reducing the contribution of
IL-17 to these inflammatory diseases (10).

Experimental Protocol and
Electrophysiological Study
IL-17 (20 ng/mL, RPA063Rb01; Cloud-Clone Corp) was added
and perfused for 10min in the Langendorff-perfused normal
rabbit heart (N = 6). For neutralizing experiments (N =

6), IL-17 neutralizing antibodies (0.4 µg/mL, eBio64CAP17;
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eBioscience) were perfused for 10min before the perfusion of
IL-17 20 ng/mL for 10min. There was no washout phase. The
baseline group was normal rabbit heart before treatment. A
bipolar electrode was inserted into the RV apex for pacing. This
protocol comprised different pacing cycle lengths (PCL) ranging
from 500 to 130ms. Regarding each PCL, the S1 pacing train was
obtained during steady-state S1 pacing (>50 beats after the onset
of pacing), and then optical mapping data was recorded. APD80

and Cai transient duration (CaiTD80) were measured at 80%
repolarization which would avoid the undetermined baseline in
phase 4 period (4, 6, 7). The F/F0 ratio was used to measure the
relative concentration of Cai, and the maximum Cai transient
F/F0 were measured (6).

APD and Cai Alternans During S1 Pacing
Rapid pacing protocol was performed, initially at cycle length
of 500ms, decremented by 50ms every 8 beats until reaching
a cycle length of 250 and 250ms decremented by 10ms until
reaching a cycle length of 130ms or the loss of 1:1 capture of the
ventricles. The thresholds of APD and Cai alternans were defined
by determining differences in local APD and Cai on consecutive
beats (11).

Induction of Ventricular Arrhythmia and
Phase Mapping
We used Fast Fourier Transforms of pseudo-ECG (4 s in
duration) to determine the dominant frequency (DF) of
ventricular fibrillation (VF) at IL-17 and IL-17 neutralizer
group. Phase mapping was performed to assess the location
and development of phase singularities (PSs). PS observed on
the phase maps was defined as a site with an ambiguous phase
enclosed by pixels showing a continuous phase progression from
–π to +π. Previous studies recommend that PSs are a robust
alternative representation of wavebreaks (7), which serve as the
source of VF. To quantify wavebreaks during VF, the numbers of
PSs in the phase map were calculated manually every 10 frames
for 1,000 frames in each episode of VF (7). VA inducibility was
measured using eight-beat drive trains at 240-and 200-ms BCLs,
followed by 1–3 ventricular extrastimuli. Single (S2), double (S2-
S3), or triple (S2-S3-S4) premature stimuli were applied with a
coupling interval of 160ms (S2), 150ms (S3), or 140ms (S4),
and gradually shortened in 5-ms steps until VA was induced
or until the ventricular effective refractory period was reached.
VA included VF, and tachycardia was defined as ≥4 consecutive
ventricular ectopic beats at a cycle length≤150ms (ventricular
tachycardia) or by unidentifiable and low-voltage QRS complexes
(VF). The percentage of inducible VA episodes was counted as the
ratio of induced VA episodes to the number of ventricular extra
stimuli applied. This induction protocol was standardized across
all experiments (4).

Semiquantitative Reverse Transcription
Polymerase Chain Reaction
Tissues were obtained from Langendorff perfusion normal group
(N = 6), IL-17 neutralizer group (N = 6), and IL-17 group
(N = 6). In IL-17 group, IL-17 20 ng/mL was perfused for
10min. In IL-17 neutralizer group, IL-17 neutralizing antibodies

0.4µg/mL was perfused for 10min following the perfusion of
IL-17 20 ng/mL for 10min. The LV tissues using the RNeasy R©

Fibrous Tissue Kit (Qiagen, Valencia, CA, USA), according to
the manufacturer’s protocol. Further, cDNA was synthesized
using Prime ScriptTM Reverse Transcriptase (Takara Bio Inc.,
Kyoto, Japan) with a random hexamer from 5.0 µg of total
RNA. The resulting cDNA was detected by polymerase chain
reaction (PCR) via the DreamTaq Green PCR Master Mix
(Thermo Scientific Inc., Waltham, MA, USA) for 40 cycles at
an annealing temperature of 55◦C with a Veriti R© 96-Well Fast
Thermal Cycler (Applied Biosystems, Carlsbad, CA, USA). PCR
products were visualized under UV light with ethidium bromide
and quantified with Image-Pro Plus software. Primer sequences
for PCR detection are provided in Supplementary Table 1.

Data Analysis
APD was measured from the steepest deflection of the slope of
phase 0 to the time of APD80. We used the SD of APD80 at all
mapped pixels to measure the spatial heterogeneity of APD (7).
Conduction velocity (CV) in squares (10 × 10mm) located at
the centers of the anterior aspects of LV was measured (4). The
diastolic interval (DI) was measured from the APD80 of the prior
beat to the current action potential onset. A restitution curve
(RC) was plotted using APD80 against the preceding DI by S1
pacing (4, 6, 7). The maximum slope of RC was counted by first-
order exponential fitting using ORIGIN software (Microcal) (12).
The time constant of the Cai decay (tau value) was determined by
a monoexponential least-squares fit. The detected longest S1 PCL
threshold was spatially concordant alternans (SDA) threshold
was defined (13). Positive coupling of Cai-Vm alternans was
defined as long APD corresponds to large Cai transient and
negative coupling of Cai-Vm alternans was defined as long APD
corresponds to small Cai transient. The incidence of positive and
negative coupling episodes was counted as the ratio of positive or
negative coupling episodes of Cai-Vm alternans to the number of
pacing numbers applied (14).

Statistical Analyses
Quantitative data were expressed as mean ± SD. Two-way
repeated measures analysis of variance was used to compare
the differences before and after IL-17 group in subgroups. A
senior biostatistician performed the statistical analysis using SPSS
version 17 (SPSS Institute Inc., Chicago, IL, USA). Furthermore,
p < 0.05 was considered to be statistically significant.

RESULTS

Effect of IL-17 on Cai Transient and
APD/CaiTD Prolongation
Optical images were captured from the whole ventricle. The
maximum Ca2+ F/F0 was recorded in LV during ventricular
pacing at 300ms PCL (Figure 1A). The maximum Ca2+ F/F0
was significantly reduced in the IL-17 group compared with
the baseline and IL-17 neutralizer groups (1.01 ± 0.003, 1.04
± 0.008, 1.03 ± 0.007, respectively; P < 0.001) (Figure 1B).
No significant difference in maximum Ca2+ F/F0 was observed
between the baseline and IL-17 neutralizer groups (P = 0.06).
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FIGURE 1 | Effect of IL-17 infusion, IL-17 neutralizer infusion alone, and baseline on intracellular calcium transient. The maximum Ca2+ transient (F/F0) was decreased

after IL-17 infusion compared with baseline (A,B). Cai decay (tau value) was prolonged in the IL-17 group than that in the baseline and IL-17 neutralizer groups (C). *P

< 0.05; ***P < 0.001. Cai, intracellular calcium.
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FIGURE 2 | Effect of IL-17 on spatial heterogeneity of APD and CaiTD in the baseline and IL-17 neutralizer groups. APD80 and CaiTD80 (A,B). SD of APD80 and SD of

CaiTD80 (C,D). CV (E) in the LV during different PCLs. *P < 0.05; **P < 0.01; ***P < 0.001; +P < 0.05; ++P < 0.01; +++P < 0.001. APD, action potential duration;

CaiTD, calcium transient duration; APD80, action potential duration at repolarizations of 80%; CaiTD80, calcium transient duration at repolarizations of 80%; CV,

conduction velocity; PCL, pacing cycle length; LV, left ventricle.
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FIGURE 3 | Effects of PCL on APD and CaiTD alternans. (A) The green and red tracings indicated the Cai and Vm signals, respectively. L, long; S, short. (B) APD and

Cai alternans. (C) SDA of APD and Cai. (D) Incidence of positive and negative coupling of Cai-Vm alternans. (E) PCL threshold of positive and negative coupling of

Cai-Vm alternans. *P < 0.05; **P < 0.01; ***P < 0.001. Vm, voltage-driven membrane; SDA, spatially discordant alternans, and other abbreviations as in Figures 1, 2.
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FIGURE 4 | Effects of IL-17 on the maximum slope of APD restitutions and inducibility of ventricular arrhythmia (VA). (A–D) Maximum slope of APD restitutions. (E)

IL-17 on VT/VF threshold PCL. (F) Inducibility of VA. *P < 0.05; ***P < 0.001. DI, diastolic interval; VA, ventricular arrhythmia; VT/VF, ventricular tachycardia/ventricular

fibrillation and other abbreviations as in Figure 2.
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IL-17 had a lower Cai concentration accumulated over the time
of the transient compared to baseline. The Ca decay time in
the IL-17 group was prolonged than that in the baseline and
IL-17 neutralizer groups (45.6 ± 1.6, 34.2 ± 1.2, and 37.0
± 1.5ms, respectively, P < 0.05) (Figure 1C). The effects of
IL-17 on APD80 and CaiTD80 at 300ms PCL are shown in
Figure 2. Compared with the baseline, APD80 and CaiTD80 were
prolonged in the IL-17 group (P < 0.05 at all PCL). APD80 was
shorter in the IL-17 neutralizer group (P < 0.05 at PCL of 350–
500ms) than in the IL-17 group (Figure 2A). The IL-17 group
had a longer CaiTD80 than the baseline and IL-17 neutralizer
groups at all PCL and PCL of 400–500ms, respectively, (P< 0.05)
(Figure 2B). No significant difference in APD80 and CaiTD80

was be found between the baseline and IL-17 neutralizer groups
(P = NS). Compared with the baseline, SD of APD80 and SD
of CaiTD80 were prolonged in the IL-17 group (P < 0.05 at
all PCL). SD of APD80 was shorter in the IL-17 neutralizer
group (P < 0.05 at PCL of 300–400ms) than in the IL-17 group
(Figure 2C). The IL-17 group had a longer SD of CaiTD80 than
the baseline and IL-17 neutralizer groups (P < 0.05 at PCL
of 300–400ms) (Figure 2D). No significant difference in SD of
APD80 and CaiTD80 was found between the baseline and IL-17
neutralizer groups (P = NS). IL-17 group had a decreased CV
compared with baseline and IL-17 neutralizer group. Treatment
of IL-17 neutralizer increased CV compared to that in IL-17
group (Figure 2E).

Pacing-Induced APD and CaiTD Alternans
An example of increased alternans of APD and CaiTD with
decreasing PCL is shown in Figure 3A. In the IL-17 group, Cai
alternans were induced at 250ms PCL, and APD alternans were
detected at 200ms PCL. In the baseline group, Cai alternans
were induced at 160ms PCL, whereas APD alternans were not
detected. In the IL-17 neutralizer group, significant Cai alternans
were induced at 180ms PCL, and APD alternans were detected
at 160ms PCL. The PCL threshold of Cai alternans was greater
in the IL-17 group than in the baseline (IL-17 vs. baseline, 223
± 25 vs. 178 ± 11ms; P < 0.001) and IL-17 neutralizer groups
(IL-17 vs. IL-17 neutralizer, 223 ± 25 vs. 192 ± 9ms; P =

0.013). The PCL threshold of APD alternans was greater in the
IL-17 group than in the baseline (IL-17 vs. baseline, 182 ± 13
vs. 161 ± 13ms; P = 0.002) and IL-17 neutralizer groups (IL-
17 vs. IL-17 neutralizer, 182 ± 13 vs. 160 ± 8ms; P = 0.011)
(Figure 3B). No significant difference in the PCL threshold of
APD and CaiTD alternans was observed between the baseline
and IL-17 neutralizer groups (P=NS). The SDA threshold of Cai
alternans was greater in the IL-17 group than in the baseline (IL-
17 vs. baseline, 217± 10.5 vs. 171± 2.9ms; P < 0.001) and IL-17
neutralizer groups (IL-17 vs. IL-17 neutralizer, 217± 10.5 vs. 186
± 6.7ms; P = 0.003). The SDA threshold of APD alternans was
greater in the IL-17 group than in the baseline (IL-17 vs. baseline,
178 ± 4.8 vs. 153 ± 2.1ms; P < 0.001) and IL-17 neutralizer
groups (IL-17 vs. IL-17 neutralizer, 178 ± 4.8 vs. 166 ± 6.7ms;
P = 0.091) (Figure 3C). IL-17 group had a higher incidence of
pacing induced positive coupling of Cai-Vm alternans compared
to baseline (IL-17 vs. baseline, 0.20 ± 0.04 vs. 0.03 ± 0.02; P <

0.001) and IL-17 neutralizer group(IL-17 vs. IL-17 neutralizer,
0.20 ± 0.04 vs. 0.03 ± 0.03; P = 0.004). IL-17 group had a

higher incidence of pacing induced negative coupling of Cai-Vm
alternans compared to baseline (IL-17 vs. baseline, 0.40± 0.03 vs.
0.07± 0.03; P < 0.001) and IL-17 neutralizer group (IL-17 vs. IL-
17 neutralizer, 0.40± 0.03 vs. 0.25± 0.06; P= 0.04) (Figure 3D).
No significant difference in PCL threshold of positive coupling
of Cai-Vm alternans was be found between the baseline and IL-
17 neutralizer groups. The PCL threshold of negative coupling
of Cai-Vm alternans was greater in the IL-17 group than in the
baseline (IL-17 vs. baseline, 227 ± 10.5 vs. 176 ± 4.4ms; P <

0.001) and IL-17 neutralizer groups (IL-17 vs. IL-17 neutralizer,
227± 10.5 vs. 184± 7.5ms; P= 0.001) (Figure 3E).

Effect of IL-17 on the Maximum Slope of
APD Restitution Curves and PCL Threshold
Triggering Ventricular
Tachycardia/Ventricular Fibrillation
The IL-17 group had higher maximum slopes of APD restitution
(APDR) curves than the baseline group (2.1 ± 0.8 vs. 0.7 ± 0.4;
P < 0.001). And, there were significant differences in maximum
slopes of APDR curves between the IL-17 and IL-17 neutralizer
groups (2.1 ± 0.8 vs. 1.0 ± 0.2; P = 0.008) (Figures 4A–D).
The PCL threshold triggering ventricular tachycardia/ventricular
fibrillation (VT/VF) was higher in the IL-17 group than in the
baseline (IL-17 vs. baseline, 170 ± 20ms vs. 130 ± 10ms; P =

0.01) and IL-17 neutralizer groups (IL-17 vs. IL-17 neutralizer,
170 ± 20 vs. 143 ± 5ms; P = 0.05) (Figure 4E). VA inducibility
was higher in IL-17 compared with the baseline and IL-17
neutralizer group (Figure 4F).

Effect of IL-17 on VF Dynamics in Normal
Ventricles
Figure 5A shows the p-ECG recordings of VF in the baseline, IL-
17 and IL-17 neutralizer groups. The DF of VF was decreased
from 13.7Hz (IL-17 group) to 9.0Hz after IL-17 neutralizer
treatment (IL-17 neutralizer group) compared with the baseline
group (6.8Hz). The IL-17 group had a higher DF of VA than
that of the baseline group (IL-17 vs. baseline, 12.5 ± 0.5
vs. 7.7 ± 0.7Hz; P < 0.001) and IL-17 neutralizer group
(IL-17 vs. IL-17 neutralizer, 12.5 ± 0.5 vs. 9.0 ± 0.5Hz;
P < 0.001) (Figure 5B). Phase maps sampled during VF
were analyzed for PSs (wavebreaks). Figure 5C shows phase
maps with PSs (black arrows) of the baseline, IL-17 and IL-
17 neutralizer groups in LV. The IL-17 group increased PSs
than the baseline group (IL-17 vs. baseline, 0.5 ± 0.10 vs.
0.1 ± 0.01; P < 0.001) and IL-17 neutralizer group (IL-
17 vs. L-17 neutralizer, 0.5 ± 0.10 vs. 0.1 ± 0.02; P <

0.001).

The mRNA Expression of Ion Channels in
IL-17-Treated Rabbit Hearts
Using semiquantitative reverse transcription polymerase chain
reaction (RT-PCR), we found mRNA levels that the Na+/Ca2+

exchanger (NCX), phospholamban (PLB), and ryanodine
receptor Ca2+ release channel (RyR) were significantly
upregulated in the IL-17 group compared with the baseline
and IL-17 neutralizer groups. The mRNA level of RyR was
significantly reduced in the baseline group compared with

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 March 2021 | Volume 8 | Article 623510

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tsai et al. Proinflammation Enhances Ventricular Arrhythmia

FIGURE 5 | Effects of IL-17 on the DF and wavebreaks of VF in ventricles. (A) p-ECG recordings of pacing-induced sustained VF episodes in the baseline, IL-17, and

IL-17 neutralizer groups in a normal ventricle. (B) Effects of IL-17 on DF of VF in normal ventricles. (C) Effects of IL-17 on the number of PSs. **P < 0.01; ***P <

0.001. DF, dominant frequency; VF, ventricular fibrillation; PSs, Phase singularities.

the IL-17 neutralizer group. The subunit of the L-type Ca2+

current (ICaL) Cav1.2 and sarcoplasmic reticulum Ca2+-ATPase
(SERCA2a) were significantly reduced in the IL-17 group
compared with the baseline and IL-17 neutralizer groups. No
significant difference in the mRNA levels of NCX, Cav1.2,

SERCA2a, and PLB was found between the baseline and IL-17
neutralizer groups. Furthermore, among the 3 groups, no
significant difference in the mRNA levels of the following was
observed: the α1-subunit of Na channel, Nav1.5; the subunit
of the inward rectifier potassium current (IK1), Kir2.1; the
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FIGURE 6 | Expressions of various ion channels target in left ventricular. Relative quantities of mRNA levels by semiquantitative RT-PCR were shown among the 3

groups. (A) Shows RT-PCR gels for Nav1.5, Kir2.1, KvLQT1, NCX, Cav1.2, SERCA2a, PLB, and RyR. (B) Demonstrates the relative mRNA expression quantity. Each

value represents the mean ± SD of 3 or more repeat experiments. *P < 0.05; **P < 0.01; ***P < 0.001. KvLQT1, subunit of IKs; Nav1.5, α1-subunit of Na channel;

Cav1.2, subunit of ICaL; NCX, sodium-calcium exchanger; Kir2.1, subunit of IK1; RyR, ryanodine receptor Ca2+ release channel; PLB, phospholamban; SERCA2a,

sarcoplasmic reticulum Ca2+-ATPase; mRNA, messenger ribonucleic acid; RT-PCR, reverse transcription polymerase chain reaction.

subunit of the slow delayed rectifier current (IKs), KvLQT1
(Figures 6A,B).

DISCUSSION

IL-17 Modulates Electrophysiology of LV
Increased proinflammatory cytokine levels are associated with
HF, hypertension, arrhythmogenic RV cardiomyopathy, and
myocardial ischemia (1, 15, 16). In several case-controlled
studies, increased levels of inflammatory markers, such as CRP,
IL-6, IL-8, and TNF, and elevated neutrophil and lymphocyte
ratios have been reported in patients with arrhythmia compared
with those in patients with sinus rhythm (17). The inflammation

process enhanced by HF is associated with the alteration of
ionic currents and the Cai transient, which predisposes to
VA (15). Electrical remodeling prolonged APD and steepened
the maximum slope of APDR, which promotes dynamical
instability, wavebreaks, and VF (4, 18). Mediators of the
inflammatory response can alter electrophysiology and structural
substrates, thereby promoting arrhythmia susceptibility. The
proinflammatory cytokine such as TNF-α and IL-1β can decrease
the SERCA2 expression, which prolongs CaiTD and APD (19).
The participation of different inflammation-related cytokines
and chemokines has been proposed in the pathophysiology
of arrhythmia (4, 19). We previously reported treatment IL-
17 directly induced VA in a dose-dependent manner (4). In
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FIGURE 7 | Proposed pathway of IL-17 effects on ventricular arrhythmia (VA). ICaL, L-type calcium current; INCX, Na
+-Ca2+ exchanger current; and other

abbreviations as in Figures 2, 3, 6.

agreement with previous studies, our present study showed that
IL-17 prolonged APD and CaiTD and steepened the maximum
slope of APDR, which may result in VA.

Effects of IL-17 on Electrical Alternans
APD and Cai alternans are related with arrhythmogenesis,
where SDA between myocytes amplify repolarization gradients
to produce conduction block and reentrant excitation (20).
In our present study, IL-17 enhanced the Cai and APD
alternans and decreased Cai transient, which may increase VA
susceptibility. In the HF model, a decrease in Cai transient
amplitude and contractile dysfunction can be produced by Ca2+

leak through the sarcoplasmic reticulum (SR) Ca2+ channel
RyR and/or reduced activity of SERCA2a (21). TNF-α causes
abnormal Cai handling and arrhythmogenicity in pulmonary
vein cardiomyocytes, and it can reduce the mRNA expression of
SERCA2a by enhancing methylation in the promoter region (22).
IL-1β significantly reduces the contractility of cardiomyocytes
and the amplitude and speed of Cai transients, and it encourage

SR Ca2+ leak and spontaneous arrhythmic activity when they
interact with other inflammatory cytokines (19). Two major
mechanisms for the growth of SDA have been proposed: voltage-
and Ca2+-driven mechanisms (23). The first mechanism was
purely Vm potential-driven, which was coupled through the
dynamic interaction between the APDR curve and CV restitution
curve; however, the Ca2+-driven mechanism was considered
to be more complex, with discordant alternans produced by
instabilities in Cai cycling that impact APD through Cai-Vm
coupling (24). Cai-Vm coupling depended on a dynamic balance
between the influx through ICaL and extrusion through the
NCX current (INCX) (23). If the effect of INCX is dominant,
positive Cai-Vm coupling occurs, where increased Cai induces
prolonged APD by enhancing Ca2+ extrusion through INCX.
If Ca-dependent inactivation of ICaL dominates, a large Cai
transient will rapidly inactivate ICaL and tend to shorten APD
(24). Electrical alternans have previously been attributed to the
disturbances in Cai signaling, and APD alternans are considered
to be a secondary consequence (24).
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IL-17 Modulates Calcium Handling
In our study, mRNA levels of Cav1.2 and SEARCA2a were
downregulated in the IL-17 group, and IL-17 neutralizer
treatment reversed these changes. The increase in mRNA
expression of NCX during HF was found to be associated
with imperfect SERCA2a function. Upregulated NCX activity
leads to APD prolongation and repolarization instability during
HF (25). In the present study, NCX was upregulated in the
IL-17 group, and IL-17 neutralizer treatment reversed the
change in expression of NCX caused by IL-17. A previous
study showed that PLB ablation in TNF1.6 mice (TKO mice)
improved contractile function and Cai transients in isolated
cardiomyocytes (26). TNF-α-induced caspase-8 activation results
in the leakage of RyR2 channels that promote cardiac remodeling
after myocardial ischemia/reperfusion (27). Increased RyR
sensitivity and reduced IK1 contributes to sustained focal
arrhythmia in rabbits (28). In agreement with previous reports,
our present study demonstrated that the mRNA expressions of
PLB and RyR were upregulated in the IL-17 group, and IL-
17 neutralizer treatment downregulated these expressions to the
baseline, suggesting that abnormal Cai handling caused by IL-17
can result in VA. In our previous study, the expression of IL-
17 via activating MAPK pathway might play an important role
in generating VA in ischemic HF. Moreover, our present study
showed that IL-17 enhanced CaiTD and APD alternans through
the disturbances in calcium handling, which may increase VA
susceptibility in normal substrate.

Possible Mechanism and Clinical
Implication
We propose a possible mechanism for IL-17–induced VA
(Figure 7). IL-17 administration decreased themRNA expression
of Cav1.2 and enhanced that of PLB, resulting in decreased Cai
and Cai transient. IL-17 administration increased NCX activity
contributing to APD prolongation, repolarization instability,
and increased RyR sensitivity. Decreased SERCA2a levels may
result in susceptibility to APD and Cai alternans with IL-17
administration. Therefore, IL-17 causes electrical and structural
remodeling, resulting in VA. In ischemic HF patients, IL-17 levels
may function as a biomarker for monitoring the incidence of
VA. A recent study demonstrated that anti-inflammatory therapy
targeting IL-1β suppression decreased cardiovascular events
in myocardial ischemia patients (16). IL-17 suppression may
provide a new therapy to prevent VA in ischemic HF patients.

Limitation
First, small sample size may cause an insignificant result of
IL 17-neutralizer on calcium transients compared to those on
baseline. With more statistical power a significant result might
be obtained. It is also possible that IL-17 might cause a reduction
in Cai transients through multiple mechanisms rather than the
IL-17 receptor alone. Both IL-17 and IL-17 neutralizer can not
be washed out. There was no time control in this study. We
only examined mRNA expression of ionic channels and calcium
handling. It is difficult to directly link the gene expression and
functional data. The RNA transcriptions of calcium handling
proteins may not fully explain the results observed during
measurements of calcium transients. Further study is needed

to clarify this issue. Cytochalasin-D has been reported to affect
repolarization/conduction patterns and Cai. These effects might
interfere with the current results in our rabbit model. A 2ms
frame rate might not be optimal for determining activation/rise
time characteristics, and a higher frame rate is optimal.

CONCLUSIONS

Enhanced electrical alternans and abnormal Cai handling caused
by IL-17 can increase susceptibility of VA in normal rabbit heart.
Suppression of IL-17 may reverse the adverse effect, providing a
potential treatment for VA.
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